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Abstract

We consider (m,n)-purity for modules and show that the main proper-
ties of purity may be refined for (m,n)-purity. We give connections with
(m, n)-injectivity and (n, m)-flatness of modules.
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1 Introduction

Purity in module categories and its generalizations is a topic present in the lit-
erature since the 1960s, with early work by P.M. Cohn [2], B. Maddox [7], A.P.
Mishina and L.A. Skornjakov [8], B. Stenstrém [10] and R.B. Warfield Jr. [12],
to mention just few of them. Its importance became clear in the years to come,
not only in module theory, but also in related fields such as model theory [9] or
the theory of locally finitely presented categories [3].

In this note we consider a generalization of the purity in the sense of P.M.
Cohn [2] for a short exact sequence of modules by asking for its exactness when
tensored by any (n,m)-presented module. We give some basic properties and see
that (m,n)-purity coincides with P-purity in the sense of R. Wisbauer [13, p.274],
where P is the class consisting of all (m,n)-presented modules. We characterize
(m, n)-injectivity and (n,m)-flatness, introduced and studied in [1] and [14], in
terms of (m,n)-purity.

Throughout m and n are non-zero natural numbers, R is an associative ring
with non-zero identity and R-Mod is the category of left R-modules. By a homo-
morphism we mean an R-homomorphism. The injective hull of a left R-module
A is denoted by E(A). A right R-module M is called (n,m)-presented if there
exists an exact sequence R™ — R"™ — M — 0 of right R-modules, or equiva-
lently, there exists an exact sequence 0 - K — R™ — M — 0 of right R-modules
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with K m-generated. Clearly, every (n, m)-presented right R-module is finitely
presented.

2  (m,n)-purity

Definition 2.1. An exact sequence
0-A4LBSC—0 )

of left R-modules is called (m,n)-pure if the functor M Q@ — is left exact with
respect to (1) for every (n, m)-presented right R-module M.
That is, (1) induces an exact sequence

0> M®rA—>M®rB—>M®rC =0

for every (n,m)-presented right R-module M.
In this case, f is called an (m,n)-pure monomorphism, g an (m,n)-pure epi-
morphism and Imf an (m,n)-pure submodule of B.

Remarks. Let f: A — B be a monomorphism.

(a) f is pure if and only if f is (m,n)-pure for every m,n > 1.

(b) f is RD-pure if and only if f is (1,1)-pure.

(¢) A monomorphism which is (m, 1)-pure for every m > 1 was called c-pure
in [4], whereas a monomorphism which is (1,n)-pure for every n > 1 was called
F/U-pure in [5].

(d) Let m' > m, n' > n. If fis (m/,n)-pure, then it is (m,n)-pure. Also,
if f is (m,n')-pure, then it is (m,n)-pure. In particular, (m,n)-purity implies
RD-purity.

(e) (m,n)-purity and purity are the same over Priifer domains. This follows
by the above remarks and by the fact that RD-purity and purity are the same
over Priifer domains [12].

For a left R-module M, denote by M* its character module, that is, M* =
Homgz(M,Q), where Q = Q/Z. Then the exact sequence (1) induces the exact
sequence 0 - C* —» B* — A* — 0 of right R-modules.

The main characterizations of (m, n)-purity are given in the following theorem.
The proof is adapted after [11, Chapter I, Proposition 11.2] and [13, 34.5].

Theorem 2.2. Consider the exact sequence (1). The following are equivalent:
(i) The sequence (1) is (m,n)-pure.
(ii) The sequence 0 — C* — B* — A* — 0 is (n,m)-pure.
(#i) The functor Homg(M,—) is exact with respect to (1) for every (m,n)-
presented left R-module M .
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(m,n) ¥y

() For every commutative diagram of left R-modules

Rn_q>Rm

(I

0——A—B

there exists a homomorphism h : R™ — A such that p = hq.
(v) Every system
Z TijZ; = Q4
i=1

with r;yj € R, a; € A, 1 =1,...,n, j = 1,...,m, with n equations and m
unknowns which is solvable in B is already solvable in A.

