On p-open mappings

by Zbigniew Duszyński

Abstract

p-open mappings between topological spaces are those preserving preopen sets. Restrictions of this type of mappings are considered. Preimages of semi-connected spaces and images of S-closed spaces are investigated. Also, some observations concerning a.c.H. mappings are provided.

Key Words: Preopen, semi-open, semi-preopen sets; a.c.H., semi-continuous, almost open mappings; semi-connected, S-closed spaces. 2000 Mathematics Subject Classification: Primary 54C08.

1 Introduction

In 1984 Mashhour et al. [23, Definition 3.2] have introduced the notion of \mathcal{M} -preopenness: a mapping is \mathcal{M} -preopen if images of preopen sets are preopen. Later, Janković [16] referred to this property as to the p-openness. We shall use the latter up to its briefness. In this paper, characterizations of p-open mappings are given and restrictions of those mappings are investigated. Preimages of semi-connected spaces and images of \mathcal{S} -closed spaces are considered. No separation axioms are assumed.

2 Preliminaries

Throughout this paper, (X, τ) and (Y, σ) denote topological spaces. For $A \subset X$, (A, τ_A) stands for the topological subspace of (X, τ) . Fix an (X, τ) . The closure of $S \subset X$ and the interior of S (both in (X, τ)) are denoted with cl (S) and int (S) respectively. For a subspace (A, τ_A) , $A \supset S$, these will be denoted with $\operatorname{cl}_A(S)$ and $\operatorname{int}_A(S)$ respectively. A subset $S \subset X$ is said to be regular open (resp. regular closed; α -open [25]; semi-open [17]; semi-closed [7]; preopen [20]; preclosed [3]; semi-preopen [3] (equiv. β -open [1]); semi-regular [9] (equiv. regular semi-open [5])) in (X, τ) if $S = \operatorname{int} (\operatorname{cl}(S))$ (resp. $S = \operatorname{cl}(\operatorname{int}(S))$); $S \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(S)))$; $S \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(S)))$

cl (int (S)); int (cl (S)) $\subset S$; $S \subset$ int (cl (S)); cl (int (S)) $\subset S$; $S \subset$ cl (int (cl (S))); int (cl (S)) $\subset S \subset$ cl (int (S))).

A subset S of (X, τ) is called *generalized closed* [19] if $\operatorname{cl}(S) \subset U$ whenever $S \subset U$ and $U \in \tau$.

The family of all regular open (resp. closed; regular closed; α -open; semi-open; semi-closed; preopen; preclosed; semi-preopen; semi-regular; generalized closed) subsets of an (X,τ) will be denoted with RO (X,τ) (resp. c (X,τ) ; RC (X,τ) ; τ^{α} ; SO (X,τ) ; SC (X,τ) ; PO (X,τ) ; PC (X,τ) ; SPO (X,τ) ; SR (X,τ) ; Gc (X,τ)). A subset $S \in \text{SO }(X,\tau)$ if and only if there exists an $U \in \tau$ such that $U \subset S \subset \text{cl }(U)$ [17].

The following (proper, in general) inclusions are well-known: $\tau \subset \tau^{\alpha} = \mathrm{SO}\left(X,\tau\right) \cap \mathrm{PO}\left(X,\tau\right)$ ([34, Lemma 3.1] for the equality); $\mathrm{SO}\left(X,\tau\right) \cup \mathrm{PO}\left(X,\tau\right) \subset \mathrm{SPO}\left(X,\tau\right)$ [3, Theorem 2.2 & Example 2.3]. The family τ^{α} forms a topology on X.

The intersection of all semi-closed (resp. preclosed) subsets of (X, τ) containing $S \subset X$ is called the *semi-closure* (resp. the *preclosure*) of S and is denoted with $\mathrm{scl}(S)$ (resp. $\mathrm{pcl}(S)$). The union of all preopen subsets of (X, τ) contained in $S \subset X$ is called the *preinterior* of S and is denoted with $\mathrm{pint}(S)$. It is known that $S \in \mathrm{SC}(X,\tau)$ (resp. $S \in \mathrm{PC}(X,\tau)$; $S \in \mathrm{PO}(X,\tau)$) if and only if $S = \mathrm{scl}(S)$ (resp. $S = \mathrm{pcl}(S)$; $S = \mathrm{pint}(S)$).

A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be α -continuous [22, 31] (resp. semi-continuous (briefly s.c.) [17]; an R-map [6]; irresolute [8]) if the preimage $f^{-1}(V)$ is in τ^{α} (resp. in SO (X,τ) ; RO (X,τ) ; SO (X,τ)) for every V from σ (resp. from σ ; RO (Y,σ) ; SO (Y,σ)). In 1966, Husain [14] has introduced almost continuous mappings (briefly a.c.H.). Mashhour et al. [20] has shown that a.c.H. for an $f:(X,\tau)\to (Y,\sigma)$ coincides with the so-called precontinuity of f: $f^{-1}(V)\in \mathrm{PO}(X,\tau)$ for every $V\in\sigma$. Rose [37, Theorem 6] proved that an f is a.c.H. iff $f(\mathrm{cl}(U))\subset\mathrm{cl}(f(U)$ for every $U\in\tau$. Janković [16, Proposition 3.1] observed that an f is a.c.H. iff $f(\mathrm{cl}(U))\subset\mathrm{cl}(f(U))\subset\mathrm{cl}(f(U))$ for every $U\in\mathrm{SO}(X,\tau)$.

In 1967, Wilansky [43] introduced almost open mappings (briefly: a.o.W.). Rose [37, Theorem 11] showed that an f is a.o.W. iff $f(\operatorname{cl}(U)) \subset \operatorname{int}(\operatorname{cl}(f(U)))$ for every $U \in \tau$ (i.e., iff f is preopen [20]).

A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be almost open in the sense of Singals [39] (a.o.S., for short) if $f(U)\in\sigma$ for every $U\in \mathrm{RO}(X,\tau)$.

A space (X, τ) is said to be extremally disconnected (briefly e.d.) (resp. submaximal) if $\operatorname{cl}(U) \in \tau$ for every $U \in \tau$ (resp. if for every dense $U \subset X$ we have $U \in \tau$).

