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Abstract

p-open mappings between topological spaces are those preserving pre-
open sets. Restrictions of this type of mappings are considered. Preimages
of semi-connected spaces and images of S-closed spaces are investigated.
Also, some observations concerning a.c.H. mappings are provided.
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1 Introduction

In 1984 Mashhour et al. [23, Definition 3.2] have introduced the notion of M-
preopenness: a mapping is M-preopen if images of preopen sets are preopen.
Later, Jankovié¢ [16] referred to this property as to the p-openness. We shall use
the latter up to its briefness. In this paper, characterizations of p-open mappings
are given and restrictions of those mappings are investigated. Preimages of semi-
connected spaces and images of S-closed spaces are considered. No separation
axioms are assumed.

2 Preliminaries

Throughout this paper, (X, 7) and (Y, o) denote topological spaces. For A C X,
(A, 74) stands for the topological subspace of (X, 7). Fix an (X, 7). The closure
of S C X and the interior of S (both in (X, 7)) are denoted with cl (S) and int (S)
respectively. For a subspace (A4,74), A D S, these will be denoted with cl4(S) and
int 4(S) respectively. A subset S C X is said to be regular open (resp. regular
closed; a-open [25]; semi-open [17|; semi-closed [7]; preopen [20]; preclosed [3];
semi-preopen [3] (equiv. B-open [1]); semi-regular [9] (equiv. regular semi-open

[5])) in (X,7) if S =int (cl(S)) (resp. S = cl(int (S)); S C int (cl (int (S5))); S C
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cl (int (S)); int (c1(S)) € S; S Cint (cl(S)); cl(int (S)) C S; S C cl (int (cl (S)));
int (c1(S)) C S C cl(int (9))).

A subset S of (X, 7) is called generalized closed [19] if ¢l (S) C U whenever
ScUandUEe€r.

The family of all regular open (resp. closed; regular closed; a-open; semi-open;
semi-closed; preopen; preclosed; semi-preopen; semi-regular; generalized closed)
subsets of an (X, 7) will be denoted with RO (X, 7) (resp. ¢ (X,7); RC(X, 7); 7%;
SO (X,7); SC(X,7); PO(X,7); PC(X,7); SPO (X, 7); SR (X, 7); Ge (X, 7)). A
subset S € SO (X, 7) if and only if there exists an U € 7 such that U C S C cl(U)
[17].

The following (proper, in general) inclusions are well-known: 7 C 7* =
SO (X, 7)NPO (X, 7) (|34, Lemma 3.1] for the equality); SO (X,7)UPO (X, 1) C
SPO (X, ) [3, Theorem 2.2 & Example 2.3]. The family 7 forms a topology on
X.

The intersection of all semi-closed (resp. preclosed) subsets of (X, 7) contain-
ing S C X is called the semi-closure (resp. the preclosure) of S and is denoted
with scl (S) (resp. pcl(S)). The union of all preopen subsets of (X, 7) contained
in S C X is called the preinterior of S and is denoted with pint (S). It is known
that S € SC(X,7) (resp. S € PC(X,7); S € PO (X, 7)) if and only if S = scl (S)
(resp. S = pcl(S); S = pint (9)).

A mapping f : (X,7) — (Y,0) is said to be a-continuous [22, 31] (resp.
semi-continuous (briefly s.c.) [17]; an R-map [6]; irresolute [8]) if the preimage
f71(V) is in 7 (resp. in SO (X,7); RO (X,7); SO (X,7)) for every V from
o (resp. from o; RO (Y,0); SO(Y,0)). In 1966, Husain [14] has introduced
almost continuous mappings (briefly a.c.H.). Mashhour et al. [20] has shown
that a.c.H. for an f : (X,7) = (Y, 0) coincides with the so-called precontinuity
of f: f~1(V) € PO (X, 1) for every V € o. Rose [37, Theorem 6] proved that an
fisa.cH. iff f(cl(U)) C cl(f(U) for every U € 7. Jankovi¢ [16, Proposition 3.1]
observed that an f is a.c.H. iff f(cl(U)) C cl(f(U) for every U € SO (X, 7).