Proof: (v) => (i) Let M be an (n,m)-presented left R-module, so that there
is an exact sequence R™ 3 R" — M — 0. We get the following commutative
diagram with exact rows

Rm®RA&1A>Rn®RA—>M®RA—>O

a®lp
R"®rB—— R"Q@rB—— M ®r B ——=0
where u,v are monomorphisms.

By [11, Chapter I, Lemma 11.3], w is a monomorphism if and only if
Im(a®1p)NImv =Im (v(a ® 14)).

We prove this last equality. The homomorphism « is given by an n x m-matrix
(rij) with entries in R. Then z € Im (a®1p)NImv if and only if z = 377 | (ri;) ®
z; € R" ® A is the image of an element (zi,...,z,) € B™ = R™ Qg B and
the image of an element (ay,...,a,) € A" = R"™ g A. This happens when
Z;":l rijz; = a; for i = 1,...,n, that is, the system has a solution in B. By
hypothesis, this is equivalent to the existence of a solution of the system in A, that
is, z is the image of an element from A™ = R™ ®g A, hence z € Im (v(a ® 14)).

Now w is a monomorphism, showing that the sequence (1) is (m,n)-pure.

(¢) => (v) The nxm-matrix (r;;) determines a homomorphism a : R™ — R™.
Take M = R"™/Im « and reverse the proof for (v) = (i).

(it) <= (4ii) Let M be an (m,n)-presented left R-module. Since M is finitely

presented and Q is injective, we have the isomorphism
Homgz(D,Q) ®g M = Homz(Homp(M, D),Q)

for every left R-module D [13, 25.5]. Then the sequence
0->C*"QrM > B*"®@pM - A*Q@r M — 0



40 Iuliu Crivei and Septimiu Crivei

is exact if and only if the sequence
0 —» (Homg(M,C))* = (Homg(M, B))* — (Homg(M, A))* =0
is exact if and only if the sequence
0 — Hompg(M, A) - Homg (M, B) - Homg(M,C) — 0

is exact, because Q is an injective cogenerator. This shows the equivalence.

(#91) <= (iv) By Homotopy Lemma [13, Lemma 7.16].

(iv) <= (v) The homomorphisms p and ¢ from (iv) are determined by the
a; € A and by an n X m-matrix (r;;) with entries in R respectively. Any solution
of the system in B yields a homomorphism h : R™ — B. Now the conclusion is
immediate. g

Theorem 2.3. Let R be commutative, Q) be an R-module and consider the exact
sequences
0+A—-B—->C—0 (1)

0 — Hompg(C, Q) — Homg(B, Q) — Homg(4,Q) — 0 (2)

(i) If Q is injective and (1) is (m,n)-pure, then (2) is (n, m)-pure.
(i) If Q is a cogenerator of R-Mod and (2) is (n,m)-pure, then (1) is (m,n)-
pure.

Proof: Follow the proof of Theorem 2.2. a

Recall that for a non-empty class P of left R-modules, an exact sequence (1)
is called P-pure if the functor Hompg (P, —) is exact with respect to (1) for every
P € P [13, p.274]. By Theorem 2.2, we see that (m,n)-purity means P-purity,
where the class P consists of all (m,n)-presented left R-modules. Hence all the
general properties of P-purity hold in our case. In what follows we discuss some
specific ones.

Let us characterize (m,n)-pure sequences of modules in the case of a commu-
tative ring R.

Theorem 2.4. Let R be commutative. The following are equivalent:
(i) The sequence (1) is (m,n)-pure.
() The exact sequence

0 — Hompg(C, E(S)) - Homg(B, E(S)) - Homg(A, E(S)) —» 0

is (n, m)-pure for every simple R-module S.
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Proof: (i) => (ii) By Theorem 2.3.