3 Characterizations

Definition 1. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be p-open if $f(U)\in PO(Y,\sigma)$ for every $U\in PO(X,\tau)$.

Theorem 1. For an $f:(X,\tau)\to (Y,\sigma)$ the following are equivalent:

- (a) f is p-open.
- (b) For every $S \subset Y$ and every $F \in PC(X, \tau)$ with $f^{-1}(S) \subset F$ there exists a $G \in PC(Y, \sigma)$ such that $S \subset G$ and $f^{-1}(G) \subset F$.
- (c) For every $B \subset Y$, $f^{-1}(\operatorname{cl}(\operatorname{int}(B))) \subset \operatorname{pcl}(f^{-1}(B))$.
- (d) For every $A \subset X$, $f(\text{pint}(A)) \subset \text{int}(\text{cl}(f(A)))$.
- (e) For every $V \in \sigma$, $f^{-1}(\operatorname{cl}(V)) \subset \operatorname{pcl}(f^{-1}(V))$.
- (f) For every $V \in SO(Y, \sigma)$, $f^{-1}(\operatorname{cl}(V)) \subset \operatorname{pcl}(f^{-1}(V))$.
- (g) For every $V \in \sigma^{\alpha}$, $f^{-1}(\operatorname{cl}(V)) \subset \operatorname{pcl}(f^{-1}(V))$.

Proof: (a) \Rightarrow (b). Let $S \subset Y$ and $F \in PC(X, \tau)$ be such that $f^{-1}(S) \subset F$. Put $G = Y \setminus f(X \setminus F)$. Since f is p-open, $G \in PC(Y, \sigma)$, and since $f^{-1}(B) \subset F$ we get $f(X \setminus F) \subset f(f^{-1}(Y) \setminus f^{-1}(S)) \subset Y \setminus S$. So, $S \subset G$. One easily checks that $f^{-1}(G) \subset F$.

(b) \Rightarrow (c). Let $B \subset Y$. Put $F = \operatorname{pcl}(f^{-1}(B)) \in \operatorname{PC}(X, \tau)$. Clearly, $f^{-1}(B) \subset F$. By assumption there exists a set $G \in \operatorname{PC}(Y, \sigma)$ with $B \subset G$ and such that $f^{-1}(G) \subset F$. Thus, we have $\operatorname{cl}(\operatorname{int}(B)) \subset G$ and $f^{-1}(\operatorname{cl}(\operatorname{int}(B)) \subset \operatorname{pcl}(f^{-1}(B))$. (c) \Rightarrow (d). Let $A \subset X$. Putting $B = Y \setminus f(A)$ we obtain

$$f^{-1}(Y \setminus \operatorname{int} (\operatorname{cl}(f(A))) \subset X \setminus f^{-1}(f(A)) \subset X \setminus \operatorname{pint} (f^{-1}(f(A))).$$

Hence pint $(A) \subset \text{pint}(f^{-1}(f(A))) \subset f^{-1}(\text{int}(\text{cl}(f(A))))$. Therefore we get $f(\text{pint}(A)) \subset \text{int}(\text{cl}(f(A)))$.

 $(\mathbf{d})\Rightarrow(\mathbf{a})$. Let $S\in\mathrm{PO}\left(X,\tau\right)$. Then $S=\mathrm{pint}\left(S\right)$ and by our supposition we obtain $f(S)=f(\mathrm{pint}\left(S\right)\subset\mathrm{int}\left(\mathrm{cl}\left(f(S)\right)\right)$. So, $f(S)\in\mathrm{PO}\left(Y,\sigma\right)$.

 $(\mathbf{a})\Leftrightarrow (\mathbf{e})$. Clear by (\mathbf{c}) .

 $(\mathbf{c}) \Leftrightarrow (\mathbf{f})$. Use [27, Lemma 2].

$$(\mathbf{f}) \Rightarrow (\mathbf{g}) \text{ and } (\mathbf{g}) \Rightarrow (\mathbf{e}). \text{ Obvious.}$$

It is clear that every p-open mapping is a.o.W., but the converse is not true, in general, see the following example.

Example 1. Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$, and $\sigma = \{\emptyset, Y, \{a\}, \{c\}, \{a, c\}\}\}$. Define a mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ as follows: f(a) = f(b) = a, f(c) = b. Then f is a.o. W. and not p-open since $f(\{a, c\}) = \{a, b\} \notin PO(Y, \sigma)$.

Almost openness in the sense of Singals (or openness) and p-openness are independent notions.

Example 2. (a). Let $X = \{a, b\} = Y$, $\tau = \{\emptyset, X\}$, and $\sigma = \{\emptyset, Y, \{a\}\}$. Let f be the identity on X. Then f is open (hence a.o.S.) and not p-open. (b). Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, X, \{c\}, \{a, b\}\}$, and $\sigma = \{\emptyset, Y, \}$. Let f be the identity mapping. Then f is p-open and not a.o.S. (so not open).

Lemma 1. [28, Theorem 1]. A mapping $f:(X,\tau)\to (Y,\sigma)$ is s.c. if and only if $f(\operatorname{int}(\operatorname{cl}(A)))\subset\operatorname{cl}(f(A))$ for every $A\subset X$.

Theorem 2. If an $f:(X,\tau)\to (Y,\sigma)$ is a.o.S. and s.c., then it is p-open (and irresolute [30, Theorem 1.12]).

Proof: Let $U \in \operatorname{PO}(X, \tau)$. Applying [32, Theorem 2.1] we obtain $f(U) \subset f(\operatorname{int}(\operatorname{cl}(U))) \subset \operatorname{int}(f(\operatorname{int}(\operatorname{cl}(U))))$, because $\operatorname{int}(\operatorname{cl}(U)) \in \operatorname{SC}(X, \tau)$. But f is s.c., thus by Lemma 1, $f(U) \in \operatorname{PO}(Y, \sigma)$.

4 p-a.c.H. and a.c.H. mappings

Definition 2. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be p-a.c.H. if $f(\operatorname{cl}(S))\subset\operatorname{cl}(f(S))$ for every $S\in\operatorname{PO}(X,\tau)$.

