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Ultraproducts of transitive rings of linear transformations
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IoN. D. IoN AND CONSTANTIN NITA

Abstract

If F is a nonprincipal ultrafilter on an infinite set I, then for any

family {M.},.; of modules M; € Ri;-mod we have a natural immersion

® HEndRi (Ml)> — Endgr, (Mr) where Rp = (HR;) and
F F

i€l i€l

Mr = (H MZ) (theorem 1.1). Generally, ¢ is not an isomorphism

iel
as we can see in ﬁxamples 1.2 and 1.3. An ultraproduct of 2—transitive
rings of linear transformations is a 2—transitive ring (theorem 2.2). As a
consequence we obtain a classical result which says that the immersion ¢ in
theorem 1.1 is an isomorphism in case each M; is a simple faithful module
(corollary 2.5). Finally we prove a result with applications in PI-theory:
an ultraproduct of closed primitive rings is a closed primitive ring.
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1 Ultraproducts of rings of endomorphisms

Let F be a nonprincipal ultrafilter on an infinite set I. We denote by R = H R;
iel
the direct product of the rings R;, i € I and by M = HM’ the direct product

iel
of the modules M; € R;—mod, i € I. Clearly M € R—mod and for an element
x €M,z = (x;) we write Z (x) = {i € I | z; = 0}.
If Zr(M) = {x € M | Z(z) € F} then Zp(M) is an R—submodule of M.
Also, Zr(R) = {a € R | Z(a) € F} is a two-sided ideal of R. The quotient module
Mpr=M/Zr(M)={2zr |2r =2+ Zr(M),z € M} is called the ultraproduct
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of the family {M;};cr of modules. The quotient ring Rr = R/Zp(R) = {ar |
ar = a+Zr(R),a € R} is called the ultraproduct of the family of rings { R; }ic1-
Obviously Zrp(R)M C Zp(M) and RZp(M) C Zp(M). It follows that the
application
Rp x Mg — MF, (aF,wF) = QpTp = (ax)F

is correctly defined and so Mr becomes an Rr—module.

If
M=1] M, N=]] N,
i€l iel
where M;, N; € R;—mod, then for every f € Hompg(M,N) there exists f; €
Hompg(M;, N;), i € I uniquely determined such that f(x) = (fi(z:)), © € M,
x = (x;). In this case we put f = (f;).
The map

f*:Mp = Np, f*(zr) = (fi(®:))r,z = (x;) € M

is correctly defined and f* € Homg, (MF, NF).
Clearly, f* is the unique Rp—morphism from My to N such that the fol-
lowing diagram

!

M ——>N

\ YMm YN
s

MF —>NF

is commutative, where ¢); and @ are the canonical maps.

Theorem 1.1 Let (M;);cr be a family of modules M; € Ri—mod, i € I and
M =[] Mi. If Ei = Endg, (M), i € I and E = [[ Ei, then the map
icl i€l

p:E— Endg,(Mp), p(f)=f", f=(fi)

is a ring morphism and kerp = Zp(E).
In particular, the map

p: Ep — Endr(Mp), p(fr) = f*
is an injective ring morphism.

Proof: Clearly (f+g¢)* = f*+g*, (fog)* = f*og* and (1p,)* = 1pm, for any
f,9 € E. So, p is a ring morphism.
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Suppose that f = (f;) € Zp(E). Then {i | f; = 0} € F. It follows that
{i]| fi(z;) =0} € F for any z = (z;) € M, so

[*(@r) = (fi(z:))r =0,

hence Zp(E) C Kerp.

If fe E\Zp(E), f = (fi), then A= {i| f; #0} € F. Choose 2° = (2?) € M
such that f(2?) # 0 for any i € A. Then f*(2%) = (fi(z?))r #0, 50 f* #0. It
follows that Zp(E) = kerp. O

Remark. Under adequate conditions on M;, ¢ € I, p is an isomorphism. For
example, if the modules M;, i € I are free with R;—bases of bounded cardinality,
then p is an isomorphism ([2]). Also, p is an isomorphism if each M;, i € I is a
simple faithful module. Now, we present two examples when p is not surjective:
one in the category Ens of sets and the other one in the category of vector spaces.