In 1967, Wilansky [43] introduced almost open mappings (briefly: a.0.W.).
Rose [37, Theorem 11] showed that an f is a.0.W. iff f(cl(U)) C int (cl (f(U))
for every U € 7 (i.e., iff f is preopen [20]).

A mapping f: (X,7) — (Y, 0) is said to be almost open in the sense of Singals
[39] (a.0.S., for short) if f(U) € o for every U € RO (X, 7).

A space (X, 7) is said to be extremally disconnected (briefly e.d.) (resp. sub-

mazimal) if cl (U) € 7 for every U € 7 (resp. if for every dense U C X we have
Uer).

3 Characterizations

Definition 1. A mapping f : (X,7) = (Y,0) is said to be p-open if f(U) €
PO (Y, 0) for every U € PO (X, 7).
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Theorem 1. For an f: (X,7) = (Y,0) the following are equivalent:
(a) f is p-open.

(b) For every S CY and every F € PC (X, 1) with f1(S) C F there exists a
G € PC(Y,0) such that S C G and f~'(G) C F.

(c) For every B C'Y, f~'(cl (int (B))) C pel (f~1(B)).
(d) For every A C X, f(pint (A)) C int (cl (f(A))).

(e) For every V € o, f~1(c1(V)) C pel (F71(V)).

(£) For every V € SO (Y,0), fL(cl(V))) C pel (f1(V)).
() For every V € 0%, f~1(cl(V)) C pel (f-1(V)).

Proof: (a)=>(b). Let S C Y and F € PC(X, ) be such that f~1(S) C F. Put
G =Y\ f(X\ F). Since f is p-open, G € PC(Y,0), and since f 1(B) C F we
get F(X\F)C f(f7*(Y)\ f71(S)) cY\S. So, S C G. One easily checks that
f~YG)CF.

(b)=(c). Let BCY. Put F =pcl(f }(B)) € PC(X,). Clearly, f 1(B) CF.
By assumption there exists a set G € PC (Y,0) with B C G and such that
f~Y(G) C F. Thus, we have cl (int (B)) C G and f~*(cl (int (B)) C pel (f~*(B)).
(¢)=(d). Let A C X. Putting B=Y \ f(A4) we obtain

F7HY \int (eL(f(A4))) € X\ F71(£(4)) € X \ pint (f7'(f(4))).

Hence pint (4) C pint (f 1(f(A))) C f1(int (cI(f(A))). Therefore we get
f(pint (4)) C int (cl(f(A)))-

(d)=(a). Let S € PO(X,7). Then S = pint (S) and by our supposition we
obtain f(S) = f(pint (S) C int (cl (f(S))). So, f(S) € PO (Y, 0).

(a)<(e). Clear by (c).

(e)e(f). Use [27, Lemma 2].

(f)=(g) and (g)=(e). Obvious. d

It is clear that every p-open mapping is a.0.W., but the converse is not true,
in general, see the following example.

Example 1. Let X = {a,b,c} =Y, 7 = {0,X,{a},{a,b}}, and 0 = {0,
{a},{c},{a,c}}. Define a mapping f : (X,7) = (Y,0) as follows: f(a) =
f(b) =a, f(c) =b. Then f is a.0.W. and not p-open since f({a,c}) = {a,b} ¢
PO (Y, 0).

Almost openness in the sense of Singals (or openness) and p-openness are
independent notions.
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Example 2. (a). Let X = {a,b} =Y, 7= {0,X}, and 0 = {0,Y,{a}}. Let f
be the identity on X. Then f is open (hence a.0.S.) and not p-open.
(b). Let X = {a,b,c} =Y, 7 = {0,X,{c},{a,b}}, and 0 = {0,Y, }. Let f be
the identity mapping. Then f is p-open and not a.0.S. (so not open).