It is well-known that if a mapping $f:(X,\tau)\to (Y,\sigma)$ is α -continuous, then $f(\operatorname{cl}(S))\subset\operatorname{cl}(f(S))$ for every $S\in\operatorname{PO}(X,\tau)$ [22, Corollary 1.1(i)]. Thus each α -continuous mapping is p-a.c.H. On the other hand, every p-a.c.H. mapping is a.c.H. [37, Theorem 6], but the converse for this implication does not hold.

Example 3. Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, X, \{a, b\}\}$, and $\sigma = \{\emptyset, Y, \{b, c\}\}$. Let f be the identity on X. Then f is a.c.H. and not p-a.c.H. See also [24, Example 3.1].

Problem 1. Find a p-a.c.H. mapping which is not α -continuous.

Lemma 2. [2, Lemma 3.1]. An $A \in PO(X, \tau)$ if and only if there exists a $G \in \tau$ with $A \subset G \subset cl(A)$.

Theorem 3. Let a mapping $f:(X,\tau)\to (Y,\sigma)$ be open and p-a.c.H. Then f is p-open.

Proof: Let $A \in PO(X, \tau)$. Then, by Lemma 2 we have $A \subset G \subset cl(A)$ for a certain $G \in \tau$. Hence, we obtain $f(A) \subset f(G) \subset f(cl(A)) \subset cl(f(A))$ where $f(G) \in \sigma$. Therefore $f(A) \in PO(Y, \sigma)$.

Corollary 1. If a mapping is open and continuous, then it is p-open.

Example 4. (a). Let $X = \{a, b\}$, $Y = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}\}$, and $\sigma = \{\emptyset, Y, \{c\}, \{a, b\}, \{a, b, c\}\}$.

Let $f:(X,\tau)\to (Y,\sigma)$ be the identity on X. Then f is p-a.c.H. and not open. (b). Let $X=\{a,b\},\ \tau=\{\emptyset,X,\{a\},\{a,b\}\}$. The identity on X is p-a.c.H. and open.

(c). Let $X = \{a, b, c\}$, $Y = \{a, b, c, d\}$, $\tau = \{\emptyset, X\}$, and $\sigma = \{\emptyset, Y, \{c\}, \{a, b\}, \{a, b, c\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity on X. Then f is open and not p-a.c.H.

Problem 2. In 1973, Neubrunnová [24, Examples 3.1&3.2] has shown that a.c.H. and s.c. are independent of each other. Indicate a p-a.c.H. mapping which is not s.c.

Theorem 4. For an $f:(X,\tau)\to (Y,\sigma)$ the following are equivalent:

- (a) f is α -continuous.
- **(b)** f is s.c. and a.c.H.
- (c) f is s.c. and p-a.c.H.

Proof: (a) \Leftrightarrow (b). [34, Theorem 3.2]. (b) \Rightarrow (c). By Lemma 1 we have $f(\operatorname{int}(\operatorname{cl}(S))) \subset \operatorname{cl}(f(A))$ for every subset $A \subset X$. Hence, $\operatorname{cl}(f(\operatorname{int}(\operatorname{cl}(S)))) \subset \operatorname{cl}(f(A))$ and $f(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(S)))) \subset \operatorname{cl}(f(\operatorname{int}(\operatorname{cl}(S))))$, because f is a.c.H. Let $A \in \operatorname{PO}(X, \tau)$. Clearly, $f(\operatorname{cl}(A)) \subset \operatorname{cl}(f(A))$. (c) \Rightarrow (b). Obvious.

Corollary 2. Assume a mapping $f:(X,\tau)\to (Y,\sigma)$ is s.c. Then f is p-a.c.H. iff it is a.c.H.

Remark 1. An a.c.H. mapping $f:(X,\tau) \to (Y,\sigma)$ is p-a.c.H. if and only if $SO(X,\tau) = PO(X,\tau)$ [16, Proposition 3.1]. On the other hand, $PO(X,\tau) = SO(X,\tau)$ if and only if (X,τ) is e.d. and (X,τ^{α}) is submaximal (see [16, Proposition 4.1] and [13, Theorem 4] respectively).

The conditions ' (X,τ) is e.d.' and ' (X,τ^{α}) is submaximal' do not depend on the other.

Example 5. (a). Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a, b\}\}$. Then (X, τ) is e.d. and (X, τ^{α}) is not submaximal.

(b). Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then (X, τ) is not e.d. but (X, τ^{α}) is submaximal (we have $\tau = \tau^{\alpha}$).

Corollary 3. An a.c.H. mapping $f:(X,\tau)\to (Y,\sigma)$ is p-a.c.H. if and only if the space (X,τ) is e.d. and (X,τ^{α}) is submaximal.

Theorem 5. If a mapping $f:(X,\tau)\to (Y,\sigma)$ is a.c.H. and a.o.S., then $f(S)\in SO(Y,\sigma)$ for every $S\in SR(X,\tau)$.

Proof: Take an $S \in SR(X, \tau)$. With [37, Theorem 6] and [32, Theorem 2.1] we have $f(S) \subset f(\operatorname{cl}(\operatorname{int}(S))) \subset \operatorname{cl}(\operatorname{fint}(f(S)))$.

An analogous result can be obtained when we replace a.o.S. by semi-openness [4] (see [30, Theorem 2.5]). Semi-openness and a.o.S. are independent notions [30, p.315]. It is worth to compare Theorem 5 with [32, Theorem 4.2].

5 Restrictions

Noiri has shown that the restriction of an a.o.W. mapping to a closed subdomain, is not necessarily a.o.W. [32, Example 3.2]. A similar assertion can be proved for p-open mappings.

Example 6. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a, b\}\}$. Then

$$PO(X, \tau) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}\}$$

and $\{c\}$ is a closed set. The identity mapping on X is p-open while its restriction to $\{c\}$ is not.

Also, the restriction of a p-open mapping to a semi-open set may be not p-open.

Example 7. Let \mathbb{R} be the space of reals endowed with the Euclidean topology τ_e . Consider any interval I = [a,b), a < b, $a,b \in \mathbb{R}$. Obviously $I \in SO(\mathbb{R}, \tau_e) \setminus (PO(\mathbb{R}, \tau_e) \cup c(\mathbb{R}, \tau_e))$. The identity on \mathbb{R} is p-open but its restriction to I is not.

Lemma 3. [21, Lemma 2.2]. If $U \in PO(X, \tau)$ and $V \in PO(U, \tau_U)$, then $V \in PO(X, \tau)$.

