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Abstract

The aim of this paper is to introduce (taking as a guide-line the case
of rings, see [12]) the notion of residuated lattice of fractions relative to a
A-closed system. For the case of Hilbert algebras, MV and pseudo MV-
algebras, BL and pseudo BL-algebras see [5], [6], [7], [8] and [18].

With this paper we initiate a study for the localization of residuated
lattices.
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1 Introduction

The origin of residuated lattices is in Mathematical Logic without contraction.
They have been investigated by Krull ([15]), Dilworth ([9]), Ward and Dilworth
([21]), Ward ([20]), Balbes and Dwinger ([1]) and Pavelka ([17]).

In [11], Idziak prove that the class of residuated lattices is equational. These
lattices have been known under many names: BCK- latices in [10], full BCK-
algebras in [15], FLey,- algebras in [16], and integral, residuated, commutative
l-monoids in [3].

Definition 1. A residuated lattice ([2], [19]) is an algebra (4,A,V,®,—,0,1) of
type (2,2,2,2,0,0) equipped with an order < satisfying the following:

(LRy) (A,A,V,0,1) is a bounded lattice,
(LR>) (A,®,1) is a commutative ordered monoid,

(LR3) ® and — form an adjoint pair, i.e. c<a—biff a®c < b for all a,b,c € A.
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The relations between the pair of operations ® and — expressed by Definition
1 (LR3), is a particular case of the law of residuation ([2]). Namely, let A and B
two posets, and f : A — B a mapping. Then f is called residuated if there is a
map g : B — A, such that for any a € A and b € B, we have f(a) < biff b < g(a)
(this is also expressed by saying that the pair (f, g) is a residuated pair).

Now setting A a residuated lattice, B = A, and defining, for any a € A, two
mappings fo,9. : A = A, fo(x) =2 ® a and g,(z) = a = x, for any z € A, we
see that z ® a = fo(z) <y iff z < go(y) = a — y for every z,y € A, that is, for
every a € A, (fa,ga) is a pair of residuation.

The symbols = and < are used for logical implication and logical equivalence.

Proposition 1. ([11]) The class RL of residuated lattices is equational.

Example 1. Let p be a fixed natural number and A = [0, 1] the real unit interval.
If for z,y € A, we define z ®y = 1 — min{1,[(1 — z)? + (1 — y)?]'/?} and
x —y=sup{z €[0,1]: x ®z < y}, then (A, max, min, ®, —,0,1) is a residuated
lattice.

Example 2. If we preserve the notation from Example 1, and we define for
r,y € A, Oy = (max{0,zP + y? — 1})V/? and ¢ — y = min{1,(1 — 2P +
yP)1/P} then (A, max, min,®,—,0,1) become a residuated lattice called gene-
ralized Lukasiewicz structure. For p = 1 we obtain the notion of Lukasiewicz
structure (z @ y =max{0,z +y — 1},z > y =min{l,1 —z + y}).

Example 3. If on A = [0,1], for z,y € A we define £ ® y = min{z,y} and
xz —y = 1if z < y and y otherwise, then (4, max, min, ®, —,0, 1) is a residuated
lattice (called Godel structure).

Example 4. If consider on A = [0,1], ® to be the usual multiplication of
real numbers and for z,y € A,z - y = 1 if £ < y and y/z otherwise, then
(A, max, min, ®, —, 0, 1) is a residuated lattice (called Products structure or Gaines
structure).

Example 5. If (4,V,A,,0,1) is a Boolean algebra, then if we define for z,y €
A,z0y =xzAy and x = y = z' Vy, then (4,V, A, ®,—,0,1) become a residuated
lattice.

Definition 2. ([19]) A residuated lattice (4,A,V,®,—,0,1) is called BL-
algebra, if the following two identities hold in A :

(BL1) 2O (z =2 y) =z Ay;
(BLy) (zx—>y)V(y—z) =1

Remark 1. Lukasiewicz structure, Godel structure and Product structure are
BL— algebras. Not every residuated lattice, however, is a BL-algebra (see [19],
p.16).
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Remark 2. If in a BL— algebra A, z** = z for all x € A, and for 2,y € A we
denote x @ y = (z* ® y*)* then we obtain an algebra (A4, ®,*,0) of type (2,1,0)
called MV- algebras (see [19]).

