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Abstract

In this paper we determine the explicit form of the Igusa local zeta func-
tion associated to the plane cubics defined over the field of p-adic numbers
Q, and classify them. We will use this in a next paper [Iba05b] in order to
classify the plane cubics over Q, from the point of view of their Igusa local
zeta function.
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1 Introduction

Let k be a field with char(k) & {2,3}, k* its multiplicative group and k an
algebraic closure of k.

Let 7—"2’“’3 be the category of non-zero homogeneous polynomials of degree 3
in z1, 2y over k. An object F(z1,z5) from }'4“’3 is called a binary cubic form
(over k).

The discriminant of a binary cubic form F(zy,72) = az} +bx?xs +cxy o3 +dxd
is defined as A(F) = —27a%d? + 18abcd + b?c? — 4b3d — 4ac?, and F is called non-
degenerated if A(F) # 0.

Let F*F C ]—'5,3 be the category of non-degenerated binary cubic forms. For
example, the Fermat form Fy(z1,z2) = x3+z3 is non-degenerated, since A(Fp) =
—27 #0.

It is known that any non-degenerated plane cubic is a Fermat form. What is
the meaning of this? In geometric terms, this means that the projective variety
V(F) defined by the equation F = 0, embedded in the projective line P! (%),
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is smooth (without singular points). Obviously, V(F) is finite with at most 3
points corresponding to the roots in k of the polynomial of degree 3 in i—f, Ty 3F.
The smooth condition means that this three roots are simple, or, equivalent, the
system F = 0F/0z; = 0F/0z2 = 0 has a unique solution z; = z2 = 0 in the
affine plane over k.

The important fact here is the following: if F' is non-degenerated then F' is a
Fermat form, i.e. there exists an automorphism f of the projective line P'(k)
that maps V' (F) in a projective variety W of dimension 0, defined by the Fermat
cubic z$ + z3, consisting of the three points: (—1,1), (=1,¢), (—1,¢?), where
¢ is a primitive root of unity of degree 3 or, equivalent, there exists a matrix
g € GLy(k) such that F((z1,22)g") = 3 + z3. This is actually a consequence of
the following fact: the action of the automorphisms group of the projective line
PGLy(k) = GLy(k)/k* on the projective line is 3-transitive.

Using this facts, we can determine the isomorphism types of non-degenerated
plane cubics with coefficients in k. We identify the plane cubics F; and F; (i.e.
Fy and F5 are in the same isomorphism classes) if F} can be obtained from Fj
applying an automorphism defined over k (using a matrix with coefficients in k),
i.e. if there exists g € GLa(k) such that Fy((z1,z2)g') = Fi(x1,z2), where gt
denotes the transposed of the matrix g.

The isomorphism types of plane cubics can be obtained as a particular case
of the general theory of Fermat’s forms. In this paper we apply effectively the
algorithm given in the Theorem 3.5 for the case we are interested in: k = Q,.
The next step consists in computing of the Igusa local zeta function of the rep-
resentative binary cubics.

2 Preliminaries

For p prime, denote the field of p-adic numbers by Q,, the ring of p-adic integers
by Z, and the finite field with p elements by F,.

Definition 2.1. Let F(z) = F(z1,x2) € Zy[z1,22]). The Igusa local zeta
Junction associated to F is

Zr(s) = / \F (@1, 2)[°|das | |das ]|

(z1,22)EZZ

where s € C, Re(s) > 0 and |dz| = |dx,||dzs| denotes the Haar measure on Q5
so normalized that ZZ has measure 1.

It was proved by Igusa, using resolution of singularities, that Zr(s) is a ra-
tional function of ¢ = p~*. An entirely different proof was obtained ten years
later by Denef [Den84] using p-adic cell decomposition instead of resolution of
singularities.

We also note that if P(¢) is the Poincaré series defined by
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P(t) =) Np "t
n=0

with N, = Card {z mod (pZ,)?|F(z) =0 mod (pZ,)?}, there is the relation

1-tZp
P(t) = 17

Hence, one can obtain explicit formulas for N, from the explicit form of Zp.
We can also remark the followings: the fact that Zp(s) is a rational function
in p~* shows that infinitely many informations, namely the numbers N,, for all
e € N, are contained in a finite numbers of coefficients of the nominator and
denominator of the Igusa zeta function.
Tgusa introduced what he called a stationary phase formula (abbreviated
SPF), which can be an effective method to compute the local zeta function.

Theorem 2.2. (Stationary phase formula) We take a subset E of IF?, and
denote by S its subset consisting of all @ in E such that F(a) = (0F /0z;) (@) = 0,
for 1 < i < 2; we further denote by E, S the preimages of E, S under the
canonical projection 7 — 7.2/ (pZ,)° = F2 and by N the number of zeros of
F(z) in E. Then we have:

a N —card(S)) (1—p~ 1)t
/ |F(z)|°|dz| = p~? (card(E) — N) + 2 C‘Wl (_ ))jt ) 4
z€EE p
+ [ IF@)rds)
z€S
Proof: See [Igu00]. ]

3 The Isomorphism Classes Over Q, of the Plane Cubics with Coef-
ficients in Q,
3.1 The Isomorphism Theorem
Definition 3.1. For § € k*/k*2, we define:
kxk, if d€k*?

Ls :=
k(V3), else.

Proposition 3.2. The map § — Ls defines a bijection between k*/k*? and the
isomorphism classes of separable k-algebras of degree 2 over k.
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Proof: Clear. O

Proposition 3.3. For anyd € k*/k*2, we have AutyLs = 7 /27, where Auty (Ls)
is the group of k-automorphisms of Ls.

Proof: Obviously, the group AutyLs is cyclic of order 2 generated by the auto-
morphism o, where

o:k*xk* — Ek*xk*
o(ey) = (5,2), for all(z,y) € k* x k*,
if § € k*2, or
o:k(VE6) — k()
o(z +yVe) = z—yVe, for all z +yVs € k(V6),

else. O

For § € k*/k*2, let Ls be the commutative, separable k-algebra of degree
2 from the Definition 3.1, {e1,e2} be a k-basis of Ls and o € AutyLs be the
generator of the group AutyLs.

