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Abstract

In this paper, we are concerned with a differentiable nonlinear program-
ming problem with inequality constraints. By using an equivalent trans-
formation of the constrained optimization problem we establish the local
convexity of the Lagrangian function of the transformed equivalent pro-
blem. Zero duality gap is thus guaranteed when the primal-dual method is
applied to the constructed equivalent form.
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1 Introduction

Convexity plays a vital role in many aspects of mathematical programming in-
cluding optimality conditions and duality theorems. To relax convexity assump-
tions imposed on the functions in theorems on optimality and duality, various
generalized convexity concepts have been proposed. Important contributors in
this field are Preda (see for example[8]), Hanson ([2], [9]), Jeyakumar and Mond
(13)).

The celebrated primal-dual method ( see for example Lasdon [4], Luenberger
[7]) has been one of the most efficient solution algorithms in solving constrained
optimization problems under certain conditions. The primal-dual method re-
sorts to the convergence via sequential minimization of the Lagrangian function.
The succes of the primal-dual method depends on the local convexity of the La-
grangian function at the optimal solution of the problem. Several convexification
schemes have been proposed in the literature to extend the primal- dual method
for certain nonconvex problems, see for example Bertsekas [1], Li [5] and [6], Xu
[10].
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In this paper we consider the following general constrained optimization pro-
gramming problem in nonlinear programming:

min fo (2)
s.t. f; (z) < bj, j=1,m (1)
Tz € X,

where f; : R® — R, j = 0,m are twice continuously differentiable functions and
X C R™ is a nonempty closed set. The primal-dual method has been one of
the most efficient instrument in solving problem 1 under certain conditions. The
primal-dual method resorts to the convergence via sequential minimization of the
Lagrangian function of 1 defined by

m

L(@,A) = fo(@)+ Y _N[f; (@) =], € X, A= (M1, Am) € R (2)

=1

The succes of the primal-dual method has been limited to the case when L (z, A)
is locally convex at the optimal solution of problem 1. As revealed in several
studies, convexity or nonconvexity is not an inherent property in optimization.
A set could be nonconvex in one representation space, while the same set could
become convex when changing the coordinates of the representation space, see
for example [6].

2 Local Convexity of the Lagrangian Function of the Equivalent Form

Let z* be a regular point of the constraints in 1 i.e. Vf; (z*), j € I (¢*) are lin-
carly independent, where I (z*) = {j |f; (z*) = b;, j =T1,m}. We assume that
z* satisfies the second-order sufficiency condition; then there exists a Lagrange
multiplier A* = (A}, ..., A},) € R7". such that

VL (z*,\*)=0 (3)

A (fi (") =bj) =0,j=T,m (4)

and the Hessian matrix is positive on the tangent subspace M (z*),
y"V2L(z*, )y > 0,Vy € M (2*),y #0, (5)

where M (z*) = {y € R" |[y"Vf; (z*) =0,j € J(z*) } and J (z*) = {j|A} > 0}.
Let ¢ be a montone real function with ¢’ > 0 on R and locally convex in
r* = fo (z*), b1, ba, ..., by, where ¢’ is the derivative function of the real function
. Let p > 1 and ¢ > 1. Further, we assume that ¢ ( and thus, ¢? and ¢?) is
positive over R. This assumption does not impose a loss of generality as we can
always apply some suitable equivalent transformation if necessary.
We consider the following problem:
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min ¢? (fo (z))
st 01 (fj (z)) < 9?(bj), J
z € X,

1,m (6)

which is equivalent with problem 1. The Lagrangian function associated with
problem 6 is defined by introducing Lagrangian multiplier 4 = (1, ..., ftm) € R :

Ly (1) = 9" (fo (@) + 3_pi [¢" (f; @) = ¢j], w € X (7)

where ¢; = ¢?(b;), j = 1,m. The vector of optimal multipliers p* = (p7, ..., ;)
associated with z* in the Lagrangian 7 are given by

*p PN o' () *
w; = or P10, ¢ (5;) ) € J (z%) (8)
0, otherwise.

The Hessian matrix has the form
V2L, (z*, 1) = ppP ' (r*) @' (r*) [V2L (2%, 3*) +

+(uo + (p— 1) wo) Vo (a*) Vg (z*) +

where

and

Theorem 2.1. Let z* be a local optimal solution of problem 1. Assume that
J (x*) is nonempty, x* is a regular point of the constraints in 1 and z* satisfies
the second order sufficiency condition. Let ¢ be a real function with ¢’ > 0 and
locally convex in r* = fq (z*), b1,ba,...,b, and p > 1, ¢ > 1. Then, there exist
p > 0 and ¢ > 0 such that the hessian matrix V2L, (z*, u*)is positive definite
when p > p and ¢ > q.