Lemma 1. [28, Theorem 1]. A mapping f : (X,7) — (Y,0) is s.c. if and only
if f(int (c1(A))) C cl(f(A)) for every A C X.

Theorem 2. If an f : (X,7) = (Y,0) is a.0.5. and s.c., then it is p-open (and
irresolute [30, Theorem 1.12]).

Proof: Let U € PO(X,7). Applying [32, Theorem 2.1] we obtain f(U) C
f(int (c1(U))) C int (f(int (1 (U)))), because int (c1(U)) € SC(X,7). But f
is s.c., thus by Lemma 1, f(U) € PO (Y, 0). O

4 p-a.c.H. and a.c.H. mappings

Definition 2. A mapping f : (X,7) = (Y, 0) is said to be p-a.c. H. if f(cl(S)) C
cl (f(S)) for every S € PO (X, 7).

It is well-known that if a mapping f : (X,7) — (Y, 0) is a-continuous, then
f(cl(S)) C c(f(9)) for every S € PO (X,7) [22, Corollary 1.1(i)]. Thus each
a-continuous mapping is p-a.c.H. On the other hand, every p-a.c.H. mapping is
a.c.H. [37, Theorem 6], but the converse for this implication does not hold.

Example 3. Let X = {a,b,c} =Y, 7 = {0,X,{a,b}}, and 0 = {0,Y,{b,c}}.
Let f be the identity on X. Then f is a.c.H. and not p-a.c.H. See also [24,
Ezample 3.1].

Problem 1. Find a p-a.c.H. mappng which is not a-continuous.

Lemma 2. [2, Lemma 3.1]. An A € PO (X, 1) if and only if there exists a G € T
with A C G C cl(4).

Theorem 3. Let a mapping f : (X,7) = (Y,0) be open and p-a.c.H. Then f is
p-open.

Proof: Let A € PO(X,7). Then, by Lemma 2 we have A C G C cl(A) for a

certain G € 7. Hence, we obtain f(A) C f(G) C f(cl(A)) C cl(f(A)) where
f(G) € o. Therefore f(A) € PO (Y, 0). O

Corollary 1. If a mapping is open and continuous, then it is p-open.
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Example 4. (a). Let X = {a,b}, Y = {a,b,c,d}, 7 = {0, X, {a}}, and

o ={0,Y,{c},{a,b},{a,b,c}}.

Let f : (X,7) = (Y, 0) be the identity on X. Then f is p-a.c.H. and not open.
(b). Let X = {a,b}, 7 = {0, X,{a},{a,b}}. The identity on X is p-a.c.H. and
open.

(C). Let X = {a,b,c}, Y = {aabacad}: T = {Q)aX}; and 0 = {®7Y7 {c},{a,b},
{a,b,c}}. Let f: (X,7) = (Y,0) be the identity on X. Then f is open and not
p-a.c.H.

Problem 2. In 1973, Neubrunnovd [24, Examples 3.163.2] has shown that
a.c.H. and s.c. are independent of each other. Indicate a p-a.c.H. mapping which
18 not s.c.

Theorem 4. For an f: (X,7) = (Y,0) the following are equivalent:
(a) f is a-continuous.
(b) f is s.c. and a.c.H.
(c) f is s.c. and p-a.c.H.

Proof: (a)<(b). [34, Theorem 3.2].

(b)=(c). By Lemma 1 we have f(int (c1(S))) C cl(f(A)) for every subset A C X.
Hence, cl (f(int (1 (S)))) C cl(f(A)) and f(cl (int (cl (S)))) C el (f(int (c1 (S)))),
because f is a.c.H. Let A € PO (X, 7). Clearly, f(cl(4)) C cl(f(4)).