Since the subgroup k*L}* of L} is invariated by o, the action of o on L}
induces an action of AutLs on the factor group L}/ k*L§3

Auty, (L) x L} /k*L®  — Lj/k*L3®
(0,u mod k*L}*) — o(u) mod k*L3?, for all u € L}.

Definition 3.4. For § € L} a representative element of the set
AutyLs\ (L;/k*L;B),
we denote by P {(Ls,3)} the following trace form:
P{(Ls,p)} := Trrk [5' (erz1 + 62352)3] € k[z1, 7).
Theorem 3.5 (The isomorphism theorem). The map

|_| [AutLs\ (L;/k*L3*)] — { The isomorphism classes over k of F*}
ek /k=2

(5718) = P{(Ldaﬂ)}a
is a bijection.

Proof: See [Bru02], page 90. O
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3.2 The Computation of the Isomorphism Classes over QQ, of Plane
Cubics with Coefficients in Q,

In order to determine effectively the isomorphism classes over Q, of non-dege-
nerated plane cubics with coefficients in Q,, we will apply the Theorem 3.5 for
k = Qp, the field of p-adic numbers.

Let , let Fo 3 := .7-'% be the category of non-zero binary cubic forms

over Q, and F := F@ C Fa,3 be the category of non-degenerated, non-zero
binary cubic forms over Q.
From the Theorem 3.5, for a fixed 6 € Qj/ (@;‘,2, the isomorphism classes over
Qp of plane cubics with coefficients in Q,, corresponds bijectively to the set
AutLs\ (L3 /k*L3?), where Ls is as in Definition 3.1.
Since
Q;/Q;Z =7 /27 x 7[2Z,

(see [Neu99]) we can choose as a representative system {1, p, (,p(}, where ( is a
primitive (p — 1)-root of unity.

Definition 3.6. For § € {1,p,(,p(}, we define:

Q xQ, if o6=1
Ls :=
Q,(V4), else.

Let now p be a prime number, p > 5. We will follow one of the following four
paths, depending on the choice of 4.
3.2.1 The extension Q, C Q, x Q,

Case I: Let 6 =1 and let L := L := Q, x Q, be the separable (Q,-algebra of
degree 2 over Q,.

Theorem 3.7. For L :=Q, x Q,, we get:
1) If p=1 mod 3, then a representative system of isomorphism classes over
k of plane cubics with coefficients in k is given by

{2} + 23, pai + 23, (2} + 23, p(a} + 23, pPat + a3}

2) If p=2 mod 3, then a representative system of isomorphism classes over
k of plane cubics with coefficients in k is given by

{x:f + xg, px:f +$§} .

Proof: Let L*/L** % L*/k*L*® given by p(z mod L*3) =2 mod k*L*3, Vz €
L* be the surjection having ker(p) = k*L*3/L*3 = k* /k* N L*3. Since k* NL*3 =
k*3, we get the exact sequence:

1= k* kLY L® =LY [k L = 1,
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and, consequently, L*/k*L*3 = k* /k*3.
We use now the structure theorem of Q (p # 2) (see for example [Neu99))
and we get:

L*E*L® = Q@ /Q? 2 (Zx Z/(p—1)Z x Ly) | (3Z x 3Z[(p— 1)Z x 3Z,) .
Case I.1: If p=1 mod 3, for
L*/k*L*® = 7 /3L x /3L

we can choose {p‘(Ye; + es]i, j = 0,1,2} as arepresentative system modulo k*L*?,
where ( is a primitive p — 1 root of unity and e;, es is the canonical base of L.

In order to determine the isomorphism classes over @, of plane cubics with
coefficients in @Q,, we have to determine the orbits corresponding to the action on
cyclic group of order 2 Auty L generated by o (see Proposition 3.3) on L*/k*L*3
and choose a representative for each orbit.

Because p?e; +e5 and pe; +es, pCer +eo and pl2e; +ez, (%e1+ez and (e +ea,
respectively p?¢2e; +e» and ple; +e» defines, in pairs, the same equivalence classes
in Aut L\ (L*/k*L*3) (because, for example, o (p’e1 + €2) = ey +p°es = pe1+en
mod k*L*?), a representative system for this factor set contains five elements:
aey + ey, with a € {1,p,(,p(,p¢?} .

For such a representative, the corresponding plane cubic can be obtained
calculating the trace (see Definition 3.4) of the elements

(ae1 + €2) (z1€1 + Ta€2)® = azie; + T3es:
P{(Qf,,ael +e2)} :=Trr (azier + zes) = az? + a3,
cuaé€ {1, p,¢,pC, p§2}. In this way we obtain 5 non isomorphic cubics over Q:
i + a3, pai + a3, (o + a3, plai + 23, pCPai + 3.
Case 1.2: If p =2 mod 3, for
L*/k*L*® = 7./3Z

we can choose {piel +esi =0,1, 2} as a representative system modulo k*L*3.
Because pZe; + ez and pe; + e belongs to the same orbit, the action of the cyclic
group of order 2 Aut;L on L*/k*L*® determines two orbits. It results that a
representative system for AutyL\ (L*/k*L*®) is given by: pie; + ez, withi €
{0,1}. In the same way as in the previous case we obtain the corresponding
cubics 73 + 73 and pzi + x3, as required. 0

3.2.2 The extension Q, C Q, (\/p)

Case II: Let § = \/p and let L := L 5 := Q, (/P) be the extension of degree
2 over Q, with {1, \/p} a basis of the k-vector space L. We describe next the
valuation ring v(L) of L, the maximal ideal m;, the group of units O} and the
residue class field L.
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Lemma 3.8. Let L := Q,(,/p) be the extension of degree 2 of Q,.
Then the unique extension v to L of the p-adic valuation v, is given by:

v (21 + /Pr2) = min {vp(xl),% + vp(:cg)} ,

for all z1 + \/px2 € Q, (/D).

The valuation group of L is v(L*) = (1/2)Z. In particular, 1/2 is the smallest
positive element from the abelian total ordered group v(L) = Z and \/p is a local
uniformizer of L.