Remark 3. ([19]) A residuated lattice (4, A,V,®, —,0,1) is an MV -algebra iff it
satisfies an additional condition: (x — y) -y = (y = z) — z, for any z,y € A.

Example 6. ([13])We give an example of a residuated lattice, which is not a BL-
algebra. Let A = {0,a,b,¢,1} with 0 < a,b < ¢ < 1, but a,b are incomparable.
A become a residuated lattice relative to the following operations:

=10 a b ¢ 1 |10 a b ¢ 1
0|1 1 1 1 1 00 0 0 0 O
alb 1 b 1 1 al|l0 a 0 a a
bla a 1 1 1° b|0 0 b b b°
c|0 a b 1 1 c|0 a b ¢ ¢
110 a b ¢ 1 110 a b ¢ 1

The condition z Vy = [(z = y) = y] A [(y = z) — =], for all z,y € A is not
verified, since c=aVb#[(a = b) > bA[(b—a) > a]=(b—>b)A(a—a) =1,
hence A is not a BL-algebra.

In what follows by A we denote a residuated lattice; for x € A and a natural
number n, we define z* = z — 0,(2*)* = 2**, 2° = 1 and 2" = 2" ! ® z for
n > 1.

Theorem 1. ([14],[19)]) Let z,z1,%2,Y,Y1,Y2,2 € A. Then we have the following
rules of calculus:

lsz=zz22z=1Ly{rs—=y,z—=>1=1,0—-z=1;

Oy <z,y, hencex Oy <z Ay and 0 =0;

|
I
8
®
e
1
&
INA
<
1
0
®
X
INA
0
®
S
1
0
®
2

z—oy<(z—=z)—>(z—=>y);

z—oy<(y—z2)—(z—2);
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Theorem 2. ([14],[19]) If A is a complete residuated lattice, x € A and (y;)icr
a family of elements of A, then :

(Ir—c2) 20 (Vui) = V(2 0u);

iel ier
(r—ca) 20 (Ayi) < Az oyi);
el iel
(r—cx) z = (Ayi) = A (@ —wi);
i€l i€l
(Ir—c3) (Vyi) =z = A (i = 2);
iel iel
(Ir — c24) '\e/I(yi —1z) < ('/E\Iyi) -
(Ir—c25) V(@ = yi) <z = (Vi)
icl icl
(Ir—ca6) (V)" = Ayjs
iel iel
(r—cor) (Awi)* > V.
iel iel

Corollary 1. If z,2',y,y',2 € A then:
(Ir —cog) xVy =1 implies Oy =z A y;
(Ir—cy) = (y = 2) 2 (x—=y) = (¢ 2);

(Ir—c30) z2V(y©2) > (xVy) O (xV 2), hence z™ V y™ > (z V y)™", for any m,n
natural numbers;

(Ir—ca) @=y) 0@ =»y)<(@@ve) =y Vy);

(Ir—cp) @=y) 0@ =-y)<(@Az) = YAY).
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Proof: (Ir—css) Suppose zVy = 1. Clearly 20y < x and 20y < y. Letnow t € A
such that t <z andt <y. By lr—c; wehavet = (z0y) > z0(t 2> y) =201l =2
andt = (zQy) >y (t—z)=yGl=y,s0t = (xOy) >z Vy =1, hence
t=>(xz0y)=1let<zOy,thatis, Oy =z Ay.

(Ir — co9) We have by Ir —c13 : # = (y 2 2) = (z ©Qy) = z and (z —
yY) = (=2 2)=z0( —>y)] =22 Butzoy <z06(z = y), so we obtain
(zoy) 2 z2z0@—oy))—ozerso(y—o2) > @2y = (x> 2).