(¢)=(b). Obvious. O

Corollary 2. Assume a mapping f : (X,7) = (Y,0) is s.c. Then f is p-a.c.H.
iff it is a.c.H.

Remark 1. An a.c.H. mapping f : (X,7) = (Y,0) is p-a.c.H. if and only if
SO (X,7) = PO(X, 1) [16, Proposition 3.1]. On the other hand, PO (X,7) =
SO (X, 1) if and only if (X,7) is e.d. and (X,7%) is submazimal (see [16, Propo-
sition 4.1] and [13, Theorem 4] respectively).

The conditions (X, 7) is e.d.” and ’(X,7%) is submaximal’ do not depend on
the other.

Example 5. (a). Let X = {a,b,c,d} and 7 = {0, X,{a,b}}. Then (X,7) is e.d.
and (X,7%) is not submazximal.

(b). Let X = {a,b,c}, 7 = {0, X, {a},{b},{a,b}}. Then (X,7) is not e.d. but
(X, 7%) is submazimal (we have T = 7%).

Corollary 3. An a.c.H. mapping f : (X,7) = (Y,0) is p-a.c.H. if and only if
the space (X, 7) is e.d. and (X,7%) is submazimal.
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Theorem 5. If a mapping f : (X,7) = (Y,0) is a.c.H. and a.0.S., then f(S) €
SO (Y, o) for every S € SR (X, 7).

Proof: Take an S € SR (X, 7). With [37, Theorem 6] and [32, Theorem 2.1] we
have f(S) C f(cl(int (S))) C 1 (f(int (S))) C cl(int (£(S))). O

An analogous result can be obtained when we replace a.o.S. by semi-openness
[4] (see [30, Theorem 2.5]). Semi-openness and a.o.S. are independent notions
[30, p.315]. It is worth to compare Theorem 5 with [32, Theorem 4.2].

5 Restrictions

Noiri has shown that the restriction of an a.0.W. mapping to a closed subdomain,
is not necessarily a.0.W. [32, Example 3.2]. A similar assertion can be proved for
p-open mappings.

Example 6. Let X = {a,b,c} and 7 = {0, X, {a,b}}. Then

PO (X,7) = {®7X7 {a}v {b}7 {av b}7 {aac}v {bv c}}

and {c} is a closed set. The identity mapping on X is p-open while its restriction
to {c} is not.

Also, the restriction of a p-open mapping to a semi-open set may be not
p-open.

Example 7. Let R be the space of reals endowed with the Euclidean topology ..
Consider any interval I = [a,b), a < b, a,b € R. Obviously I € SO (R, 1) \
(PO (R, 7)Uc(R,7)). The identity on R is p-open but its restriction to I is not.

Lemma 3. [21, Lemma 2.2]. If U € PO (X,7) and V € PO (U, 1y), then V €
PO (X, 7).

Theorem 6. Let (X,7) and (Y,0) be any spaces and a mapping f : (X,7) —
(Y,0) be p-open. If U € PO (X, 7) then the restriction f | U is p-open too.

Proof: Follows by Lemma 3. g

The two examples below present some other cases when a restriction of a
p-open mapping is not p-open.

Example 8. Consider (R, 7.), the identity mapping on R, and the subset A =
[0,1]U((1,2]NQ), where Q stands for the set of rationals. Clearly, A € SPO (R, 7.)\
(PO (R, 7.) USO(R,7.) U Ge (R, 7). One easily checks that the restriction of
identity to A is not p-open.
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Example 9. For (R,7.) and the identity mapping on R consider the set A =
[0,1) U {2}. We have A ¢ SPO (R, 7.) and the restriction of identity to A is not
p-open.

Lemma 4. Let A C X be an arbitrary open subset of (X,7) and let S C A. If
S e€PO(X,7) then S € PO (A4, 74).