Theorem 6. Let (X, τ) and (Y, σ) be any spaces and a mapping $f : (X, \tau) \to (Y, \sigma)$ be p-open. If $U \in PO(X, \tau)$ then the restriction $f \upharpoonright U$ is p-open too.

Proof: Follows by Lemma 3.

The two examples below present some other cases when a restriction of a p-open mapping is not p-open.

Example 8. Consider (\mathbb{R}, τ_e) , the identity mapping on \mathbb{R} , and the subset $A = [0,1] \cup ((1,2] \cap \mathbb{Q})$, where \mathbb{Q} stands for the set of rationals. Clearly, $A \in SPO(\mathbb{R}, \tau_e) \setminus (PO(\mathbb{R}, \tau_e) \cup SO(\mathbb{R}, \tau_e) \cup Gc(\mathbb{R}, \tau_e))$. One easily checks that the restriction of identity to A is not p-open.

Example 9. For (\mathbb{R}, τ_e) and the identity mapping on \mathbb{R} consider the set $A = [0,1) \cup \{2\}$. We have $A \notin SPO(\mathbb{R}, \tau_e)$ and the restriction of identity to A is not p-open.

Lemma 4. Let $A \subset X$ be an arbitrary open subset of (X, τ) and let $S \subset A$. If $S \in PO(X, \tau)$ then $S \in PO(A, \tau_A)$.

Proof: Let $S \in PO(X, \tau)$. By [3, Theorem 1.5(f)] we get $S \supset pint_A(S) = S \cap int_A(\operatorname{cl}_A(S)) \supset S \cap int(A \cap \operatorname{cl}(S)) = S \cap A \cap int(\operatorname{cl}(S)) = S$. Thus $S = pint_A(S)$ and $S \in PO(A, \tau_A)$.

Corollary 4. Let (X, τ) be arbitrary and an $A \in \tau$. Then $S \in PO(A, \tau_A)$ if and only if $S \in PO(X, \tau)$.

Proof: Lemmas 3 and 4.

Theorem 7. Let a mapping $f:(X,\tau)\to (Y,\sigma)$ be p-open and let for an $A\in PO(X,\tau)$, $f(A)\in \sigma$. Then the surjection $g_A:(A,\tau_A)\to (f(A),\sigma_{f(A)})$, where $g_A(x)=f(x),\ x\in A$, is p-open.

Proof: Follows from Lemmas 3 and 4.

Corollary 5. Let a mapping $f:(X,\tau)\to (Y,\sigma)$ be open and p-open. Then, for any $A\in \tau$ the surjection g_A from Theorem 7 is p-open.

Theorem 8. Let a mapping $f:(X,\tau)\to (Y,\sigma)$ be an open injection and let $A\in \tau$ be arbitrary. Then, the bijection g_A from Theorem 7 is open.

Lemma 5. Let an A be arbitrary subset of a space (X, τ) . Then $A \cap \operatorname{pcl}(S) \subset \operatorname{pcl}_A(S)$ for every $S \subset A$.

Proof: Let $S \subset A \subset X$. Applying [19, Theorem 1.5(e)] we infer what follows:

$$\operatorname{pcl}_{A}(S) = S \cup \operatorname{cl}_{A}(\operatorname{int}_{A}(S)) =$$

$$= S \cup (A \cap \operatorname{cl}(\operatorname{int}_{A}(S))) \supseteq A \cap (S \cup \operatorname{cl}(\operatorname{int}(S))) = A \cap \operatorname{pcl}(S).$$

Remark 2. Recall that Dontchev et al. [10] have proved that if $A \in PO(X, \tau)$ and $S \in PO(A, \tau_A)$ then $pcl(S) \subset pcl_A(S)$.

Theorem 9. If a mapping $f:(X,\tau)\to (Y,\sigma)$ is p-open and $B\in SO(Y,\sigma)$, then $f\upharpoonright f^{-1}(B):f^{-1}(B)\to B$ is p-open

Proof: We shall use the characterization of p-openness stated in Theorem 1(\mathbf{f}). Let a $V \in SO(B, \sigma_B)$. Since $B \in SO(Y, \sigma)$, $V \in SO(Y, \sigma)$ [26, Theorem 5], and hence with p-openness of f we obtain $f^{-1}(\operatorname{cl}(V)) \subset \operatorname{pcl}(f^{-1}(V))$. So, using Lemma 5 we calculate as follows:

$$\left(f \upharpoonright f^{-1}(B)\right)^{-1}(\operatorname{cl}_B(V)) = f^{-1}(B \cap \operatorname{cl}(V)) \subseteq f^{-1}(B) \cap \operatorname{pcl}\left(f^{-1}(V)\right) \subset$$

$$\subset \operatorname{pcl}_{f^{-1}(B)}\left(f^{-1}(V)\right) = \operatorname{pcl}_{f^{-1}(B)}\left(\left(f \upharpoonright f^{-1}(B)\right)^{-1}(V)\right).$$

Therefore $f \upharpoonright f^{-1}(B)$ is p-open.

Lemma 6. [12, Theorem 2.4]. If $S \in SO(X, \tau)$ then pcl(S) = cl(S).

Let us observe, that a shorter proof of Lemma 6 one could have obtained with [3, Theorem 1.5(e)] and [27, Lemma 2].

Lemma 7. Let a mapping $f:(X,\tau)\to (Y,\sigma)$ be s.c. and let $V\in\sigma$ be arbitrary. Then $f\upharpoonright f^{-1}(V):f^{-1}(V)\to V$ is s.c. too.

Proof: Let an $U \in \sigma_V$. Then $U \in \sigma$. By hypothesis we have $f^{-1}(U) \in SO(X, \tau)$. Hence $f^{-1}(U) \in SO(f^{-1}(V), \tau_{f^{-1}(V)})$, because $f^{-1}(V) \in SO(X, \tau)$ [26, Theorem 5]. Therefore, the mapping $f \upharpoonright f^{-1}(V)$ is s.c.

Theorem 10. Let an $f:(X,\tau) \to (Y,\sigma)$ be s.c. and let $\{V_\alpha : \alpha \in \nabla\}$ be a cover of Y. If mappings $f \upharpoonright f^{-1}(V_\alpha) : f^{-1}(V_\alpha) \to V_\alpha$ are p-open for every $\alpha \in \nabla$, then f is p-open.