(Ir—e30) By Ir —cag we deduce (zVy) ®(zVz) = 22V (z0y)V(z02)V(y©2) <
<zV(@OoyY)VEoz)V(yez)=zV(yo z2).

(Ir — ¢31) From the inequalities:

O —y) o @ —)y)<:c®(:c—>y)<:c/\y<yVy'and

ooy o@ sy)<soE -y) <z Ay <yVy we deduce that

@—=yo@E »y)<z—>(yVy)ad (z 5y 0@ -y)<z' = (yVy).

So, (=) 0@ »y) <[z > GVy)IAL - vy "= @@va) -
(yVy).

(Ir — ¢32) From the inequalities:

, , Ir—c
(zA)O(z—=y)O0(x wy)<zo(x—y) Ssyand

(;c/\x')@(;c—)y)l ok sy)<z o @ -y szcsy we deduce that

(z—oy)o@x —y)< (w/\m)—)yand(m—)y)@(m —)y) (zAZ") =y

SO,’ (m—)y)@(m —>y)_[(m/\:c’)—>y]/\[(cc/\3:)—>y]hﬂ=c22 (m/\xl)—>
(yAy). O

2 Boolean center of a residuated lattice

Let (L,V,A,0,1) be a bounded lattice. Recall that an element a € L is called
complemented if there is an element b € L such that aVb =1 and a A b = 0; if
such element b exists it is called a complement of a. We will denote b = a' and
the set of all complemented elements in L by B(L). Complements are generally
not unique, unless the lattice is distributive.

In residuated lattices however, although the underlying lattices need not be
distributive, the complements are unique.

Lemma 1. ([14]) Suppose that a € A have a complement b € A. Then, the
following hold:

(1) If ¢ is another complement of a in A, then c =b ;
(i1) @' =b and V' = a;
(iii) a® = a.
Let B(A) the set of all complemented elements of A.

Lemma 2. Ife € B(A), then e’ =e* and e™* =e.
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Proof: If e € B(A), and a = ¢/, then eVa =1and eAa = 0. Since e ®a <
eNa = 0, then e ®a = 0, hence a < e - 0 = ¢*. On the another hand,

e*=10e*=(eVa)Oe* = (e@e*)V(aoe*) =0V (a®e*) =a®e*, hence
e* < a, that is, e* = a. The equality e** = e follows from Lemma 1, (7). 0

Remark 4. ([14]) If e, f € B(A), then e A f,eV f € B(A). Moreover, (eV f)' =
eNfland (eANf) =€V f.So,e— f=¢Vfe B(A) and

(Ir —c33) e@x =eAu, for every x € A.

Corollary 2. ([14]) The set B(A) is the universe of a Boolean subalgebra of A,
called the Boolean center of A.

Proposition 2. For e € A the following are equivalent:
(i) e € B(4),
(i) eve  =1.

Proof: (i) = (ii). If e € B(A), by Lemma 2, eVe =eVe* =1.

(4¢) = (i). Suppose that e Ve* = 1. We have: 0 = 1* = (e V e*)*
e* Ne** > e* Ae, (by Ir — c16), hence e* A e =0, that is, e € B(A). O

lr—cos

Proposition 3. For e € A we consider the following assertions:

= (3).If e € B(A), theneVe* =1. Sincel =eVe* < [(e = e*) =
e *—>e) = e] (by lr —cg and Ir — ¢;1), we deduce that (e — e*) — e* =
(e* > e) > e =1 hence e » e* < e* and e* = e < e (by Ir — ¢4), that is,

e=-¢e, by (1) = (3). Since e < (e = x) — e we obtain (e » ) > e =e.
(1) = (5). Follows from Proposition 2 (since by Lemma 2, e’ = e*).
(7). Consider the residuated lattice A = {0, a,b,¢,1} from the Example 6; it
is easy to verify that B(A) = {0,1}.
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(2) # (1). We have a® = a,a* = b,b* = a, hence a** = b* = a, but a ¢ B(A).

