AN ELEMENTARY SOLUTION TO A CONTEST PROBLEM

TRAIAN PREDA¹⁾

Abstract. The geometry problem from the second IMAR test, October 2003, involved a configuration including a triangle, its incenter, its circumcenter and one of the excircles. The pupose of this note is to provide a 'pure' solution to this problem.

Keywords: incircle, excircle, circumcircle **MSC:** 51M04

This mathematical note provides a simple solution to a geometry problem, illustrating the power of auxiliary constructions over algebraic manipulations.

We will make use of the following two well-known lemmas.

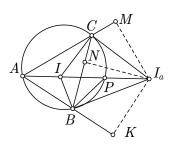
Lemma 1. Let I be the incenter of the triangle ABC and P be the second intersection of the bisector AI of the angle $\triangleleft BAC$ and the circumcircle of the triangle ABC. Then BP = PI.

Proof. From $\triangle ABI$, $\triangleleft BIP = \triangleleft ABI + \triangleleft BAI$. Then $\triangleleft IBP = \triangleleft CBI + \triangleleft CBP = \triangleleft ABI + \triangleleft CBP$, as BI is the bisector of $\triangleleft ABC$. Since $\triangleleft PBC = \triangleleft PAC$ and $\triangleleft PAC = \triangleleft BAI$, $\triangleleft IBP = \triangleleft ABI + \triangleleft BAI$. It follows that $\triangleleft BIP = \triangleleft IBP$ and so BP = PI.

Lemma 2. Let I be the incenter of the triangle ABC and I_a be the center of its excircle corresponding to A. Let P be the intersection between the bisector AI of $\triangleleft BAC$ and the circumcircle of ABC. Then P is the midpoint of the segment II_a .

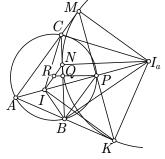
 \square

¹⁾Profesor, Colegiul Național "Grigore Moisil", București



Proof. Let K, M, N be the contacts of the A- excircle with AB, AC, respectively BC. Then $\not\triangleleft I_a BP = \not\triangleleft I_a BN - \not\triangleleft PBN$. Since $[BI_a$ is the bisector of $\checkmark KBC$, $\checkmark KBI_a = \measuredangle I_aBN$. Hence $\not\triangleleft I_a BP = \measuredangle KBI_a - \measuredangle PBN = \measuredangle KBI_a - \measuredangle BAP$. Since $\measuredangle KBI_a = \measuredangle BAI_a + \measuredangle BI_aI$ and $\measuredangle BAI_a = \oiint BAP$, $\measuredangle BI_aI = \measuredangle KBI_a - \measuredangle BAP$. Therefore $\measuredangle I_aBP = \measuredangle BI_aP$, BP = IP, and because $BP = = I_aP$, P is the midpoint of the segment II_a .

Problem. Let I and O be the incenter and circumcenter, respectively, of the triangle ABC. The excircle ω_A is tangent to AB, AC and BC in K, M, N respectively. If the midpoint P of KM is on the circumcircle of ABC, prove that O, I, N are collinear.



Solution. Let Q be the midpoint of BCand R be the intersection of lines PQ and IN. Since both lines are perpendicular to BC, $PR \parallel I_a N$. Therefore $\frac{PR}{NI_a} = \frac{IP}{II_a}$, hence $\frac{PR}{IP} = \frac{NI_a}{II_a}$. But $IP \equiv BP$ (by Lemma 1) and $NI_a \equiv KI_a$ (both are radii of the excircle), so

$$\frac{PR}{BP} = \frac{KI_a}{II_a}.$$
(1)

Now

$$\measuredangle BPR = 90^\circ - \measuredangle PBQ = 90^\circ - \frac{\measuredangle A}{2}$$

and

$$\measuredangle KI_aI = 90^\circ - \measuredangle KAI_a = 90^\circ - \frac{\measuredangle A}{2}.$$

So $\not\triangleleft BPR = \not\triangleleft KI_aI$ and, by (1), $\triangle PRB \sim \triangle I_aKI$. It follows that $\not\triangleleft BRP = \not\triangleleft IKI_a$.

By Lemma 2, P is the midpoint of $[II_a]$. We also know that $AI_a \perp KM$, as PI_a is the median of the isosceles triangle KMI_a . Therefore $\triangle KII_a$ is isosceles and

$$\measuredangle IKI_a = 2 \measuredangle PKI_a = 2 \measuredangle KAI_a$$

Therefore $\triangleleft BRP = 2 \triangleleft KAI_a = \triangleleft A$. Since $\triangle RBC$ is isosceles, we have $\triangleleft BRC = 2 \triangleleft BRP = 2 \triangleleft A$. We can conclude that R is the circumcenter of triangle ABC, so I, O, N are collinear.

References

[1] Andrei Negut, Problems For the Mathematical Olympiads, Editura Gil, Zalău, 2005.