Example 1.2. For n € N* let B, = {Zn1,Zn2,---,Tnn} be a set with n
elements. Suppose that By, (B, = O for any m # n. For each k € N*, choose
") € B = H Bn, 2® = (2), where

n>1

20 — Tnn, n <k
n a:nk,n>k.

Let F be a nonprincipal ultrafilter on N* and S = {xg),xg), ...,a:gf), ot If
2 = (Tnn) € B then xp € Bp and zr ¢ S, s0 S is a propre subset Bp.

The map £ : BF — Br, defined via {(mgf)) = mgk) for every k € N* and
&(zp) = zp for any zp € Bp \ S is injective but not surjective.

Suppose that for £ € Endgns(Br) there exists f = (f) € H Endgns(Bn) =

n>1

= FE such that f* = £ Then f* is an injective map. It follows that A = {n €
N* | fn an injective map} € F'. Indeed, if A ¢ F' then C' = N*\ A € F. Choose
u,v € B, u = (up), v = (v,) such that u, # v, and fp(un) = fn(v,) for all
n € C. We have up # vp, an f*(ur) = f*(vr), contradiction. So, A € F and
fn is bijective for any n € A. It follows that £ = f* is bijective, contradiction.
Hence the map p: E — Endgns(Br), given by p(f) = f*, is not surjective.

Example 1.3. For n € N* we choose an n—dimensional vector space V;, over
a field K, with a K,—basis B, = (n1,Zn2, -, Lnn)-

If F is a nonprincipal ultrafilter on N*, V = H Viwand K = H K, then Vg
is a vector space over the field Kr. As in Exargyz)ie 1.2., we congizéer the subset
S = {mg),mg), ...,mg), ...} of V. The elements of S are linearly independent
vectors over Kr.Indeed, suppose that

Ve 4 0@ 1 a2 = o,
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with ¢ € N*, agf) € Kr,a® = @), ok € K,.
Because the ultrafilter F on N* contains the co-finite subsets of N* the set

q
A= {n 1Y alwn = 0} N{g,q+1,..}

k=1

belongs to F. Since the elements of B,, are linearly independent vectors over
K,, we have a%k) =0foranyn € A and 1 < k < ¢. It follows that agf) =0,
1 < k < g, so the elements of S are linearly independent vectors over Kp. Let B
be a Kp—basis of VF such that S C B. There exists £ € Endg,(Vr) such that
{(a:gc)) = a:gk) for any k € N* and {(zr) = zF for any zr € B\ S.

Clearly £ is an injective but not surjective map.

If f=(fn) € H Endgk, (Vy,) is such that f* = &, then the set C = {n | f, is

n>1
injective} belongs to F. Because dimg, Vi, < 00, frn is a bijective map for n € C,
so £ = f* is bijective, contradiction. Hence the map p : H Endg, (V) —
n>1

Endk, (V,), p(f) = f* is not surjective. -

2 Ultraproducts of transitive rings of linear transformations

If D is a division ring and V a right vector space over D, then a subring R
of End(Vp) is called a ring of linear transformations on Vp. In this case,
we can view V as a left R—module via rv =r(v) € V for any r € Rand v € V.
Because (rv)d = r(vd) for any r € R, v € V and d € D, V has a bimodule
structure. If m € N*, m < dim(Vp), we say that R is m—transitive on V if
for any set of n < m linearly independent vectors vy,vs, ...,v, and any other set
of n vectors v},vh, ...,v), in V, there exists r € R such that r(v;) = v} for all i.
Clearly if R acts 1—transitive on V, then gV is simple an hence anngV =0, R
is a (left) primitive ring.

Ifde Dand 8; : V = V, 64(v) = vd, then 83 € End(rV). The map
D — End(rV), d — 04 is an injective ring morphism, so D C End(gV).

This inclusion may be proper. Indeed, if D = R,V = R? and f € End(Vg)
is such that f(e;) = es, f(e2) = —ey where (e1, e2) is the standard basis, then
for the subring R of End(rV) generated by f we have End(gV) ~ C D R.