Proof: Due to the assumptions on ¢, we have u; > 0 and v; > 0, j € j(m*),
where J (z*) = J (z*) U {0}.
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First, we consider M (z*) = {0}; that means that for all y # 0 there is at
least one j € J (z*) such that yTV f; (z*) # 0. We make the notations:

2

n=min Y w6 )
Jj€JI(z*)
. w112
Ty = 211612 Z Uj [yTij (.’E )] (10)
J€J(z*)
and
n = miny? V2L (z*,\*) y (11)
yEeS

where S = {y € R™|||y|]| = 1} . We remark that 74 > 0 and 75 > 0. For any y € S,
from ??-11 we have
yTV2Ly (a%, 1)y >
— * ] %112
> pe () () {n+ 11+ (0= Do [y Vo ()] + (- D7 -

If n = 0, then for any p > 1 and ¢ > 1 we have

y' V2L, (a*, 1*) y > pp? ' (r*) @ (r*) 71 > 0.
If 7 < 0 we consider two cases. First, for those y € S for which 47V fy (z*) = 0
we remark that, for ¢ > 1 — = we obtain

y V2L, (z*,p*)y > 0.

Then, for y € S for which yTV fo (z*) # 0 we use the notation

: T 172
T3 = min v Vo (x .
° y€S—{ylyTV fo(z*)=0} 0 [y fo )]
Taking
p>max41;1— ;7—3

¢ > max 1;1—T77—2

the Hessian matrix V2L, (z*, u*) is positive definite on S and therefore on R™.
Now, we consider the case M (z*) # {0}. So, thereis y # 0 withy"V f; (z*) =
0,V j € J(z¥),ie with Z(y,Vf; (z*)) =5,V je€J(z*), where Z(a,b) € [0,7]
denotes the angle between a € R™ and b € R™. From 5 we have
: T2 * )k
= VL (z*, A > 0. 12
= camin |y (=A%) y (12)
Fory e M (z*)N S,
yT V2L, (z*,1*)y >

> pe? ! (1) ¢ () {& + (w0 + (0= 1) wo) [y V fo (%)} > 0.
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For any y € S — M (x*) it exists jo € J (2*) such that Z (y, V fj, (z*)) # 5.Using
12 and the compactness of M (z*)N.S we find that there exists 89 > 0 such that for
any y € S with Z (y, Vf; (z*)) € [5 — 60, % + 60| we have y' V2L (z*,\*)y > &£.
So, y" V2L (z*, u*) y > pp?~ " (r*) ¢’ (r*) § > 0.

For any y € S for which there exists jo € J (2*) such that Z (y, Vf;, (z*)) ¢
[% — 6o, 5 + 00] we make the notations:

c=min{|COSH|H0—%‘ZQO,GG[O;W]} (13)
S = 3 Vi (x* 14
min 94,1 1y
~ ' 15
= min u (15)
= — min u.. 16
v jEI.Illgrl*)v] (16)
r12
¢ = [yTVfO (.’l? )] (17)

We remark that § > 0,2 > 0,7 > 0 and 9 > 0. Combining this remark with ??
and 13-17 we get
y' V2L, (2", u%)y >
> ppP =t (%) @' (1) {n + (uo + (p — 1) vo) Y+
+(@+ (g —1)7) 6} .

We find that yT V2L, (z*,4*) y > 0 for all ¢ > 1 — = and p > p (¢)where the
threshold p (¢)is

1, if ¢ = 0
p(¢)—{ 1= s, i #0

3 Duality Result

We define the dual function associated with the problem 6:

Dy (u) = minL, (z, p)

where here it is understood that the minimum is taken locally with respect to x
near x*.

Theorem 3.1. Suppose that the problem 1 has a local solution at z*with
corresponding value r* and Lagrange multiplier A*. Also suppose that J (z*) is
nonempty, z* is a regular point of the constraints and z* satisfies the second
order sufficiency condition.Let z* be a local optimal solution of problem 1. Let
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© be a real function with ¢’ > 0 on R, locally convex in r* = fo (x*), b1, b2, ...bpy,
and p > 1, ¢ > 1. Then, there exist p > 0 and ¢ > 0 such that the dual problem

D

Iﬁl?%{ o (1)

has a local solution p* defined by 8 with optimal value ¢? (r*) and L, (z*, p*) =
D, (p*),Yp>pandq>4q.

Proof: Combining the Local Duality Theorem ([7]) and Theorem 2.1. the result
is imediat. 0

Remark 3.1. Theorem 3.1. generalizes some results in Xu [10] obtained under
slightly different conditions.

4 Conclusions

In this paper we have shown how to locally convexify the Lagrangian function of
a nonconvex optimization problem and thus expand the class of optimization pro-
blems to which dual methods can be applied. Specifically, we have proved that,
under mild assumptions, the Hessian of the Lagrangian function in some trans-
formed equivalent problem formulations becomes positive definite in a neighbor-
hood of a local optimal point of the original problem. From local duality theory,
convexity in the Lagrangian guarantees the succes of the dual search and zero
duality gap is thus guaranteed when the primal-dual method is applied to the
constructed equivalent form.
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