Proof: Let S € PO (X, 7). By [3, Theorem 1.5(f)] we get S D pint4(S) =S N
int4(cla(S)) D SNint (ANecl(S)) =SNAnNint (cl(S)) =S. Thus S = pint 4(S5)
and S € PO (4, 7). 0

Corollary 4. Let (X,7) be arbitrary and an A € 7. Then S € PO (A, 74) if and
only if S € PO (X, 7).

Proof: Lemmas 3 and 4. O

Theorem 7. Let a mapping f : (X,7) — (Y,0) be p-open and let for an A €
PO (X, ), f(A) € 0. Then the surjection ga : (A,74) = (f(A),05a)), where
gA(z.) = f(.'L'), T €A, is p-open.

Proof: Follows from Lemmas 3 and 4. O

Corollary 5. Let a mapping f : (X,7) = (Y,0) be open and p-open. Then, for
any A € T the surjection ga from Theorem 7 is p-open.

Theorem 8. Let a mapping f : (X,7) = (Y,0) be an open injection and let
A € 7 be arbitrary. Then, the bijection ga from Theorem 7 is open.

Lemma 5. Let an A be arbitrary subset of a space (X, 7). Then ANpcl(S) C
pcl4(S) for every S C A.

Proof: Let S C A C X. Applying [19, Theorem 1.5(e)] we infer what follows:
pely(S) = SUcla(int4(S)) =

=SU(ANnc(inta(S))) 2 An (SUcl(int (S))) = ANpcl (S).

Remark 2. Recall that Dontchev et al. [10] have proved that if A € PO (X, )
and S € PO (A, 714) then pcl (S) C pcly (S).

Theorem 9. If a mapping f : (X,7) = (Y,0) is p-open and B € SO (Y, o), then
fFIfYB): f~Y(B) = B is p-open
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Proof: We shall use the characterization of p-openness stated in Theorem 1(f).
Let a V € SO(B,op). Since B € SO (Y,0), V € SO(Y,0) [26, Theorem 5],
and hence with p-openness of f we obtain f~!(cl(V)) C pcl (f~1(V)). So, using
Lemma 5 we calculate as follows:

(F1774B)) (@a(v) = fBAAV)) € F~1(B) npel (F7(V)) €
C pely-i () (£ ) = vl ey (11 £71(B)) (V).

Therefore f | f~1(B) is p-open. O

Lemma 6. [12, Theorem 2.4]. If S € SO (X, 1) then pcl(S) = cl(5).

Let us observe, that a shorter proof of Lemma 6 one could have obtained with
[3, Theorem 1.5(e)] and [27, Lemma 2].

Lemma 7. Let a mapping f: (X,7) = (Y,0) be s.c. and letV € o be arbitrary.
Then f | f~Y(V): f~Y(V) = V is s.c. too.

Proof: Let an U € oy. Then U € 0. By hypothesis we have f~1(U) € SO (X, 7).
Hence f~(U) € SO (f~Y(V),74-1(v)), because f~1(V) € SO (X,) [26, Theo-
rem 5|. Therefore, the mapping f | f~1(V) is s.c. |

Theorem 10. Let an f : (X,7) = (Y,0) be s.c. andlet {V, : a € V} be a cover
of Y. If mappings f | f’l(V ): fY(Va) = V, are p-open for every a € V, then
f 1is p-open.

Proof: Let V € o be arbitrary. Put f, = f [ f~1(V,) and U, = f~1(V,) for
every a € V. Each subset V' NV, is open in the space (V,, oy, ), thus with the

assumption and Theorem 1(e) we get f3*(cly, (V NVy)) C pely (f1(VNVL))
for every a € V. Since V,, € ¢ for any a € V, we obtain what follows:

ft = ' (Vand, (V) c
aeV
c U il (edv.(VanV)) € | pely, (£ (Van V).
a€eV a€eV

From Lemma 7 and from our hypothesis we infer that f;1(V,NV) € SO (U,, v,)
for every a € V, and so pcly (f'(VaNV)) = clu, (f7'(VaNV)) (Lemma 6).
Then, we obtain

F () € [ d(fatVan V) ca(f1(V)) =pe (f (V)

a€eV

because f~1(V) € SO (X, 7). Therefore, by Theorem 1(e), f is p-open. O
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Corollary 6. Let {Va T a € V} be a cover of a space (Y,0) and let a mapping
f: (X,7) = (Y,0) be s.c. Then f is p-open if and only if f [ f~1(Va) :
f1(Vy) = Vo, are p-open for every a € V.