Proof: Let $V \in \sigma$ be arbitrary. Put $f_{\alpha} = f \upharpoonright f^{-1}(V_{\alpha})$ and $U_{\alpha} = f^{-1}(V_{\alpha})$ for every $\alpha \in \nabla$. Each subset $V \cap V_{\alpha}$ is open in the space $(V_{\alpha}, \sigma_{V_{\alpha}})$, thus with the assumption and Theorem 1(e) we get $f_{\alpha}^{-1}(\operatorname{cl}_{V_{\alpha}}(V \cap V_{\alpha})) \subset \operatorname{pcl}_{U_{\alpha}}(f_{\alpha}^{-1}(V \cap V_{\alpha}))$ for every $\alpha \in \nabla$. Since $V_{\alpha} \in \sigma$ for any $\alpha \in \nabla$, we obtain what follows:

$$f^{-1}(\operatorname{cl}_{\sigma}(V)) = \bigcup_{\alpha \in \nabla} f^{-1}(V_{\alpha} \cap \operatorname{cl}_{\sigma}(V)) \subset$$

$$\subset \bigcup_{\alpha \in \nabla} f_{V_{\alpha}}^{-1}(\operatorname{cl}_{V_{\alpha}}(V_{\alpha} \cap V)) \subset \bigcup_{\alpha \in \nabla} \operatorname{pcl}_{U_{\alpha}}(f_{\alpha}^{-1}(V_{\alpha} \cap V)).$$

From Lemma 7 and from our hypothesis we infer that $f_{\alpha}^{-1}(V_{\alpha} \cap V) \in SO(U_{\alpha}, \tau_{U_{\alpha}})$ for every $\alpha \in \nabla$, and so $\operatorname{pcl}_{U_{\alpha}}(f_{\alpha}^{-1}(V_{\alpha} \cap V)) = \operatorname{cl}_{U_{\alpha}}(f_{\alpha}^{-1}(V_{\alpha} \cap V))$ (Lemma 6). Then, we obtain

$$f^{-1}(\operatorname{cl}_{\sigma}(V)) \subset \bigcup_{\alpha \in \nabla} \operatorname{cl}(f_{\alpha}^{-1}(V_{\alpha} \cap V)) \subset \operatorname{cl}(f^{-1}(V)) = \operatorname{pcl}(f^{-1}(V)),$$

because $f^{-1}(V) \in SO(X, \tau)$. Therefore, by Theorem 1(e), f is p-open.

Corollary 6. Let $\{V_{\alpha} : \alpha \in \nabla\}$ be a cover of a space (Y,σ) and let a mapping $f:(X,\tau) \to (Y,\sigma)$ be s.c. Then f is p-open if and only if $f \upharpoonright f^{-1}(V_{\alpha}) : f^{-1}(V_{\alpha}) \to V_{\alpha}$ are p-open for every $\alpha \in \nabla$.

Proof: It directly follows from Theorems 8 and 9.

The next result is worth being noticed.

Theorem 11. For any space (X,τ) , if $S \subset A \subset X$, $A \in SO(X,\tau)$, and $S \in SO(A,\tau_A)$, then

$$\operatorname{pcl}_{A}(S) = A \cap \operatorname{pcl}(S). \tag{1}$$

Proof: Let $S \subset A \subset X$. By [3, Theorem 1.5(e)] we have $\operatorname{pcl}_A(S) = S \cup \operatorname{cl}_A(\operatorname{int}_A(S)) = S \cup \operatorname{cl}_A(S) = \operatorname{cl}_A(S)$, because $S \in \operatorname{SO}(A, \tau_A)$ [27, Lemma 2]. Since $S \in \operatorname{SO}(X, \tau)$ [26, Theorem 5], $\operatorname{cl}(S) = \operatorname{pcl}(S)$ (by Lemma 6). Therefore (1) holds.

Remark 3. Dontchev et al. [10] proved that if $A \in SO(X, \tau)$, then $pcl_A(S) \subset pcl(S)$ for any $S \subset A \subset X$.

6 S-connectedness of spaces

Definition 3. A topological space (X, τ) is said to be **semi-connected** [35] (resp. **preconnected** [36]) if X cannot be expressed as the union of two nonempty semi-open (resp. preopen) subsets of (X, τ) .

Semi-connectedness and preconnectedness of a space are independent notions [15, Examples 21.&2.2]. It is clear that if the range of any open bijection (equiv. any closed bijection) is connected, then its domain is connected too. Similarly, if the range of a p-open bijection is preconnected, then the domain is preconnected too. In this section we study conditions under which the domain of an open or a p-open bijection is semi-connected if the range is semi-connected.

Lemma 8. If a mapping $f:(X,\tau)\to (Y,\sigma)$ is open and a.c.H. then the set $\operatorname{cl}(f(\operatorname{cl}(A)))\in\operatorname{SO}(Y,\sigma)$ for every $A\in\operatorname{PO}(X,\tau)$.

Proof: Take any $A \in PO(X, \tau)$. By Lemma 2 there exists a $G \in \tau$ such that $A \subset G \subset cl(A)$. Since f is a.c.H., we get what follows:

$$f(G) \subset f(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))) \subset \operatorname{cl}(f(\operatorname{int}(\operatorname{cl}(A))))) \subset$$

 $\subset \operatorname{cl}(f(\operatorname{cl}(A))) = \operatorname{cl}(f(\operatorname{cl}(G))) \subset \operatorname{cl}(f(G)).$

Thus $\operatorname{cl}(f(\operatorname{cl}(A))) \in \operatorname{SO}(Y, \sigma)$, since $f(G) \in \sigma$ [17, Definition 1].

With the proposition below we complete characterizations of semi-connected spaces; for some other the reader is referred to [11, 18, 29, 38, 42].