Proof: Since @, is henselian, the p-adic valuation v, can be uniquely extended
to a valuation v of the algebraic extension of degree 2, L.

From v(p) = 1 we get 2v(\/p) = v(p) = 1, i.e. v(,/p) = ;. Now, for 21, x5 €
Qp, since v(z1) # v(x2) + 1/2 it follows that

v (21 + /Pr2) = min {vp(ml),% + vp(:cz)} ,

that ends lemma’s proof. O

In order to simplify the notations, we denote by v both p-adic valuation v,
and its extension v to L.

Using the previous proposition we can describe the valuation ring Or, the
maximal ideal m; and the group of units OF:

Corollary 3.9. For the 2 degree extension of Q,, L := Q,(,/p) we get:
1) The valuation ring Or, = Zy[\/P] = {x1 + 22/D |21, T2 € Zp};
2) The mazimal ideal m; is equal to m; = {@1p+ 2/ |21, T2 € Zp};
3) The group of units O} has the form O} = {z1 + 22/P |21 € Ly, w2 € Ly} .

Proof: 1) For an element a = 21 + x2./p from Z,[,/p], because v(a) = v(z1 +
z24/P) = min {v(z1), v(z2) + 3}, it follows that a € Oy, since v(z1), v(z2) > 0.
Conversely, let a = z; 4+ z2,/p be an element such that min {v(z1), 3 + v(z2)} >
0.

Case i: If min {v(z1), 3 +v(22)} = v(z1), then v(z1) > 0 and « € Z,[,/p].

Case ii: If min {v(z1), 3 +v(z2)} = 1 4+ v(z2), then v(z2) > 0 and a €
Zp|\/P), as contended.

2) Since the valuation v is discrete (v(L) 22 Z), the maximal ideal is principal
generated by ,/p:

mp, = /POr, = /PLp[\/P] = {z1p + T2/ |71, T2 € Zp}.
3) It follows from 1) and 2) and from O} = O — my,. O
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From the previous corollary it follows that the ramification index is e =
[v(L*) : v(k*)] = 2, that is Q, (y/P) is a totally ramified extension of Q.

Lemma 3.10. For L :=Q, (\/p) we get L* = Z x Z[(p—1)Z x Z2.

Proof: From the structure theorem of the multiplicative local compact group L*
of the local field L (see [Neu99)), since the extension is totally ramified of degree
2, it follows that: L* = Z X Z/(p—1)Z x Z/p°Z x Z2, where a the maximal order
of a p-power root of unity in L. Since @, (\/1_)) could not contain a p*-power root
of unity, with a € N*, we obtain that a = 0 and L* = Z x Z/(p— 1)Z x 7.2, as
contained. d

Corollary 3.11. With the above notations,
O 2 Zy X Lp.

Proof: Since the multiplicative group L* is isomorphic with the direct product
of cyclic group generated by the local uniformizer of ,/p and the group of units
O3}, using Lemma 3.10 we get O} = Z/(p— 1)Z x L2 = L% X Z,, as contained.
d

Theorem 3.12. Let L := Q, (,/p) be the separable k-algebra of degree 2.
Then a representative system of isomorphism classes over Q, of plane cubics
with coefficients in Qp is given by

z3 + 3prix3 and 3zizo + pas.
Proof: As in Theorem 3.7, we get the exact sequence
1= k*/ (k*NL*®) 5L*/L*® 5 L* [k*L*® — 1.
But k* N L*3 = k*3: for an element z € k* = @, from z = (a + b\/ﬁ)s, with
a + b\/p € L*, identifying the coefficients we get b = 0 as a unique possibility,
that is € k*3. Consequently,

Auty L\ (L* /k*L*%) = {1}.

Calculating the trace of the corresponding element 1-(z; + $2\/]_?)3, as in The-
orem 3.7, we obtain the corresponding cubic: 2 (xf + 3p$1x§), which is equivalent
over k with z? + 3pz,23, as contained. 0
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3.2.3 The extension Q, C Q, (v/)

Case III: Let § = 1/ and let L := L, := Q, (/) be the extension of degree 2
over @Q,, where ¢ € @, is a primitive (p — 1)-root of unity.

Lemma 3.13. Let L := Q,(+/C) be the extension of degree 2 of Q.
Then the unique extension v of p-adic valuation v, to L is given by

v (@1 + V/Ca2) = min {up(21), vp(e2)}
for all x4 + /Cz2 € Q,[V/(].

The valuation group of L is v(L*) = Z. In particular, p is the smallest positive
element from total ordered abelian group v(L*) = Z and p is a local uniformizer
of L.

Proof: Since Q, is henselian, the p-adic valuation v, can be uniquely extended
to a valuation v of the algebraic extension of degree 2, L. The map |.| : L — Ry
defined by |a| = {/|Np/q, (@) |p, for all a € L := Q,[/(], is a nonarchimedean

absolute value on L which extends the p-adic absolute value.
The element z1 + /(x> € Qy[v/(] has the norm z7 — (23, and so the valuation

on L is defined by v(z1 + 22v/{) = Lv, (27 — (2}) . For a = @1 + /{z2 € Q [V,
with v, (1) # vp(x2) we get

v (331 + \/zxrz) = %min {2vp(21), 2vp(22)} = min {vp(21),vp(z2)} .

Let now a = 1 + v/(x2 € Q,[/(], with &1 = p™u1, T2 = p™ua, u1, uz € Z,,
and n € Z. Then, since v, (u? — (v?) =0, it follows that

v (a? = (o) = 20 + v, (u? = o) = 2n,

that ends lemma’s proof. a

In order to simplify the notations, we denote by v both p-adic valuation v,
and its extension v to L.