Proof: It directly follows from Theorems 8 and 9. g

The next result is worth being noticed.

Theorem 11. For any space (X,7), if S C A C X, A € SO(X,7), and S €
SO (A, 74), then
pcl4(S) = Anpcl(S). (1)

Proof: Let S € A C X. By [3, Theorem 1.5(e)] we have pcl (S) = S U
cla(int4(S)) = S U cla(S) = cla(S), because S € SO (A,74) [27, Lemma 2.
Since S € SO (X, 7) |26, Theorem 5], cl(S) = pcl(S) (by Lemma 6). Therefore
(1) holds. g

Remark 3. Dontchev et al. [10] proved that if A € SO (X, 1), then pcly(S) C
pcl(S) for any S C AC X.

6 S-connectedness of spaces

Definition 3. A topological space (X, 7) is said to be semi-connected [35] (resp.
preconnected [36]) if X cannot be expressed as the union of two nonempty semi-
open (resp. preopen) subsets of (X, 7).

Semi-connectedness and preconnectedness of a space are independent notions
[15, Examples 21.&2.2]. It is clear that if the range of any open bijection (equiv.
any closed bijection) is connected, then its domain is connected too. Similarly, if
the range of a p-open bijection is preconnected, then the domain is preconnected
too. In this section we study conditions under which the domain of an open or a
p-open bijection is semi-connected if the range is semi-connected.

Lemma 8. If a mapping f : (X,7) = (Y,0) is open and a.c.H. then the set
cl (f(c1(A))) € SO (Y, 0) for every A € PO (X, 7).

Proof: Take any A € PO (X, 7). By Lemma 2 there exists a G € 7 such that
A C G Ccl(A). Since f is a.c.H., we get what follows:

£(G) C f(cl (int (cl (A)))) C el (f(int (cI (4))))) C
Ccl(f(cl(A4))) =l (f(cl(G))) C cd(f(G)).

Thus cl (f(cl (A4))) € SO (Y, 0), since f(G) € o [17, Definition 1]. O
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With the proposition below we complete characterizations of semi-connected
spaces; for some other the reader is referred to [11, 18, 29, 38, 42].

Theorem 12. For any (X, ), the following are equivalent
(a) (X,7) is semi-connected.
(b) scl(A) = X for each nonempty A € PO (X, 7).
(c) cl.(A) = X for each nonempty A € PO (X, 7).
(c’) clya(A) = X for each nonempty A € PO (X, 7).
(d) scl.(U) = X for each nonempty U € SO (X, 7).
(e) cl(U) = X for each nonempty U € SO (X, 7).
(€’) cl,a(U) = X for each nonempty U € SO (X, 7).

Proof: (a)=(b). Suppose for some nonempty A € PO (X, 7) we have scl (4) #
X. With [16, Proposition 2.7(a)] (or with [3, Theorem 1.5(a)]) we get § #
int (c1(A)) # X. So, we obtain that X = int (cl (4)) U cl(int (X \ A)), where
the nonempty sets int (cl (4)), cl(int (X \ A)) belong to SO (X, 7). Therefore
(X, 7) is not semi-connected, a contradiction.