Theorem 12. For any (X, τ) , the following are equivalent

- (a) (X, τ) is semi-connected.
- **(b)** $\operatorname{scl}_{\tau}(A) = X$ for each nonempty $A \in \operatorname{PO}(X, \tau)$.
- (c) $\operatorname{cl}_{\tau}(A) = X$ for each nonempty $A \in \operatorname{PO}(X, \tau)$.
- (c') $\operatorname{cl}_{\tau^{\alpha}}(A) = X$ for each nonempty $A \in \operatorname{PO}(X, \tau)$.
- (d) $\operatorname{scl}_{\tau}(U) = X$ for each nonempty $U \in \operatorname{SO}(X, \tau)$.
- (e) $\operatorname{cl}_{\tau}(U) = X$ for each nonempty $U \in \operatorname{SO}(X, \tau)$.
- (e') $\operatorname{cl}_{\tau^{\alpha}}(U) = X$ for each nonempty $U \in \operatorname{SO}(X, \tau)$.

Proof: (a) \Rightarrow (b). Suppose for some nonempty $A \in PO(X, \tau)$ we have $scl(A) \neq X$. With [16, Proposition 2.7(a)] (or with [3, Theorem 1.5(a)]) we get $\emptyset \neq$ int $(cl(A)) \neq X$. So, we obtain that $X = int(cl(A)) \cup cl(int(X \setminus A))$, where the nonempty sets int (cl(A)), $cl(int(X \setminus A))$ belong to $SO(X, \tau)$. Therefore (X, τ) is not semi-connected, a contradiction.

(b) \Rightarrow (a). Suppose an (X,τ) fulfills (b), but it is not semi-connected. Hence $X=S_1\cup S_2$, where $S_1\neq\emptyset\neq S_2,\,S_1,S_2\in\mathrm{SO}\,(X,\tau)$, and $S_1\cap S_2=\emptyset$. By [24, Lemma 3.5] we have

$$\emptyset = \operatorname{int} \left(\operatorname{cl} \left(S_1 \cap S_2 \right) \right) = \operatorname{int} \operatorname{cl} \left(S_1 \right) \right) \cap \operatorname{int} \operatorname{cl} \left(S_2 \right) \right) =$$

$$= \operatorname{scl} \left(\operatorname{int} \left(\operatorname{cl} \left(S_1 \right) \right) \right) \cap \operatorname{scl} \left(\operatorname{int} \left(\operatorname{cl} \left(S_2 \right) \right) \right).$$

$$(2)$$

We shall show that int $(\operatorname{cl}(S_i)) \neq \emptyset$, i = 1, 2. Suppose not. Thus, from [3, Theorem 1.5(a)] we infer that $\operatorname{scl}(S_i) = S_i$, i.e., $S_i \in \operatorname{SC}(X, \tau)$, i = 1, 2. With a dual equality to that of [27, Lemma 2] we obtain $\operatorname{int}(\operatorname{cl}(S_i)) = \operatorname{int}(S_i)$, and so $\operatorname{int}(S_i) = \emptyset$, i = 1, 2. A contradiction since S_i 's are nonempty semi-open subsets of (X, τ) [7, Remark 1.2]. Finally, from (2) we get $\emptyset = X$. So, $(\mathbf{b}) \Rightarrow (\mathbf{a})$ holds. The implications $(\mathbf{b}) \Rightarrow (\mathbf{c})$ and $(\mathbf{d}) \Rightarrow (\mathbf{e})$ are clear. The property from (\mathbf{d}) has been established in [29, Theorem 3.1].

The implications $(\mathbf{c}) \Rightarrow (\mathbf{b})$ and $(\mathbf{e}) \Rightarrow (\mathbf{d})$ are obvious by [3, Theorem 1.5].

The equivalence $(\mathbf{c})\Leftrightarrow(\mathbf{c}')$ (resp. $(\mathbf{e})\Leftrightarrow(\mathbf{e}')$) is an immediate consequence of the conditions (\mathbf{b}) and (\mathbf{c}) (resp. (\mathbf{d}) and (\mathbf{e})).

Theorem 13. Let a bijection $f:(X,\tau)\to (Y,\sigma)$ be open, p-open, and a.c.H. If (Y,σ) is semi-connected then (X,τ) is semi-connected.

Proof: Suppose (X, τ) is not semi-connected. Then, by Theorem $12(\mathbf{c})$, there exists a nonempty $A \in PO(X, \tau)$ with $cl(A) \neq X$. Put $V = f(cl(A)) \in c(Y, \sigma)$. Using the characterization of p-openness from Theorem $1(\mathbf{f})$ we obtain

$$f^{-1}(\operatorname{cl}(V)) \subset \operatorname{pcl}(f^{-1}(f(\operatorname{cl}(A)))) = \operatorname{pcl}(\operatorname{cl}(A)) = \operatorname{cl}(A),$$

because $V \in SO(Y, \sigma)$ (Lemma 8). Thus $cl(V) \neq Y$, whence with Theorem 12(e) we get (Y, σ) is not semi-connected.

7 Images of S-closed spaces

Definition 4. A topological space (X, τ) is said to be S-closed [40] if every semi-open cover of X has a finite subcollection whose members have closures covering X.

Lemma 9. Let a mapping $f:(X,\tau)\to (Y,\sigma)$ be a.o.S. and a.c.H. Then,

$$f(\operatorname{pcl}(S)) \subset \operatorname{pcl}(f(S))$$

for every $S \in SC(X, \tau)$.

Proof: Take an $S \in SC(X, \tau)$. With hypothesis, [3, Theorem 1.5(e)], and [32, Theorem 2.1] we have what follows

$$f(\operatorname{pcl}(S)) = f(S \cup \operatorname{int}(\operatorname{cl}(S))) \subset f(S) \cup \operatorname{cl}(f(\operatorname{int}(S))) \subset \\ \subset f(S) \cup \operatorname{cl}(\operatorname{int}(f(S))) = \operatorname{pcl}(f(S)).$$

Theorem 14. Let a surjection $f:(X,\tau)\to (Y,\sigma)$ be an α -continuous, a.o.S. R-map. If (X,τ) is S-closed then for each cover $\{V_\alpha:\alpha\in\nabla\}\subset SPO(Y,\sigma)$ of Y there exists a finite subset $\nabla_0\subset\nabla$ with $\bigcup_{\alpha\in\nabla_0}\operatorname{cl}(V_\alpha)=Y$.