From the previous lemma we can obtain easily the following corollary, which
proof is analogous with the proof of Corrolary 3.9:

Corollary 3.14. For the 2 degree extension of Q,, L := Q,[/(] we get:
1) The valuation ring Or, = Zy[\/(] = {ml + 22V |71, T2 € Z,,};
2) The mazimal ideal mj, is equal to m; = {w1p+ TapV/C |71, T2 € Z,,};
3) The group of units O}, has the form

0; = {x1 +pa:2\/g_“ |1 € Z), 22 € Zp} U {pml + .’L'z\/z |21 € Zp, 29 € Z;’;} U

U {ml +.CL'2\/E|ZL’1,Z‘2 EZ;} .
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In this case, the extension L/k has the ramification index e = [v(L*) : v(k*)] =
1, that is L is unramified over k, and the residual degree is [L : k] = 2.

Lemma 3.15. For L :=Q, (\/), it follows that L* = Z x Z [ (p* — 1)Z x Z2.

Proof: Analogous with the proof of Lemma 3.10. a

Corollary 3.16. With the above notations, the group of units Oj is isomorphic
with
0; =Z/(p" - 1)Z X L,

Proof: It follows from the Lemma 3.15. O

Theorem 3.17. Let L :=Q, (\/Z) be the separable k-algebra of degree 2.

1) If p=1 mod 3, then there exists a unique isomorphism classes over k of
plane cubics with coefficients in k with the representative x5 + 3z 3.

2) If p=2 mod 3, then a representative system of isomorphism classes over
k of plane cubics with coefficients in k is given by:
{a% + 3¢w1a3, Trp/w(0)2} + 3Trp )k (0)Cx123 + 3Tr Lk (0V/C) 2t 2o+
—}—TTL/k(O\/Z)Ca:g}, where 8 is a primitive root of unity of order p?> — 1 such that
grtl = (.

Proof: As in the proof of Theorems 3.12 and 3.7, using the exact sequence
1= kL /LS L* [k L* -1,

and the Lemma 3.15, we obtain that the quotient group L*/k*L*3 is trivial, if
p=1 mod 3, respectively cyclic of order three, if p =2 mod 3.
Case IIL.1: If p=1 mod 3, then L*/k*L*® = {1} and, consequently,

Auty L\ (L* /k*L*%) = {1}.

As in the previous cases we obtain that the associated plane cubic is
PQ (VO 1): = Trop (1 (@1 +227/0)°) = (a0 + mz\/Z)3 +
+o ((wl +x2\/5)3) =
= (m1 +x2ﬂ)3 + (a:l - x2\/5)3 =

= 2 (x? + 3Cm1$g) ,

equivalent over k with the cubic z3 + 3(z123.
Case III.2: Daca p =2 mod 3, i.e. for

L*/k*L*® = 7,/37.

we can choose as a representative system modulo k*L*3 the elements
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{6%i =0,1,2},

where 6 is a primitive root of unity of order p? — 1 such that §7*! = ¢, and 6
generates L, i.e. L := Q, (v/{) = Q, (). The irreducible polynomial of 6 over
Qp is
2 _ 4 p+1 _
- (0+6P)x+§6 0,

Trr/x€Qp CeQp

and the conjugate of 8 over Q, is 67, since o (0) = 67, where < o >= AutpL =22
7./27).

The Aut(L/k)-orbit of # mod k*L*3 € L*/k*L*3 contains 6§ mod k*L*3:
o (0 mod k*L*3) = 67 mod k*L*3, and 67 mod k*L** = 6% mod k*L*® be-
cause 9P~2 = ((0~')% € k*L*3. Hence, corresponding to the action of Aut;L
on L*/k*L*® we get 2 orbits, and a representative system of AutjL\ (L*/k*L*3)
contains, for example, the following elements:

Auty L\ (L*/k*L**) = {1,6} .

As in the previous cases, we obtain the associated plane cubis forms:
P{(Q, (VC),1)} =2 (s} + 3¢a1a3),

equivalent over k with the cubic z3 + 3(z122. Analogously, for § we obtain the
cubic (having coefficients in Q,):

P{(Qp (\/z) ,9)} = 40 (mf + 3x%x2\[§+ 3¢x175 + x%g\/&) +
+6? (xf — 32222/ + 3Ca172 — wgC\/E) =
= (0467)z3 +3(0+67)Cxy22 +3(0 — 0P)\/Calmy +
S—— N—— S———
Trp (6) Trr/k() Trr/ke(0v<)
+ (0 07)y/C G-
—_———
Trr/x(0v/C)

3.2.4 The extension Q, C Q, (v/{p)

Case IV: Let § = \/(pandlet L := L ;- := Q, (v/Cp) be the extension of degree
2 over Q,, where ¢ € Q, is a primitive (p — 1)-root of unity.

Lemma 3.18. Let L := Q,(+/(p) be the extension of degree 2 of k := Q,.
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The unique extension v of p-adic valuation vy, to L is given by:

v <$1 + Cpfﬂz) =min {vp(ml)a % + Up(wz)} )

for all z1 + z21/Cp € Q, (V(p)-
The valuation group of L is v(L*) = (1/2)Z. In particular, 1/2 is the smallest

positive element from the total ordered abelian group v(L) = Z and +/Cp is a local
uniformizer of L.

Proof: Analogously with the Lemma 3.8, the p-adic valuation v, can be uniquely
extended to L. Norming v(p) = 1, we get 2v(,/p) = v(p) = 1, i.e. v(/p) = 1.
For z1, 3 € Qp, from v(z1) # v(z2) + 1/2 it follows that

v (a:l + Cpscg) = min {Up(xl), % + Up(a:2)} ,

as contained. O

In order to simplify the notations, we denote by v both p-adic valuation v,
and its extension v to L.

As in the previous cases, using the lemma 3.18 we can describe the valuation
ring Op,, the maximal ideal m; and the group of units O7 as follows:

Corollary 3.19. For the 2 degree extension of Q,, L := Q,(+/Cp) we get:

1) The valuation ring Or, = Zy[\/(p] = {z1 + 22/ (P |x1, T2 € Ly} ;

2) The mazimal ideal my, is equal to my = {z1p{ + 2/Cp |71, T2 € Ly} ;

3) The group of units O has the form O} = {.1:1 +z2/(p |21 €L}, 22 € Zp} .
Proof: 1) Let a = z; + x24/(p be an element from Or, that is

min {v(z1), 1 +v(z2)} > 0.
If min {v(z1), s + v(z2)} = v(z1), than v(z1) > 0 and « € Z,[\/p); i
min {v(z1), 5 +v(z2)} = § + v(z2),

then v(zy) > 0 and a € Z,[/(p]. The converse inclusion is easy to verify.