(11) = (1) Let (S;)ier be a representative set of isomorphism classes of simple
R-modules. Let M be an (m,n)-presented R-module. For an R-module X, denote
X; = Hompg (X, E(S;)). Now apply the functor M ® g — to each exact sequence
0— C; » B; - A; — 0, take the direct product of the obtained sequences and
use the isomorphism

Mg ([] Dj) = [[(M @& D)),
JEJ JjEJ

which holds for any finitely presented R-module M and any family (Dj);es of
R-modules [11, Chapter I, Lemma 13.2], to get the exact sequence

0> M®g (HCQ—)M@R (HBi) — M ®pg (HAi)—>0
el el el

which shows that the exact sequence

0 — [ Homg(C, E(S:)) = ] Homg (B, E(S:)) — [ Homr(4, E(S:)) = 0

i€l i€l il
is (n,m)-pure. Then the exact sequence
0 - Hompg(C, D) — Homg(B, D) — Hompg(A,D) = 0

is (n,m)-pure, where D = [],., E(S;) is a cogenerator of R-Mod. Now by The-
orem 2.3, the exact sequence 0 - A - B — C — 0 is (m,n)-pure. O

Recall that a monomorphism f : A — B is called locally split if for every
a € A, there exists a homomorphism g : B — A such that g(f(a)) = a. It is
known that every locally split monomorphism is pure [6, p.163].

Theorem 2.5. Let A be a submodule of the left R-module R™. Then the following
are equivalent:

(i) A is (m,n)-pure in R™.

(i) The inclusion i : A — R™ is locally split.

(iii) A is pure in R™.

Proof: (i) = (ii) Let a3 € A. Also, let ag,...,a, € A and let {e1,...,e,}
be a basis of R”. Define the homomorphisms p : R® — A by p(ex) = ay for
k=1,...,nand ¢: R* - R™ by q(ex) = ax for k =1,...,n. Now by Theorem
2.2, there exists a homomorphism h : R™ — A such that hg = p. Then h(ay) =
h(q(e1)) = p(e1) = a;. Thus i is locally split.

(i) => (iii) By [6, p.163)].

(#i1) = (i) Clear. O
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3 (m,n)-pure-injectivity

Definition 3.1. A left R-module M is called (m,n)-pure-injective (respectively
(m,n)-pure-projective) if is injective (respectively projective) with respect to ev-
ery (m,n)-pure exact sequence of left R-modules.

Clearly, every (m,n)-pure-injective (respectively (m,n)-pure-projective) left
R-module is pure-injective (respectively pure-projective).

Theorem 3.2. Homz(M,Q) is an (m,n)-pure-injective left R-module for every
(n,m)-presented right R-module M.

Proof: Let M be an (n, m)-presented right R-module and denote
X = Homz(M,Q).
Considering an (m,n)-pure exact sequence (1), we have the exact sequence
0>MRA—-MerB—-+M®rC—=0
Since D is injective, we have the exact sequence
0 — Homz(M ®g A,Q) = Homz(M ®g B,Q) — Homz(M ®g C,Q) — 0
By the adjunction we get the exact sequence
0 — Homz(C, X) - Homz(B, X) — Homz(4,X) - 0
Thus X = Homgz(M, Q) is (m,n)-pure-injective. 0

Theorem 3.3. The following are equivalent:

(i) The sequence (1) is (m,n)-pure.

(i) Every (m,n)-pure-injective left R-module is injective with respect to the
sequence (1). B

(#i) Homz (M, Q) is injective with respect to the sequence (1) for every (n,m)-
presented right R-module M.
Proof: (i) => (i) Clear.

(4¢) = (vi7) By Theorem 3.2.