Proof: Let a family $\{V_{\alpha}: \alpha \in \nabla\} \subset SPO(Y, \sigma)$ cover Y. Since f is an R-map,

$$\{f^{-1}(\operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl}\left(V_{\alpha}\right)\right)\right)): \alpha \in \nabla\} \subset \operatorname{RC}\left(X,\tau\right)$$

is a cover of X. The space (X, τ) is S-closed, hence by [5, Theorem 2] there exists a finite subset $\nabla_0 \subset \nabla$ such that $X = \bigcup_{\alpha \in \nabla_0} f^{-1}(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(V_\alpha))))$. Since f is s.c. (and also a.c.H. [34, Theorem 3.2]) and a.o.S., it is p-open by Theorem 2. Thus, applying Theorem 1 we obtain

$$X = \bigcup_{\alpha \in \nabla_0} \operatorname{pcl} \left(f^{-1}(\operatorname{int} \left(\operatorname{cl} \left(V_{\alpha} \right) \right) \right) \right).$$

But, $f^{-1}(\operatorname{int}(\operatorname{cl}(V_{\alpha}))) \in \operatorname{RO}(X,\tau) \subset \operatorname{SC}(X,\tau)$ for every $\alpha \in \nabla_0$, whence with Lemma 2 we have

$$Y = \bigcup_{\alpha \in \nabla_0} \operatorname{pcl} \left(f \left(f^{-1} (\operatorname{int} \left(\operatorname{cl} \left(V_{\alpha} \right) \right) \right) \right) = \bigcup_{\alpha \in \nabla_0} \operatorname{pcl} \left(\operatorname{cl} \left(V_{\alpha} \right) \right) = \bigcup_{\alpha \in \nabla_0} \operatorname{cl} \left(V_{\alpha} \right).$$

Example 10. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{a, b\}\}$, $Y = \{a, b\}$, and $\sigma = 2^Y$. Define $f : (X, \tau) \to (Y, \sigma)$ via f(a) = f(b) = a, f(c) = b. Then f is an R-map, it is α -continuous (in fact, even continuous), a.o.S., and surjective.

The examples below show that 'R-mapness' and ' α -continuity' are independent of each other.

Example 11. (a). Let $X = \{a,b,c\} = Y$, $\tau = \{\emptyset,X,\{a,b\}\}$, and $\sigma = \{\emptyset,Y,\{a\}\}$. The identity mapping $f:(X,\tau) \to (Y,\sigma)$ is an R-map and it is not α -continuous (in fact, even not continuous).

(b). Observe that in (a), if we put f(a) = a, f(b) = f(c) = b, it will give us an α -continuous (discontinuous) R-map which is neither surjective nor injective.

Example 12. (a). Let $X = \{a, b, c, d\} = Y$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$, and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$. The identity mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is α -continuous (obviously even continuous), but it is not an R-map, because $f^{-1}(\{a\}) \notin RO(X, \tau)$.

(b). Let (X,τ) and (Y,σ) be as above. Define $f:(X,\tau)\to (Y,\sigma)$ as follows: f(a)=a, f(b)=b, f(c)=f(d)=c. It is seen that f is α -continuous (continuous), not an R-map, and neither a surjective nor an injective mapping.

Remark 4. Notice that Examples 11 and 12 complete Diagram from [33, p.249] related to 'R-mapness' and 'continuity'.

In [41, Theorem 3.5] Thompson has proved that irresolute surjections preserve the 'S-closed covering property'.

Example 13. (a). Let $X = \{a,b,c\} = Y$, $\tau = \{\emptyset, X, \{a,c\}\}$, and $\sigma = \{\emptyset, Y, \{b\}\}$. Then the identity mapping $f: (X,\tau) \to (Y,\sigma)$ is an R-map and is not irresolute.

(b). The identity mapping from [34, Example 3.11] is irresolute but it is not an R-map.

Thus, R-mapness and irresoluteness are independent of each other. Recall that α -continuity and irresoluteness are also independent notions [34, Example 3.11&Theorem 3.12].

Theorem 15. Let a surjection $f:(X,\tau)\to (Y,\sigma)$ be irresolute, a.c.H., and a.o.W. If (X,τ) is S-closed, then for each cover $\{V_\alpha:\alpha\in\nabla\}\subset \mathrm{SPO}\,(Y,\sigma)$ of Y, there exists a finite subset $\nabla_0\subset\nabla$ such that $Y=\bigcup_{\alpha\in\nabla_0}\operatorname{cl}(V_\alpha)$.

Proof: Let a family $\{V_{\alpha} : \alpha \in \nabla\} \subset \operatorname{SPO}(Y, \sigma)$ cover Y. Since f is irresolute, the family $\{f^{-1}(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(V_{\alpha})))) : \alpha \in \nabla\} \subset \operatorname{SO}(X, \tau)$ covers X. By its S-closedness there exists a finite subset $\nabla_0 \subset \nabla$ with

$$X = \bigcup_{\alpha \in \nabla_0} \operatorname{cl} \left(f^{-1} \left(\operatorname{cl} \left(\operatorname{int} \left(\operatorname{cl} \left(V_{\alpha} \right) \right) \right) \right) \right).$$

But f is a.o.W., whence by [37, Theorem 11] we obtain

$$X = \bigcup_{\alpha \in \nabla_0} \operatorname{cl} \left(f^{-1}(\operatorname{int} \left(\operatorname{cl} \left(V_{\alpha} \right) \right) \right) \right).$$

Thus, from [16, Proposition 3.1(c)] we get

$$Y = \bigcup_{\alpha \in \nabla_0} f(\operatorname{cl}(f^{-1}(\operatorname{int}(\operatorname{cl}(V_\alpha))))) = \bigcup_{\alpha \in \nabla_0} \operatorname{cl}(V_\alpha).$$

Recall that 'a.o.W.' and 'a.o.S.' are independent notions [30, p.315]. Also, irresoluteness and 'a.c.H.' are independent of each other, see the example below.

Example 14. (a). Let $X = \{a,b,c\} = Y$, $\tau = \{\emptyset, X, \{a,b\}\}$, and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}\}$ and let f be the identity on X. Then f is a.c.H. and not irresolute.

(b). Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}, \text{ and } \sigma = \{\emptyset, Y, \{a, b\}\}.$ Then the identity on X is irresolute but not a.c.H.