2) Is easy to verify (as in Corollary 3.9).
3) It follows from 1) and 2). O

Using the previous corollary, we obtain that the ramification index is e =
[v(L*) : v(k*)] = 2, i.e. L is a totally ramified extension of k.
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Lemma 3.20. For L :=Q, (\/Cp) we have L* 2 Z x Z[(p—1)Z % Zi.

Proof: Analogously with the Lemma 3.10. g

Analogously with the Corollary 3.11, we can obtain the next result:

Corollary 3.21. With the previous notations, the group of units O] can be
described as:
O; =2Z/(p—1)Z x Zi%Z;x L.

Theorem 3.22. Let p be a prime number, p > 5 and L := Q, (/{p) the separable
k-algebra of degree 2.

Then the representative system of isomorphism classes over k of plane cubics
with coefficients in k is given by

z3 4+ 3¢pz122 and 3xizy + (pas.
Proof: As in the proof of Theorem 3.12, we obtain:
1= k* k3L | L¥ =L [ L — 1,
which, together with the Lema 3.20 proves that L*/k*L*? is trivial. Consequently,
Autp L\ (L*/k*L*®) = {1}.

The associated cubic is obtained as in the previous cases, calculating the trace
of the element 1- (z; + xQ\/Cp)3:

P{(Qp(\/C_P),l)} = Trom (1- (ml +a:2\/C_p)3> =
= 2 (:c:f + 3Cpx1w§) ,

which is equivalent over k with the cubic z$ + 3(pz;z3. O

4 The Igusa-equivalence relation on the GLy(Q,)-orbits of the repre-
sentatives of the isomorphism classes

4.1 The Igusa equivalence relation

4.1.1 The definition of the Igusa-equivalence relation and its proper-
ties

Let n and d be two natural numbers, different from zero. Let

QI’ [.Z‘] = Qp[xla ,Z‘n]
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be the set of polynomials in n undeterminates with coefficients in Q.

Definition 4.1. To a polynomial F € Q,[z] we associate a natural invariant
v(F) € Z as follows:
v:Qplz] > ZU

00, if F=0
For F € Q,[z], v(F') is called ” the valuation” of the polynomial F.

o(F) = { the minimum of p-adic valuation of the coefficients of F', if F #0

Definition 4.2. A polynomial F € Q,[z] is called primitive if v(F) = 0. If
F= pv(F) Fla
then Fi is called the primitive polynomial associated to F'.

Examples 4.1. 1) The plane cubic Fy (z1,72) := pPz} + 23 € Q,[z1,22] is
obviously a primitive polynomial.

2) For F» (z1,z2) := 2% + p~323 € Qp[z1,22], we get v(Fy) = —3, and the
associated primitive cubic is F}.

Let F' € Qp[x]; the canonical map F' — Zp, where Zp is the Igusa local zeta
function associated to F' (we see Zr as a rational function in one undetermi-
nate ¢t := p~* with coefficients in Q), induce an equivalence relation called Igusa
equivalence:

Definition 4.3. Two polynomials F1 and Fy from Q,[z] are called Igusa equiv-
alent (I.E.) if the associated zeta functions Zp, and Zp, are equal.

Obviously, the previous relation is an equivalence relation.

Our goal is to describe the equivalence classes modulo the Igusa equivalence
relation. In order to do this, we will make the first reduction of our problem:
from the definition of the Igusa zeta function we observe that, if we multiply
with a p—adic unit, the function does not modify. It is natural then to give the
following definition:

Definition 4.4. Let Fy and F> be two polynomial from Q,[z]. Fi and F» are
called homothetical if
F = 'ILFQ, with u € Z;

Proposition 4.5. Any two homothetical polynomials Fy, F» € Qp[z], with Fy =
uFy, u € Zy, are Iqusa-equivalent.

Proof: The proof is easy and it uses the definition of Igusa zeta function on the
Definition 4.4. 0
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Remark 4.6. The reciprocal of the previous proposition, in general, is not true:

For example , if p =1 mod 3 and ( is a (p— 1)-root of unity, the plane cubics:
Fy(z1,20) i= a3 +pas, Fa(wr,2) == 2] +pa3, Fy(x1,3,) := f + p(Pas

are not homothetical, but they have the same Igusa zeta function, since for any
p-adic unit u,

3vp(z1), if wvp(z1) < wp(z),

3 3y _ 3 3y _
vp (@i + puzz) = vp(wi +pz) = { up(ma) + 1, if wvp(m1) > vp(z2).0

Next, we consider Fy, 4 the category of homogeneous polynomials (forms) of
degree d, with d € N*, in 21,23, ..., 2, over Q.

For F € F, 4 is immediate, from the definition of Zr, that v(F) coincides
with the order of formal series Zp, if p > d (i.e. the prime number p is big
enough), hypothesis accepted for now on.

Remark 4.7. If Fi, F, € Q,[z] are two Igusa equivalent forms, then v(Fy) =
v(Fy). The reciprocal affirmation, in general, is not true.

For example, for p =1 mod 3, the primitive cubics
Fy(21,20) =25 +pa3, Fa(e1,22) = af + 23,
with v(F1) = v(F2) = 0, does not have the same zeta functions, because

g @=De+t) . (p=1) (" —2p+2tp—1)
e pr-td p-t)@*-t3) ’
as we can verify using the Stationary Phase Formula 2.2[1.

From the above remark, we observe that considered forms F' € F, 4 can be
chosen primitive, i.e. v(F) = 0.

4.1.2 The relation of Z,-, Q,- and functional equivalence

The set F,,q/I.E. of classes of Igusa equivalent forms is obviously countable. This
fact suggest that it could be possible to describe the classes of Igusa equivalent
forms using some numeric invariants. For example, for Fy,F, € Fy 4, v(F1) =
v(Fy) is a necessary condition (which is not sufficient) for the forms F; and F,
to be Igusa equivalent. It is natural then to look for some sufficient conditions
for Igusa equivalence of forms.