(b)=(a). Suppose an (X, ) fulfills (b), but it is not semi-connected. Hence
X=5U SQ, where S; ;é 0 ;é SQ, Sl,SQ e SO (X,T), and S1 NS, = 0. By [24,
Lemma 3.5] we have

0 = int (c1 (S N S2)) = intcl (S1)) Nint el (Ss)) =

— ol (i : (2)
= scl (int (c1 (S1))) N scl (int (cl (S2))).
We shall show that int (c1(S;)) # @, i = 1,2. Suppose not. Thus, from [3,
Theorem 1.5(a)] we infer that scl (S;) = S;, i.e., S; € SC(X,7), i = 1,2. With
a dual equality to that of [27, Lemma 2| we obtain int (cl (S;)) = int (S;), and so
int (S;) =0, i =1,2. A contradiction since S;’s are nonempty semi-open subsets
of (X,7) [7, Remark 1.2]. Finally, from (2) we get # = X. So, (b)=-(a) holds.
The implications (b)=-(c) and (d)=(e) are clear. The property from (d) has
been established in [29, Theorem 3.1].

The implications (¢)=-(b) and (e)=(d) are obvious by [3, Theorem 1.5].

The equivalence (¢)<(c’) (resp. (e)<(e”)) is an immediate consequence of the
conditions (b) and (c) (resp. (d) and (e)). O

Theorem 13. Let a bijection f : (X,7) — (Y,0) be open, p-open, and a.c.H. If
(Y, 0) is semi-connected then (X, 7) is semi-connected.
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Proof: Suppose (X, 7) is not semi-connected. Then, by Theorem 12(c), there
exists a nonempty A € PO (X, 7) with cl (4) # X. Put V = f(cl (4)) € ¢ (Y, 0).
Using the characterization of p-openness from Theorem 1(f) we obtain

F7H(V) C pel (F7H(f(c1(4)))) = pel (1 (4)) = cl (4),

because V' € SO (Y, o) (Lemma 8). Thus cl (V) # Y, whence with Theorem 12(e)
we get (Y, o) is not semi-connected. O

7 Images of S-closed spaces

Definition 4. A topological space (X,T) is said to be S-closed [40] if every
semi-open cover of X has a finite subcollection whose members have closures
covering X.

Lemma 9. Let a mapping f: (X,7) = (Y,0) be a.0.S. and a.c.H. Then,

fpel(S)) C pel (f(5))
for every S € SC (X, 7).

Proof: Take an S € SC (X, 7). With hypothesis, [3, Theorem 1.5(e)], and [32,
Theorem 2.1] we have what follows

f(pel(S)) = f(SUint (1 (S))) C f(S) Ucl(f(int (S))) C
C f(S) ucl(int (f(5))) = pel (£(S5))-

Theorem 14. Let a surjection f : (X,7) = (Y,0) be an a-continuous, a.0.S.
R-map. If (X, 7) is S-closed then for each cover {Vy: a € V} C SPO (Y, 0) of
Y there exists a finite subset Vo C V with J ey, cl(Va) =Y.

Proof: Let a family {V, : a € V} C SPO (Y,0) cover Y. Since f is an R-map,
{f~" (el (int (1 (Va)))) : @ € V} CRC(X,7)

is a cover of X. The space (X, ) is S-closed, hence by [5, Theorem 2] there exists
a finite subset Vo C V such that X = ,cy, f'(cl(int (c1(V4)))). Since f is
s.c. (and also a.c.H. [34, Theorem 3.2]) and a.o.S., it is p-open by Theorem 2.
Thus, applying Theorem 1 we obtain

X = | pel (£ (int (cl (Va))))-

aEVo
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But, f~(int (c1(V4,))) € RO (X,7) C SC(X,7) for every a € V, whence with
Lemma 2 we have

Y= pd (f(f/ Hint (1 (Vo)) = | pel(@(Va)) = J d(Va)-

a€Vo a€Vy a€Vo

Example 10. Let X = {a,b,c}, 7 = {0, X,{b},{c},{b,c},{a,b}}, ¥ = {a,b},
and o = 2Y. Define f : (X,7) = (Y,0) via f(a) = f(b) = a, f(c) =b. Then f is
an R-map, it is a-continuous (in fact, even continuous), a.0.S., and surjective.