Concluding the comparison of Theorems 14 and 15, we point out that the converse to an obiovus implication α -continuity $\Rightarrow a.c.H$. fails in general.

Example 15. Let $X = \{a, b\} = Y$, $\tau = \{\emptyset, X\}$, and $\sigma = \{\emptyset, Y, \{a\}\}$. Then the identity on X is a.c.H. but it is not α -continuous.

References

- [1] M. E. ABD EL-MONSEF, S. N. EL-DEEB, R. A. MAHMOUD, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77–90.
- [2] M. E. ABD EL-MONSEF, E. F. LASHIEN, A. A. NASEF, Remarks on the *-topology mappings, Tamkang J. Math., 24(1) (1993), 9-22.
- [3] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24–32.
- [4] N. BISWAS, On some mappings in topological spaces, Bull. Cal. Math. Soc., **61** (1969), 127–135.

- [5] D. E. CAMERON, Properties of S-closed spaces, Proc. Amer. Math. Soc., 72 (1978), 581–586.
- [6] D. A CARNAHAN, Some properties related to compactness in topological spaces, Ph.D. thesis, University of Arkansas, 1973.
- [7] C. G. Crossley, S. K. Hildebrand, *Semi-closure*, Texas J. Sci., **22**(2-3) (1971), 99–112.
- [8] C. G. Crossley, S. K. Hildebrand, Semi-topological properties, Fundamenta Math., 74 (1972), 233–254.
- [9] G. Di Maio, T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18(3) (1987), 226–233.
- [10] J. DONTCHEV, M. GANSTER, T. NOIRI, On p-closed spaces, Internat. J. Math. & Math. Sci., 24 (2000), 203–212.
- [11] Z. Duszyński, On some concepts of weak connectedness of topological spaces, Acta Math. Hungar., 110(1-2) (2006), 69–78.
- [12] S. N. EL-DEEB, I. A. HASANEIN, A. S. MASHHOUR, T. NOIRI, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27(75)(4) (1983), 311–315.
- [13] M. GANSTER, Preopen sets and resolvable spaces, Kyungpook Math. J., **27**(2) (1987), 135–143.
- [14] T. Husain, Almost continuous mappings, Prace Mat., 10 (1966), 1–7.
- [15] S. JAFARI, T. NOIRI, Properties of β -connected spaces, Acta Math. Hungar., **101**(3) (2003), 227–236.
- [16] D. S. Janković, A note on mappings of extremally disconnected spaces, Acta Math. Hungar., 46(1-2) (1985), 83-92.
- [17] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [18] N. LEVINE, Dense topologies, Amer. Math. Monthly, 75 (1968), 847–853.
- [19] N. LEVINE, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89–96.
- [20] A. S. MASHHOUR, M. E. ABD EL-MONSEF, S. N. EL-DEEB, On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt, 53 (1982), 47–53.
- [21] A. S. MASHHOUR, I. A. HASANEIN, S. N. EL-DEEB, A note on semi-continuity and precontinuity, Indian J. Pure Appl. Math., 13(10) (1982), 1119–1123.

- [22] A. S. MASHHOUR, I. A. HASANEIN, S. N. EL-DEEB, α -continuous and α -open mappings, Acta Math. Hungar., 41(3-4) (1983), 213–218.
- [23] A. S. Mashhour, M. E. Abd El-Monsef, I. A. Hasanein, On pretopological spaces, Bull. Math. Soc. Math. R. S. Roumanie, 28(76)(1) (1984), 39–45.
- [24] A. Nebrunnová, On certain generalizations of the notion of continuity, Mat. Čas., 23(4) (1973), 374–380.
- [25] O. NJÅSTAD, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [26] T. Noiri, Remarks on semi-open mappings, Bull. Cal. Math. Soc., $\mathbf{65}$ (1973), 197–201.
- [27] T. Noiri, On semi-continuous mappings, Lincei-Rend. Sc. fis. mat. e nat., 54 (1973), 210–214.
- [28] T. Noiri, A note on semi-continuous mappings, Lincei-Rend. Sc. fis. mat. e nat., **55** (1973), 400–403.
- [29] T. NOIRI, A note on hyperconnected sets, Mat. Vesnik, 3(16)(31) (1979), 53-60.
- [30] T. Noiri, Semi-continuity and weak-continuity, Czechoslovak Math. J., 31(106) (1981), 314–321.
- [31] T. Noiri, A function which preserves connected spaces, Čas. pěst. mat., 107 (1982), 393–396.
- [32] T. Noiri, Almost-open functions, Indian J. Math., 25(1) (1983), 73-79.
- [33] T. Noiri, Super-continuity and some strong forms of continuity, Indian J. Pure Appl. Math., 15(3) (1984), 241–250.
- [34] T. NOIRI, On α -continuous functions, Cas. pest. mat., 109 (1984), 118–126.
- [35] V. Pipitone, G. Russo, *Spazi semiconnessi a spazi semiaperti*, Rend. Circ. Mat. Palermo (2), **24** (1975), 273–285.
- [36] V. Popa, Properties of H-almost continuous functions, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 31(79) (1987), 163–168.
- [37] D. A. Rose, Weak continuity and almost continuity, Internat. J. Math. & Math. Sci., 7(2) (1984), 311–318.
- [38] A. K. Sharma, On some properties of hyperconnected spaces, Mat. Vesnik, 1(14)(29) (1977), 25-27.

- [39] M. K. Singal, Asha Rani Singal, Almost-continuous mappings, Yokohama Math. J., 16 (1968), 63–73.
- [40] T. Thompson, $\mathcal{S}\text{-}closed$ spaces, Proc. Amer. Math. Soc., **60** (1976), 335–338.
- [41] T. THOMPSON, Semicontinuous and irresolute images of S-closed spaces, Proc. Amer. Math. Soc., 66(2) (1977), 359–362.
- [42] T. Thompson, Characterizations of irreducible spaces, Kyungpook Math. J., 21(2) (1981), 191–194.
- [43] A. WILANSKY, *Topics in functional analysis*, Lecture Notes in Mathematics, vol. **45**, Springer-Verlag 1967.

Received: 20.05.2006.

Casimirus the Great University
Department of Mathematics
PL. Weyssenhoffa 11
85-072 Bydgoszcz
Poland

E-mail: imath@ukw.edu.pl