(iii) = (i) Let M be an (n, m)-presented right R-module and denote X =
Homz (M, Q). By hypothesis, we have the exact sequence

0 — Homz(C, X) - Homz(B, X) — Homz(4,X) - 0

By the adjunction we get the exact sequence

0 — Homz(M ®g A,Q) = Homz(M ®g B,Q) — Homz(M ®g C,Q) — 0
whence we get the exact sequence

0>MQRrA—-+M®rB—+M®rC—0

because Q is a cogenerator. Thus the sequence (1) is (m,n)-pure. 0
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Remark. Theorem 3.3 still holds if one replaces Z by a commutative ring R and
Q by an injective cogenerator @) of R-Mod.

Theorem 3.4. Every left R-module is an (m,n)-pure submodule of an (m,n)-
pure-ingective left R-module.

Proof: By Theorem 3.3 and the dual of [10, Proposition 2.3]. O

For a left R-module N we denote by Mj;(N) the set of formal k x l-matrices
with entries in N. Also, for K C Mpi(N), denote by ry,,(n)(K) the right
annihilator of K in My (N). If N is a left R-module and K is an m-generated
submodule of the left R-module R", then there is an isomorphism

@ :ta, () (K) = Homg(R" /K, N)
given by ¢(u)(r + K) = ru for u € rp;, (v (K) and r € R™ [14, p.151].

Theorem 3.5. Let R be commutative. The following are equivalent:

(i) The sequence (1) is (m,n)-pure.

(i) For every m-generated submodule K of the R-module R™ and for every
simple R-module S, t 1, (E(s))(K) is injective with respect to (1).

Proof: Consider the cogenerator @ = [],.; E(S;) of R-Mod, where (S;)icr
is a representative set of isomorphism classes of simple R-modules. By the
remark following Theorem 3.3, the sequence (1) is (m,n)-pure if and only if
[I;c; Homg(R"/K, E(S;)) = Homg(R" /K, Q) is injective with respect to (1) for
every m-generated submodule K of the R-module R™. But this holds if and only
if rar,, (B(s)) (K) = Homg(R" /K, E(S)) is injective with respect to (1) for every
simple R-module S. a

4 On (m,n)-injective and (m,n)-flat modules

Now let us give characterizations of (m, n)-injectivity and (m, n)-flatness in terms
of (m,n)-purity.

Definition 4.1. [1] A left R-module A is called (m,n)-injective if every ho-
momorphism from an n-generated submodule I of the left R-module R™ to A
extends to a homomorphism from R™ to A.

Theorem 4.2. The following are equivalent for a left R-module A:

(i) A is (m,n)-injective.

(i) Every ezact sequence of left R-modules 0 - A — B — C — 0 is (m,n)-
pure.

(iii) There exists an (m,n)-pure exact sequence of left R-modules 0 — A —
B — C — 0 with B (m,n)-injective (injective).
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Proof: By [14, Proposition 2.3], A is (m,n)-injective if and only if every exact
sequence 0 > A — B — C — 0 of left R-modules with C' (m, n)-presented splits.
But this condition is equivalent to (i7) and (ii7) by [13, 35.1]. O

Corollary 4.3. Let 0 - A — B — C — 0 be an exact sequence of left R-
modules with B (m,n)-injective. Then the sequence is (m,n)-pure if and only if
A is (m,n)-injective.

By Theorem 4.2, we see that (m,n)-injectivity means absolute P-purity in the
sense of R. Wisbauer [13, p.297], where the class P consists of all (m, n)-presented
left R-modules.

Definition 4.4. [14] A left R-module C is called (n,m)-flat if i®glc : IQrC —
R™ ®@g C is a monomorphism for every m-generated submodule I of the right R-
module R™.

Note that a left R-module C is (n,m)-flat if and only if the right R-module
C* is (n,m)-injective by [14, Theorem 4.3]. We use this property for giving a
direct proof of the following result.

Theorem 4.5. The following are equivalent for a left R-module C':

(i) C is (n,m)-flat.

(i) Every exzact sequence of left R-modules 0 > A — B — C — 0 is (m,n)-
pure.

