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Abstract

In this paper we describe necessary conditions for the factorization of
polynomials from Z[X] which can be represented as fif2 + pg, with p a
convenient prime number. These conditions are derived using resultants.
This approach allows us to construct irreducible polynomials.
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We consider the family of polynomials with integer coefficients

F = fif:+pg,

where F) f1, fo are supposed monic and p > 2 is prime.

We describe factorization conditions for such polynomials, expressed in terms
of resultants. These conditions are then applied to the construction of classes of
irreducible polynomials.

Throughout this paper R(f,g) will denote the resultant of the polynomials f
and g. If f(X) = E?:o a;X? € Z[X] and p > 2 is prime, we denote by f the
polynomial f(X) = Z‘;:o a; X7 € Z,[X], where @; is the image of a; in Z,,.
Proposition 1. Let F(X) = f1(X) fo(X)+pg(X) € Z[X] be a monic polynomial.

Let us suppose that f1, fo are monic, f,, fo are irreducible in Z,[X], fi # f» and
p is a prime number.

If F is reducible in Z[X] we have:

i. There ezists a divisor b € Z of R(F,g) such that R(f1, f2)> =b mod p.

it. There ezist a1,as € Z such that ajaz | R(F,g) and
a; = azx = R(fl,fQ) mod p.
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Proof: Since F, f; and f» are monic, we have deg(g) < deg(F).
Let’s suppose that there exist Fi, Fy € Z[X]\ Z such that

F=HREF.
Then F; and F, are monic. Since f; and f, are irreducible in Z, we have
Fy=fi+pg, F>=f+pg, 1)

with deg(g1) < deg(F1), deg(g2) < deg(Fz).
It follows that
9= 192 + f291 + Pg192. (2)

We consider now the resultants of the polynomial fi, respectively fo with the
polynomial g. From (2) it follows that

{ R(f1,9) = R(f1,91)R(f1, f2 + pg2),

R(f2,9) = R(f2, 92)R(f2, f1 + pg1)-

Therefore there exist ui,us € Z such that

{ R(f1,9) = R(f1,91)[R(f1, f2) + pua],

R(fa,9) = R(f2,92)[R(f2, f1) + pua].

Now we multiply the two relations from (4). Because

R(Fag) = R(f1f2 +pgag) = R(f1f27g) = R(flag)R(f27g)
it follows that

3)

e R(f1, f2)* + p(eur +u2) R(f1, fo) + pPurus = a, (5)
where £ = (—1)de8(f1)deg(f2) and q is a divisor of the integer number R(F,g). We
put b =ea and (5) proves i.

From (3) we obtain

{ R(flag) :alR(flagl)

R(f2,9) = €az R(f2,92),

with a1 = R(f1, f2 +pg2), a2 = R(f1 + pg1, f2) -
We have as = € R(f2, f1 + pg1) - Therefeore

a1 = az = R(f1,f2) mod p
and, by (6),
R(F,g9) = R(fi1f2,9) = ea1a2R(f1,91)R(f2,92),

which proves ii. 0
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Theorem 1. Let F(X) = f1(X) f2(X) + pg(X) € Z[X] be a monic polynomial.
Suppose that f1, fo are monic, fy, o are irreducible in Z,[X], fi # f2, R(F,g) #
0 and square-free, and p is a prime number such that p > 2|R(F, g)|.

If F is reducible in Z[X] then

R(fl,fg) = 41 mod p. (7)

Proof: From relation (5) in the proof of Proposition 1 we have

6R(f17f2)2 +p(EU1 +U2)R(f1,f2)+p2U1U2 = a, (8)
where a is a divisor of the nonzero integer R(F, g).

From (8) it follows that R(f1, f2) is an integer solution of the quadratic equation
ey +pleus + us)y + p’ugus —a = 0. (9)

Therefore the discriminant of (9) must be a perfect square. Hence there exists
t € Z such that

pr(eur + u2)? —depPusuy + dea = p*(eur — up)® + 4ea = t2. (10)
Denoting cu; — us by x, we have
p’x® +dea =12,
that is
dea=t* — (pz)>. (11)

Since p > 2|R(F, g)| we have p > 2 and it follows that the following relation
holds in Z,:

ga=(2 17, (12)
i.e. €a is a quadratic residue modulo p.