(3) # (1). We have a®> = a and a* - a =b — a = a, but a ¢ B(A).

(4) # (1). It is easy to verify that (a — z) — a = a for every x € A, but
a ¢ B(A).

(5) # (1). Wehave aAa* =aAb=0,but aVa* =aVb=c#1, hence
a ¢ B(A). O

Remark 5. ([7]) If A is a BL— algebra, then all assertions from the above
proposition are equivalent.

Lemma 3. Ife,f € B(A) and z,y € A, then:
Ir—c3) 20 (x—>e)=eAx,e®(e—>x)=€eAx;
V(zoy)=(evr)o(eVy)
eN(zOy)=(enz)®(eAy);

Ir— C35

(z=y)=e0[leOr) = (eOY))];

Ir— C38

(

( )
(Ir — c36)
(Ir —c37) €e®

( )zoe—=fl=z0[(z0e) = (2O f);
( ) e

Ir—c3y) e (x—y)=(e—=2x)— (e > y).

Proof: (Ir—cs4). Sincee < z — e, then z0e < zO(z — e), hence zAe < 2O (z —
e). From z® (z — €) < z, e we deduce the another inequality z® (z — €) < zAe,
sox@(x—>e)=eAr.

Analogous for the sequend equality.

(Ir — c35). We have

(evz)©(eVy) fr=rz [(evz)oe]V[leva)oy] =[(evVz)@e]V[(e®y)V (zOy)]
=[(evz)Ae]V[(eOy)V(zoy)l=eV(e®y) V(zoy)=eV(zOy).

(Ir — c36). As above,
(enz)O(eAy) =(e0T)O(eOyY) = (e0e)O(z0yY) =eO (zOy) =eA(zOY).
(

(Ir —c37). By lr —cg wehave z - y < (e®x) = (eQy), hence e ® (z — y) <
e®[(e®r) = (e®y)]. Conversely, (e©7) O[(e©z) = (eOy)] <eOy <y so
e0le0r) > (e0y)<z—y Hencee®[(e®z) = (eOy)<e®(z —y).

(Ir — css). Wehave 70 [(z@e) = (20 f)] =20 [(z @ e) = (x A f)] T=>
zO[zee—s)AN(z0e— f)]l=20[IAN(zCe— f)]=20(z0e— f) lr—cls

=B polr o (e = )] "= 2Ale > f) =20 (e > f), sincee — f € B(A),
see Remark 4.

(Ir — c39). Follows from Ir — ¢13 and Ir — ¢34 since e Az = e O x. O

Definition 3. ([4])Let A and B be residuated lattices. A mapping f: A - B
is a morphism of residuated lattices if f is morphism of bounded lattices and for

every 2,y € A: f(z ©Oy) = f(2) © f(y) and f(z = y) = f(z) = f(y).
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3 Residuated lattice of fractions relative to a A— closed system

In this section, taking as a guide-line the case of rings (see [12]) we introduce for
a residuated lattice A the notion of residuated lattice of fractions relative to a
N-closed system S. In particular if A is an MV -algebra (pseudo MV -algebra),
BL-algebra, (pseudo BL-algebra) we obtain the results from [6], [7], [8] and [18]
(see Remarks 9 and 10).

Definition 4. A nonempty subset S C A is called A—closed system in Aif 1 € S
and z,y € S implies z Ay € S.

If P is a prime ideal of the underlying lattice L(A4) = (A, A,V) (that is, P # A
and if z,y € A such that z Ay € P, thenz € Pory € P), then S = A\P is a
A—closed system.

We denote by S(A) the set of all A—closed system of A (clearly {1}, A € S(A)).

For S € S(A), on A we consider the relation g defined by (z,y) € 05 iff there
isee SN B(A) such that tAe=y Ae.

Lemma 4. The relation 8s is a congruence on A.