Definition 4.8. Let F1,F5 € F, 4. Fi and F> are called Z,-equivalent if there
exists a matriz g € GLy, (Zp) and a unit u € Z;, such that

Fi(zg") = uFy(x),

where x is the vector x = (z1,..,2,), and g is the transpose of the matriz g.
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Analogously, we can define Q-equivalence, with g € GL,, (Q,) and u € Q}.

Remark 4.9. We observe that two Z,-equivalent form are also Qp-equivalent.
The reciprocal of the affirmation is not true: for example, the plane cubics
Fi(z1,22) = pzd + 23 and Fy(z1,22) = p~223 + 235 are Qy-equivalent: for g =
(Pgl ‘1)) € GLy (Qy), Fi(zg?) = F>(z), where z = (z1,22).

But this two forms are not Zj-equivalent: if there exists a matriz g = (¢ 4)
from GL3(Z,) such that Fi(zg') = Fy(x), where = (z1,72) and u € Z3,
it follows that a®p + ¢ = p~2u. Forward, we get v,(a®p + ) = -2, i.e.
min {1 + 3v,(a),3vp(c)} = —2, impossible since vp(a), vy(c) > 00.

Instead the following statement is true:

Proposition 4.10. If two forms F1, F5 € Fp q are Zpy-equivalent, they are also
Igusa-equivalent.

Proof: Let Fy, F5 € Fp 4, g € GL,(Zp) and u € Z such that Fy(zg") = uFy(z),
where z denote the vector (1, ...,Z,), and gt is the transpose of the matrix g.
The Igusa zeta function corresponding to F5 is then:

Zr, = Zn@)= [ Rl =
TELY

- / e lde] = / \F (2g")|*|de| =
TE ;

TELY

- / Py ()| det g dy| =
ygTreLy

= [ R,
ygrEZy

where we used the following property of the Haar measure (see [Igu00]):
meas(gA) = |det(g)|p - meas(A) = meas(A),

for all g € GL,(Zp) and any open, compact subset A from Z7.
In order to finish the prove, it suffices to observe that, for g € GLy(Z,), the
map 77 — 77, x — xg" is a bijection. O

In order to describe the Igusa-equivalent forms, we made the first reductions
of the problem: we have reduced our study to the primitive forms and we have
identified of the homotetical forms. But this reductions are not strong enough
because they did not preserve the specific nature of Igusa local zeta function, as
an integral of a function with values determined exclusively of valuation (absolute
value). This is why we have to make another reduction of the problem:
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Definition 4.11. Two forms Fy,Fy € F, 4 are called functional equivalent if
vp(Fi(2)) = vp(Fa(x)), for all x € L7, where

p’
Z, — ZUoo,
r = v(Fi(z)),Vz € Z;

fori=1,2.
The Igusa-equivalence relation identifies the functional equivalent forms:

Proposition 4.12. Two forms Fi,F5 € F, 4 are functional equivalent if they
are Igusa-equivalent.

Proof: Let F; and F5 be two functional equivalent forms. Then obviously,

Zp, = / Iy (2) | da] = / \Fy ()| de| = Zo,.
wEZ; zEZ;‘

In the previous section, in the Theorems 3.7, 3.12, 3.17 and 3.22, we have
determined the following representatives of isomorphism classes over ), of plane
cubics with coefficients in Q:

Corresponding to the extension Q, C @, x @Q,, for p=1 mod 3, we have
obtained the plane cubics z$ + z3, pz$ + 23, (x + 23, plx? + x3, p(?x} + 23,
where ( is a (p — 1)-root of unity, and for p = 2 mod 3 the cubics z$ + z3 and
pzi + z3.

Since for any p-adic unit u, v(puz? + 23) = v(pzd + 23) = 3v(z1) + 1, if
v(z2) > v(zy), respectively v(z2), if v(zs) < v(z1), the cubics p{x$ +z3, plx? +3
and p(%x3 + z3 are functional equivalent, and so Igusa equivalent. Analogously,
the Igusa zeta function associated to the forms z3 + z3 and (z$ + 23 coincide.

P
2

, | Fi(z1,22) := prd + 23 | and, for p = 1 mod 3,

Denote ‘ Fo(z1,32) := 23 + 23

we add Fy(z1,72) = (x3 + 3.
Corresponding to the extension Q, C Q,(,/p), we obtained the form

Fy(x1,32) := x5 + 3pzi 22 |

Corresponding to the extension Qp C Qp (\/Z ), where ¢ is a (p — 1)-root of
unity, we get the cubic | Fy(z1,22) := 23 4+ 3(x125 | to which we add, for p = 2
mod 3,

Fs(z1,22) == Try/e(0)a} + 3Tre/4(0v/Q)zizs + 3Trr 5 (0)Cx125 + Trrn(6+/C)Cas | €
Qp[z1,z2], where 0 is a (p? — 1) root of unity such that P+ = (.

Corresponding to the extension Q, C Q,(1/(p), we obtained the form
o3 + 3pCx1x3 which is functional equivalent with F3.
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4.2 The Igusa local zeta function of plane cubic Fj

Let us remember that we denoted by Fy the Fermat’s plane cubic

F()(JI) = F()(Jil,.'L'Q) = iL‘? + .’L'g S fz’g R

Proposition 4.13. The Igusa zeta function Zp, associated to Fermat’s plane
cubic T3 + 3 is:

(p_l(zl(f:)_(jgjt23t)%t)a if p=1 mod 3
ZFO =

2_ .
%, if p=2 mod 3,

where t :=p~°.

Proof: With the notations from Stationary Phase Formula, the only solution of

the system Fy(z1,22) = g—i)(ml,wz) = g—f;’(xl,xg) = 01is (0,0). It follows that

QL-p HA-p t+(1-p *N)(1-1t)
(I—p~'t)(1—p2t?) ’

where N is the number of elements of the set {(x1,22) € Fp|Fy(21,22) = 0}, i.e.