The numbers ¢ — px and ¢ + px have the same parity and from (11) it follows that
they are even. Since

t —px
2

?

t+ px
2

laf = |eal = \

we have

Hence
plz| < [t|+plz[ < 2[a].

Since a is a divisor of R(F,g) and p > 2|R(F,g)| we have p > 2|a|. But for
nonzero z we have p < |pz| < 2|a|. Therefore z = 0 and from relation (11) we
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deduce that 4ea = t2. But R(F,g) is square-free, so €a = 1. Therefore from (8)
we deduce that

R(fl,f2)2 + p(ur + euw2)R(f1, f2) + gp2u1uQ =1,
hence
R(f1, f2)*+pk =1, with keZ,

which proves that
R(f1,f2) = +£1 mod p.

Example 1. Let F(X) = X* + X2+ 1+ p(X2 — 1), with p a prime of the form
3k +2, p>11.

We have F = f1 fo + pg, with

AX)=X24+X+1, fo(X)=X2—-X+1, gX)=X>-1.
Since p =2 mod 3, the polynomials f, and f, are irreducible in Z,[X].

By Proposition 1 there exist integers a1, as whose product divides 9 (which is
the resultant of F' and g) and such that
ay = ag = R(f1,f2) =4 mod p.
Since ayas divides 9 and p > 11 we have
ap =ay € {£1,+3}.
Therefore p divides R(f1, f2) — a1 =4 — a1 and we obtain
pe{3,57}.

Butp=2 mod 3, so p=1>5. Since p > 11 it follows that the polynomial F(X) =
X4+ X2+ 1+p(X2—1) is irreducible in Z[X]. We observe that also X*+ X2 +
1+5(X2—1) = X*+6X2% —4 is irreducible in Z[X].

Note that the polynomial F is not a Schénemann polynomial (cf. [2]).

Example 2. Let F(X) = X*+ (p+2)X?+3X2+2X +2, with p a prime integer,
p=4k+3, p > 23.

We consider f1(X) = X241, fo(X) = (X +1)2+1, g(X) = X®. We have
F(X)=(X?+1)(X? +2X +2) + pX?, R(F,g) =8, and R(f1, f2) = 5.

Since p =3 mod 4, the polynomials f, and f, are irreducible in Z,[X]. By
Proposition 1 there exists o divisor a of 8 = R(F,g) such that
25 = R(f1, f2)?> = a mod p. It follows that p divides one of the numbers

25—-1,25+1,25—2,25+2,25—4,25+4,25— 8,25 +8.

Since p > 23, it follows that p = 29 . But this value of p is inconvenient because
29 is not of the form 4k + 3. It follows that F is irreducible in Z[X].
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Corollary 1. The polynomials X* +4 + p(X +1) and X* + 4+ p(X — 1) are
irreducible in Z[X] for any prime p of the form 4k + 3.

Proof: We consider F(X) = X* +4+ p(X £ 1), with p prime, p > 11. We have
X444 = (X?4+2X +2)(X?2-2X +2),
SO we put
AX) = (X +1)°+1, fo(X) = (X -1)°+1.
and
gX)=X+1 or X-1.

Since p is of the form 4k + 3, the polynomials f, and f, are irreducible in
Z,[X].

We have R(F,g) = 5 and R(f1,f2) = 32. By Theorem 1 we have 32 =

+1 mod p. Therefore p divides 32 +1, so p € {3,11,31}. Since p > 11, we have
p € {11,31}. The corresponding polynomials are

X44+11X -7, X*+11X +15,

X*+31X —-27, X*+31X +35.
By direct verification it follows that they are irreducible in Z[X].
If p < 10 we have p = 3 or p = 7. The corresponding polynomials
X4+3X+1, X*+3X+7,

X44+7X -3, X*+7X+11

are also irreducible in Z[X]. O

With the notation and assumptions of Proposition 1 and of Theorem 1 we
can now derive the following results.

Corollary 2. Let fi, fo € Z[X] be monic and such that R(f1, f2) Z £1 mod p.
If g € Z[X] and deg(g) < deg(fifz2), then the polynomial F = fifs + pg is
irreducible in Z[X].

Corollary 3. If R(F, g) # 0 and has not two factors of the form Mp+ R(f1, f2),
then the polynomial F' is irreducible in Z[X].

Proof: If F is reducible it follows from Proposition 1 that there exist integers
a1, as such that

aiaz | R(F,g), a; = Mp £ R(f1, f2), az = Mp £ R(f1, f2).
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