Proof: The reflexivity (since 1 € SNB(A)) and the symmetry of g are immedi-
ately. To prove the transitivity of 0g, let (z,v), (y, 2) € 8s. Thus there are e, f €
SNB(A) such that ztAe =yAeand yA f = zA f. If denote g = eA f € SNB(A),
then gAz = (eAflhz=(eAN)ANf=@wWAe)Af=wAf)Ae=(zA A
e=zA(fANe)=2zAg, hence (z,2) €8s .

To prove the compatibility of g with the operations A,V,® and — , let
x,y,2,t € A such that (z,y) € g and (z,t) € O5. Thus there are e, f € SN B(A)
such that tAe=yAeand zA f =t A f; we denote g = e A f € SN B(A), see
Remark 4.

We obtain:

@A) Ag= (@A) A(ENf)=(@A)A(zAf)=yNAe)AEAS) =(yAt)Ag,

hence (z A z,y At) € s and

(@V2)Ag "= (aV2)0g "= (z0g)V(209) =T [(eAf)Az]V[(eA f)A2] =
=[lenz)ANfIVIeA(fAZ)]=[leny) AfIVIeA(fAL)] =

l’r'fczo

=[(eAN)AYIVIEANAL "= (yog)V(teg) "= (yvi)og "= (yVi)Ag.

hence (z V z,y Vt) € bs.
By Ir — ¢35 we obtain:

(202)ANg=(202)0g=(z0e)0(z0f)=(xNAe)O(Af)=(YyAe)OEANSf) =

=yoe)o(tof)=wyot)og=(yOt)Ag,
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hence (z ® z,y ©®t) € s and by Ir — c39:
(=22)Ag=(222)09=90[(90z) > (902)]=9g0[(gAz) > (gN2)]=

=90l[lgny) — (g/\t)] =g90[goy) > (got)l=@Fy—-t)0g=(y—>1t)Ag,
hence (z — z,y — d

For z € A we denote %y z/S the equivalence class of z relative to 85 and by
A[S] = A/6s. By ps : A — A[S] we denote the canonical mapping defined by
ps(z) = z/S, for every z € A. Clearly, A[S] become a residuated lattice, where
0=0/S,1=1/S and for every z,y € A,x/SAy/S = (zAy)/S,z/SVy/S =
(xVvy)/S,z/SoOy/S=(x0y)/Sx/S—y/S=(—y)/S. So, ps is an onto
morphism of residuated lattices.

Remark 6. Since for every s € SN B(A), sAs = s A1 we deduce that s/S =
1/S =1, hence ps(S N B(A)) = {1}.

Remark 7. If S = {1} or S is such that 1 € S and SN(B(A)\{1}) = @, then for
z,y € A, (z,y) €0s <= xAN1=yA1l<= x =y, hence in this case A[S] = A.

Remark 8. If S is an A—closed system such that 0 € S (for example S = A
or S = B(A)), then for every z,y € A, (z,y) € fs (since z A0 = y A0 and
0 € SN B(A)), hence in this case A[S] = 0.

Proposition 4. If a € A, then a/S € B(A[S]) iff there is e € SN B(A) such
that a V a* > e. So, if e € B(A), then e/S € B(A[S]).

Proof: For a € A, we have by Proposition 2, a/S € B(A[S]) & a/SV (a/S)* =
1< (ava*)/S =1/Siff thereis e € SNB(A) such that (aVa*)Ae=1Ae=e &
aVa*>e Ifee B(A),sincel € SNB(A) and 1 =eVe* > 1, we deduce that
e/S € B(A[S)). 0

Theorem 3. If A’ is a residuated lattice and f : A — A’ is an morphism of
residuated lattices such that f(SNB(A)) = {1}, then there is an unique morphism
of residuated lattices f' : A[S] — A" such that the diagram

A 2 A8

¢ Ve

! I
AI

is commutative (i.e. f'opgs = f).

Proof: If 2,y € A and ps(z) = ps(y), then (z,y) € 6s, hence there is e €
S N B(A) such that £ A e = y Ae. Since f is morphism of residuated lattices,
we obtain that f(x Ae) = flyne) & flx)A fle) = f(y) A fle) e flzx) Al =
fy) A1 e fz) = fy).