N=3(p—-1)+1=3p—2,if p=1 mod 3, respectively N = p, if p=2 mod 3.

The proof is now complete. a

ZFO = ZFO(S) =

4.3 The Igusa local zeta function of plane cubic F;

Denoted by Fi the plane cubic | Fy(z) := Fi(z1,22) := px? + mg € Fa 3|, and by
ZF, the associated Igusa zeta function.

Proposition 4.14. The Igusa zeta function Zp, associated to the plane cubic
30 3 e
pry + 5 18-

Zr = @D+
p2_t3

Proof: As in Proposition 4.13, since N = p and S = Z,, X pZ,, we get:
Zp, :=Zp,(s) =1—=p ! +p_1t/ |z% + p?23|®|d21 ||d2a].
z3

Applying again SPF in order to calculate the integral fzg |23 + p?a3|®|dz1 ||dz2],

we obtain
_ -+t
Zr = T2 _+3
pe—t
as contained. O
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4.4 The Igusa local zeta function of plane cubic F;

For p=1 mod 3 and ¢ a (p — 1)-root of unity, we denote by F» the plane cubic

Fy(z) := Fy(w1,32) := (2} + 23 € Fo3|, and by Zp, the associated Igusa zeta

function.

Proposition 4.15. The Igusa zeta function Zp, associated to the plane cubic
Cxd + 3 is:

2
_p-1
ZF2_p2_t3.

Proof: Using the notation from the Stationary Phase Formula, S = {(0,0)} and
N = 1; forward we obtain:

Pfl(P - 1)2 1 1 —1,2 2 35
Zr = PPl -y +p t/ 13025 + pa||dan ||da]] =
- 22

—1 -1 2
L=y -1+ 2,

from where we obtain Zr, as required. O

4.5 The Igusa local zeta function of plane cubic Fj

Proposition 4.16. The Igusa zeta function Zg, associated to the plane cubic
T3 + 3pr173 is:

g _ =1 +p—pt— )
s (p—t)(p* -3

Proof: As in previous propositions, since S = {(0,z2)|z2 € F,}, using the sta-
tionary phase formula, one can checks that:

—1 1,20 M (p—1)? —1 3 2s
Zp, = (1—-p ")+p t[it +p7t [ |2y 4 3pxias|*ldey||des|] =
= 72
—242 2
1y, P (p—1) _
= (=p )+ 40T,

and we obtain Zp, as required. 0
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4.6 The Igusa local zeta function of plane cubic F}

Denote by Fy the plane cubic Fy(z) := Fy(x1,32) := o3 + 3Cx125 € Fa 3, where
¢ is a (p — 1)-root of unity, and by ZF, the associated Igusa zeta function.

Lemma 4.17. The Legendre symbol (_T?C) 1s:

(—_?)C)_ —1, daca p=1 mod 3,
p 1, daca p=2 mod3

Proof: Let us remark first that ¢ can not be a square modulo p: Fy is a cyclic

group of even order p — 1 and the subgroup of squares IF;? is the only subgroup
of order 2; consequently, the generator ¢ of the group Z;‘;/ 1+ pZy, = F, can not
be a square. That is, (%) =-1.

From the properties of Legendre symbol, we get ( ) = (71) (—) (f—)) Since
(_71):(—1)}’7_1 and ( ) = —1, we have: ( p3<) l( )-

On the other hand since p and 3 are prime odd differe nt numbers we can
apply the qadratic reciprocity law: from (%) (2) = (- 1)321 3" we obtain (%) =

r

(—1)5 (2). But, for p = 1 mod 3 the Legendre symbol is (%) = 1, and for
p =2 mod 3 the Legendre symbol is (2) = —1. In this way, we obtained

=3¢\ _ [ -1, i p=1 mod3,
p ) 1, i p=2 mod3

Proposition 4.18. The Igusa zeta function Zg, associated to the plane cubic
o3 + 3(w1 23 is:

%= if p=1 mod 3,

Zr, =

(”_?L‘z”f?éif’iif)” 0, if p=2 mod3,

Proof: The reduction modulo p of the given polynomial is Fy(zy,zs) = x5 +

3(z173, gm (21,22) = 322 + 3(z2, and aF‘* 2(z1,22) = 6¢z172. So, the unique
solution of the system Fy(z1,z2) = 0, gf‘* (m1,$2) 0, gf‘* (z1,22) = 0is (0,0).

We have to count next the number of elements of the set
{(z1,22) € B3| Fy(21,22) = 0}.

Because Fy(z1,72) = 3§ + 3(z122 = z1(22 + 3(x3), we get p solutions mod p
of the form {(0,z2)|z2 € Fp}, to which we add the points (z1,22) € F2 having
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both coordinates different from zero, with (i—;)z = —3¢ mod p, that is another

2(p — 1) points of the form {(+azs,z2)|zs € F,}, where a®> = —3¢ mod p. From
the Lemma 4.17, for p = 2 mod 3, there exists such an element a in F;. Thus,

we obtain:
N = D, daca p=1 mod 3,
"] 3p—2, daca p=2 mod3

In order to calculate Zr, we apply SPF:

_ 2(N-1)(1-p )t
Zp, = Zg(s)=p 2(102—]\7)+p ( 1—2)(1tp )+

[+ 3mad) o da.
pZPXpZP

Since

[l smad)Fldalideal =57 [ (@} + 3nad)|*ldoa dza |,
PZLpXpLyp LipXZyp

replacing N from the previous relation, we obtain Zr, as required. a

4.7 The Igusa local zeta function of plane cubic Fj

Let p be a prime number different from 2 and 3, with p = 2 mod 3.
Denote by F5 the plane cubic

F5($) = F5(IL'1,.’172) = TrL/k(H)m:f + 3TTL/k((9\/Z)$%.’L'2+
+3TT’L/k(0)C$1$’§ + TrL/k(G\/Z)ng S }-ng,

where ( is a (p—1)-root of unity and 6 is a (p? — 1)-rot of unity such that 6711 = (,
and with Zp, the associated Igusa zeta function.