The examples below show that ’R-mapness’ and ’a-continuity’ are indepen-
dent of each other.

Example 11. (a). Let X = {a,b,c} = Y, 7 = {0,X,{a,b}}, and 0 =
{0,Y,{a}}. The identity mapping f : (X,7) — (Y,0) is an R-map and it is
not a-continuous (in fact, even not continuous).

(b). Observe that in (a), if we put f(a) = a, f(b) = f(c) = b, it will give us an
a-continuous (discontinuous) R-map which is neither surjective nor injective.

Example 12. (a). Let X = {a,b,c,d} =Y, 7 = {0, X,{a},{b},{a,b},{a,c},
{a,b,¢c}}, and o = {0,Y,{a},{b},{a,b}}. The identity mapping f : (X,7) —
(Y, 0) is a-continuous (obviously even continuous), but it is not an R-map, be-
cause f1({a}) ¢ RO (X, 7).

(b). Let (X,7) and (Y,0) be as above. Define f : (X,7) — (Y,0) as follows:
fla) =a, f(b) =0, f(c) = f(d) = c. It is seen that [ is a-continuous (continu-
ous), not an R-map, and neither a surjective nor an injective mapping.

Remark 4. Notice that Ezamples 11 and 12 complete Diagram from [33, p.249]
related to 'R-mapness’ and ’continuity’.

In [41, Theorem 3.5] Thompson has proved that irresolute surjections preserve
the 'S-closed covering property’.

Example 13. (a). Let X = {a,b,c} =Y, 7 = {0,X,{a,c}}, and 0 =
{0,Y,{b}}. Then the identity mapping f : (X,7) = (Y,0) is an R-map and
is not irresolute.

(b). The identity mapping from [34, Example 3.11] is irresolute but it is not an
R-map.

Thus, R-mapness and irresoluteness are independent of each other. Recall
that a-continuity and irresoluteness are also independent notions [34, Exam-
ple 3.11&Theorem 3.12].

Theorem 15. Let a surjection f : (X,7) = (Y,0) be irresolute, a.c.H., and
a.0.W. If (X, ) is S-closed, then for each cover {Vy: a € V} C SPO (Y,0) of
Y, there ezists a finite subset Vo C V such that Y =, cy, cl (Va).
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Proof: Let a family {V,,: a € V} C SPO (Y,0) cover Y. Since f is irresolute,
the family {f~!(cl(int (c1(Va)))): @ € V} C SO (X,7) covers X. By its S-
closedness there exists a finite subset Vo C V with

X = | d(f " (int(cl(Va)))))-

a€Vy

But f is a.0.W., whence by [37, Theorem 11| we obtain

X = d(f(int (c1(Va))))-

a€Vy
Thus, from [16, Proposition 3.1(c)] we get

Y= J fla(f nt(d (V) = [J c(Va)-

a€Vy a€Vy

Recall that ’a.0.W.” and ’a.0.S.” are independent notions [30, p.315]. Also,
irresoluteness and ’a.c.H.” are independent of each other, see the example below.

Example 14. (a). Let X = {a,b,c} = Y, 7 = {0,X,{a,b}}, and 0 =
{0,Y,{a},{b},{a,b}} and let f be the identity on X. Then f is a.c.H. and
not irresolute.

(b). Let X = {a,b,c} = Y, 7 = {0,X,{a}, {c}, {a,c}}, and o = {8,Y;{a,b}}.
Then the identity on X is irresolute but not a.c.H.

Concluding the comparison of Theorems 14 and 15, we point out that the
converse to an obiovus implication a-continuity = a.c.H. fails in general.

Example 15. Let X = {a,b} =Y, 7= {0,X}, and 0 = {0,Y,{a}}. Then the

identity on X is a.c.H. but it is not a-continuous.
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