We have the following well-known result:

Lemma 2.1. ([1]) For a ring R of linear transformations on Vp, dim(Vp) >
2, the following assertions are equivalent:

(1) R is 2—transitive.

(2) RV is a simple faithful module and End(gV) ~ D

(8) R is a n—transitive for any n € N*, n < dim(Vp).

Theorem 2.2. Suppose that {D;}icr is a family of division rings. For any
i € I let R; be a 2—transitive ring of linear transformations of a right vector space
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Vp,, dim(Vp,) > 2. If V.= [[Vi, R = [[ Ri and D = [] Di, then for every
il icl icl

nonprincipal ultrafilter F' in I, Rp is a 2—transitive ring of linear transformations

of the right vector space Vg over the division ring Dp.

Proof: We have dimp, (Vr) > 2. Indeed, for any ¢ € I let W; be a 2—dimensional

subspace of V; and put W = HW, Then Wg is a Dp—subspace of VF and
iel
dimDF (WF) =2 ([2]) It fOHOWS7 that dz'mDF (DF) Z 2.

Assume that up, vp, ufp, v are vectors in Vi such that indp,, (up,vr) which
means, that the vectors ur and vy are linearly independent over Dy. It suffice to
show that there exists an element ar € R such that apur = uf and arpvr = V.
We may assume that u; # 0 and v; # 0 for any i € I. Consider the set

A= {7, el | indDi (uz,vz)}

If A¢ F,then B=1\ A € F. For any i € B there exists a;,8; € D; \ {0}
such that a;u; + Biv; = 0, so v; = y;u;, with v; € D;. Since B € F, we have
vp = Yyrpup with yp € Dp, where v = (v;) with ~; arbitrary in D; if ¢ € A,
contradiction.

So A € F. For any i € A there exists a; € D; such that a;u; = u} and
a;v; = vj. Put a = (a;) € R with a; arbitrarily taken in R; if i ¢ A. Then
arpur = vy and apvp = v, It follows that Rp is a 2—transitive ring of linear
transformations on V. a

Lemma 2.3. Let (R;)ics be a family of unitary rings. If for any i € I, M;
s a left R;—module, then

anng, (Mp) = (H anng, (Mz)>
F

i€l

for any nonprincipal ultrafilter on I.

Proof: If ap ¢ <H anng, (MJ) , then {i | a; € anng,(M;)} € F. We have
iel F
arpzr = (ax)rp =0 for any xp € My, hence ar € anng, (MFr).
If ap ¢ anng, (MFp) there exists % € Mp, 2° = (2?) such that apz} # 0.

Then {i | a;z? # 0} € F, hence ar ¢ (H anng, (Mz)> . 0
F

il

Corollary 2.4. Let (R;)icr be a family of unitary rings. If for any i € I, M;
is a left faithful module, then M; is a left faithful Rp—module.
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With the aid of Lemma, 2.1., theorem 2.2. and the Jacobson-Chevalley density
theorem we can prove:

Corollary 2.5. ([1]) Let (R;)icr be a family of left primitive rings. For any
i € I let M; be a left simple faithful left R—module. Then for any nonprincipal
wltrafilter F' on I we have:

(1) RF is left primitive and My is a simple faithful Rr—module.

(2) Endg,(Mp) = | [[ Endg, (M;)
i€l F

We say that a primitive ring R is closed if there exists a simple faithful left
R—module such that Endgr(M) ~ Z(R), where Z(R) is the center of R.

If M is aleft simple faithful module and K is a maximal subfield of the division
ring D = Endr(M), then R C Endg (M), K C Endg (M), Mis a simple faithful
RK— module, and Z(RK) = K ~ Endrrx(M). It follows that RK is closed
primitive ring and RK D R. ([4])

Theorem 2.6. An ultraproduct of closed primitive rings is a closed primitive
Ting.

Proof: Let (R;)icr a family of closed primitive rings. For each i € I let M; be a
simple faithful R;—module such that Endg, (M;) ~ Z(R;).
If F is a nonprincipal ultrafilter on I, then M is a simple faithful Rr—module

and
Endg, ~ (H Endg, (Mz-)) ~ (H Z(R,-)) ~ Z(Rp).
F F

i€l i€l
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