Proposition 4.19. Let F5(z) be the polynomial
Fs(x1,32) = Trp/p(0)23 + 3Trp /(6 xiza+
+3Trp /5 (0)C2123 4+ Trp/k(0v/C) (s € F,
and let Fs(x) € F,[z] be the polynomial obtained from Fx reducing modulo p the

coefficients. B
Then, the equation F5(x) =0 has a unique solution in I : (0,0).

In the proof of this proposition, we need the following result
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Proposition 4.20. Let 23 +ax? + bz +c = 0 be the general form of the equation
of degree three, with a,b,c € k and let y> + qy+r =0, q,r € k be the equation of
degree three obtained from the previous one by the substitution y = x + 5.

Then the solutions of the second equation are o+ B, ea + €23, €2a + €3, with
€ a root of unity of degree 3 and

/ 3
a=$ %(—r+\/r2+%), B=3 %(—r— r2+42i7).

Proof: [Proof of the Proposition 4.20: ] See [Ion05]. O

Proof: [Proof of the Proposition 4.19: ] Obviously, (0,0) is o solution for
F5(z) = 0. Tt remains to prove that the equation

Trrp(0)z} + 3T7'L/k(0\/5)$%$2 +3TrL 4 (0) (175 + TTL/k(o\/E)&Eg =0

has no solutions in F,.
Let us first remark that Trp /. (6) = 0 (Ep_l + 1) can not be 0 modulo p:

since 0 is a root of unity, @ £0 mod p. On the other hand, 7~ can nor be —1
because, otherwise, §2?~2 = 1, which contradicts the fact that € is a primitive
(p? — 1)-root of unity.

Dividing now the previous equation by Trr,/4(f), we obtain:
Trre(0vC) =

2 (- —_—_— =
t* + 3¢t + Tre,o(0) ¢=0.

Trr e (0+/C)

3
" +3 Trr e(0)

Trr/e(6v<)

By the substitution y =t + O

we get:

s o (TR0 - Tr3 0V Tr (830 _
Yy 3( Tr? ., (6) ¢ +2 Tr3 ,,.(8) 2 Trr ke (0) =0

In order to simplify the notations, until the end of this proof, we will not use
the "bar” anymore. In the case of the given equation,

g ((Trip0vo _ _gfvi=orve) L\
- TTL/k(a) _C B (6+067) C o

q =
_ g %Y
B 0+6r) "’
A 2T7'L/k(9\/Z) Tri/k(a\/f) —C _ 0/C—07/C (0\/?791’\/2)2 _C _
Trr/w(0) IrE ;. (9) o+or (6+07)?
—8¢°Trr /1 (81/C)

(6+67)3 ’
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and the discriminant of the equation is

which means that the roots of the previous equation are simple.
Let us calculate now o® and 33. Replacing r, ¢ and A determined above in
the formula from the Proposition 4.20 we obtain the followings:

3
3 5p+7
=3 (-r+Va) = (rtm) 07

and .
_1 _ —2 o5
8 =5 (-r=VA) = (im) "

But p is a prime, odd number. If p=1 mod 3, i.e. p=6u+ 1, with u € N*,
then 5”;7 = 15u+ 6 = 0 mod 3 and % =2lu+6 =0 mod3. If p =2
mod 3, i.e. p = 6u + 5, with u € N*, it follows that % =15u+16=1 mod 3
and 22 = 21y + 20 =2 mod 3. Hence, a®, 8 € Fy2 —F, iff p=2 mod 3.

Consequently, for p = 2 mod 3, the given equation in ¢ has tree distinct roots

in F» — IF, and hence is irreducible over F,. Then the initial equation has a
unique solution: (0,0). O

Proposition 4.21. The zeta function Zp, associated to the cubic Try,,(0)x$ +
3Trr k(0v/Q)xize + 317y /1 (0) a1 23 +Trp e (0v/C)( 23, where 0 is a (p* —1)-root
of unity, is:

ZF59 ==

where t :=p~—*

Proof: The reduction modulo p of the given polynomial is

F5($1,$2)
Trrk(0)7} + 377 1(0v/C) 23z + 3Trr 1,(0)Cm123 + Trr i (0v/0) (7 = 0,

?,i(wl,xz) = 3(T7'L/k(6)x% + 2T7‘L/k(9\/_)$1$2 + TTL/k(G)&U%)

and gf:“" (z1,22) = 3(Trp e (0v/C) 23 + 2TTL/k( )Cz1s + Trr i (0v/C)C23).
~ From the Proposition 4.19, it results that the only solution of the system
F5(.’E1,.732) = 0, gw1 (.’1!1,(B2) 0, gg (.Z'l,mz) =0is (0,0)

In order to calculate Zp, we app_ly the Stationary Phase Formula 2.2. With
the notations from there, we have: S = {(0,0)} and N = 1. Then:

Zp = Zpy(s)=1—p~" +p_2t3/ |Fs (@1, z2)|*|dzy ||dz2],
z

from where we obtain Zp, as contained. O
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Remark 4.22. From the proof of the Proposition 4.19 it results that, for p =1
mod 3, the number N of solutions of the equation F5(x) =0is N =3(p—1)+1 =
3p— 2.

Proposition 4.23. For p = 1 mod 3, the zeta function Zp, associated to the
cubic Trp, /()23 4+ 317 /(0v/ Q)23 22 + 3171 /1 (0) (w123 + Ty 11 (6+/C) (3, where
6 is a (p? — 1)-root of unity is

ZFSQ == ZFO‘

Proof: Analogously to the proof of the Proposition 4.21, using the Remark 4.22,
we get S = {(0,0)} and N = 3p — 2. Then

_ .2/ 2 —2 (1—p )t
Zp, = Zp(s)=p (0 —-3p+2)+p (3p—3)71_p_1t +

+ / \Fy (@1, 22) | s | =
(PZP)Z

— 1)t
= p (0’ -3p+2)+3p *(p- 1)% +p 7t Z,,
— 2 —1— .
and, consequently, Zp, = (p 1(Z)(ft)+(§2pt— tg) ) — 7 Fy> as required. O
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