From this remark, we deduce that the mapping f' : A[S] — A’ defined for z €
A by f'(z/S) = f(z) is correct defined. Clearly, f' is a morphism of residuated
lattices. The unicity of f' follows from the fact that ps is an onto mapping.
a
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Definition 5. Theorem 3 allows us to call A[S] the residuated lattice of fractions
relative to the A—closed system S.

Remark 9. If the residuated lattice A is a BL— algebra (see Definition 2),
then z/SAy/S = (zAy)/S=(z0(x = y))/S =2/56(z/S - y/S) and
(/S = y/S)V (y/S - z/S)=((z —>y)V(y—x))/S=1/S =1, hence A[S)]
is a BL— algebra. In this case, A[S] is the BL-algebra of fractions relative to
the A—closed system S, and we obtain the results from [7]. Analogous if A is a
pseudo BL— algebra, so we obtain the result from [8].

Remark 10. If the residuated lattice A is a BL— algebra and this is an MV —
algebra (i.e. z** = z, for all z € A), then (z/S)** = z**/S = /S, hence
A[S] is an MV — algebra. So, A[S] is the MV-algebra of fractions relative to
the A—closed system S, and we obtain the results from [6]. Analogous if A is a
pseudo MV — algebra, so we obtain the result from [18].

Example 7. We consider MV —algebra A = {0,a,b,c,d,1} from [13]. The
A—closed systems of A which do not contain 0 are:

S ={1},{a,1},{b,1},{c,1},{d,1},{a,c, 1}, {b,c,1} and {b,¢,d, 1}.

In the cases S = {1}, {b, 1}, {c,1},{b,c, 1}, A[S] = A (because SN B(4) = {1},
hence fg is the identity; see Remark 7). In the cases S = {a,1},{a,c,1} we
obtain 0/S = b/S =d/S ={0,b,d},1/S = a/S = ¢/S = {a,c,1}s0 A[S] = Lo,
and for S = {d,1},{b,d,1},{b,c,d,1} we obtain 0/S = a/S = {0,a},b/S =
¢/S = {b,c},d/S = 1/S = {1,d}. In this case A[S] is not a Boolean algebra
because b/S @ b/S = (b®b)/S=d/S #b/S.

Suppose now that P is a prime ideal of the underlying lattice L(A). Then
P # Aand S = A\P is a A—closed system in A;we denote A[S] by Ap and
Ip ={z/S:z € P}.

Lemma 5. If x € A such that z/S € Ip, then x € P.

Proof: If z/S € Ip, then /S = y/S with y € P = there is e € S N B(A) such
that tAe=yAe<y=>zAe€P =z € P (since Pis prime and e € S = A\P,
hence e ¢ P). O

Proposition 5. The set Ip is a proper prime ideal of the underlying lattice
L(Ap).

Proof: If x,y € P,then 2/SVy/S = (zVy)/S € Ap (since zVy € P). Consider
now z € P and y € A such that y/S < z/S. Then y/S - z/S =1/ & (y —
z)/S =1/S & there is e € SN B(A) such that e A (y = ) = e A1l = e, hence
e<y—-reeQy<zreeAy<z TheneAy € P, hencey e P,soy/S € Ip,
that is, Ip is an ideal of Ap.
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If by contrary, Ip = Ap, then 1/S € Ip, hence 1 € P (by Lemma 5) &
P = A, a contradiction.

To prove that Ip is prime, let z,y € A such that /S Ay/S € Ip. Then
(xAy)/Se€lp=2zNyeP,by Lemmab =z €Pory€eP =z/S€elpor
y/S € Ip, hence Ip is a proper prime ideal in lattice L(Ap). 0

Remark 11. Following the model of commutative rings, the process of passing
from A to Ap is called localization at P (taking as a guide-line the case of rings,
see [12]).
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