(#i) There exists an (m,n)-pure exact sequence of left R-modules 0 — A —
B — C — 0 with B (n,m)-flat (projective, free).

Proof: (i) = (i7) Since C'is (n,m)-flat, C* is (n, m)-injective. By Theorem 4.2,
the exact sequence 0 - C* — B* — A* — 0 is (n,m)-pure. Now by Theorem
2.2 the exact sequence 0 - A -+ B — C — 0 is (m,n)-pure.

(#9) = (4i7) Clear.

(4i1) = (i) Since the sequence 0 -+ A - B — C — 0 is (m,n)-pure, the
exact sequence 0 - C* — B* — A* — 0 is (n,m)-pure by Theorem 2.2. But B
is (n,m)-flat, hence B* is (n,m)-injective. Now by Corollary 4.3, it follows that
C* is (n, m)-injective, so that C is (n,m)-flat. O

Corollary 4.6. Let 0 - A — B — C — 0 be an exact sequence of left R-
modules with B (n,m)-flat. Then the sequence is (m,n)-pure if and only if C is
(n,m)-flat.

By Theorem 4.5, we see that (n,m)-flatness means P-flatness in the sense of
R. Wisbauer [13, p.304], where the class P consists of all (m,n)-presented left
R-modules.

Now let us give a couple of results related to some coherence properties. Recall
that a ring R is called left (n, m)-coherent if every m-generated submodule of the
left R-module R™ is finitely presented [14, p.156].
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Theorem 4.7. (i) Suppose that every n-generated submodule of R™ is (m,n)-
presented. Then for every (m,n)-pure exact sequence 0 - A — B — C — 0 of
left R-modules with B (m,n)-injective, also C' is (m,n)-injective.

(i) Suppose that for every (m,n)-pure exact sequence 0 > A - B - C — 0
of left R-modules with B (m,n)-injective, also C is (m,n)-injective. Then R is
left (n, m)-coherent.

Proof: (i) Let 0 — A A B4 C 5 0bean (m,n)-pure exact sequence of left
R-modules with B (m,n)-injective. Let I be an n-generated submodule of R™
and let @ : I = C be a homomorphism. We have the diagram

0—>I1—'>Rgm

Lk

B——(C——>0

where i is the inclusion. Since I is (m,n)-presented by hypothesis and the epimor-
phism g is (m,n)-pure, by Theorem 2.2 there exists a homomorphism §: I — B
such that g8 = a. Now by the (m,n)-injectivity of B, there exists a homo-
morphism v : R™ — B such that v¢ = 8. Then gvi = a, showing that C is
(m, n)-injective.

(%) In order to prove that R is left (n,m)-coherent, by [14, Theorem 5.7] it
is enough to show that every direct limit of (n,m)-injective modules is (n,m)-
injective. Let (L;, fi;)1 be a direct system of (n, m)-injective modules and denote
by L its direct limit. Then @®;L; is (n,m)-injective. Since the canonical epimor-
phism @®;L; — L is pure, hence (n, m)-pure, we deduce that L is (n, m)-injective
by hypothesis. a

Theorem 4.8. (i) Suppose that every m-generated submodule of R™ is (m,n)-
presented. Then for every (m,n)-pure exact sequence 0 - A - B — C — 0 of
left R-modules with B (n,m)-injective, also C is (n, m)-injective.

(i) Suppose that for every (m,n)-pure exact sequence 0 - A - B - C — 0
of left R-modules with B (n,m)-injective, also C is (n,m)-injective. Then R is
left (n,m)-coherent.

Proof: Similar to the proof of Theorem 4.7. g

Note added in proof. It may be possible that some of the present results have
been established in: Z. Zhu, J. Chen, X. Zhang, On (m,n)-purity of modules,
East-West J. Math. 5 (2003), No. 1, 35-44, paper unaccessible to the authors.
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