GAZETA MATEMATICĂ

SERIA B

PUBLICAȚIE LUNARĂ PENTRU TINERET

Fondată în anul 1895

Anul CXIX nr. 9

septembrie 2014

ARTICOLE ȘI NOTE MATEMATICE

THE EXTENDED BUTTERFLY THEOREM

IRINA CRISTALI¹⁾

Abstract. This article presents an extension of the Butterfly Theorem and some of its applications.Keywords: Butterfly Theorem, concyclic points.MSC : 51M04

1. Main Results

The Butterfly Theorem. Let P be the intersection of the diagonals of a quadrilateral ABCD inscribed in circle C of center O. A line d through P meets cicle C at points X and Y. Let $d \cap AD = \{M\}$ and $d \cap BC = \{N\}$. If PX = PY, then PM = PN.

Proof. Points A, B, C, D, X, Y are concyclic, therefore the pencils A, (XCDY) and B, (XCDY) have the same cross-ratio. Intersecting these two pencils with line d, we obtain that $\frac{MX}{MP} = \frac{YX}{YP}$ and $\frac{NP}{NY} = \frac{XP}{XY}$. Since PY = PX, this yields successively

$$\frac{MX}{MP} = \frac{NY}{NP}, \ \frac{MX}{PX} = \frac{NY}{PY}, \ MX = NY, \ PM = PN.$$

We will extend this theorem to a more general configuration.

¹⁾Elevă, Colegiul Național de Informatică "Tudor Vianu", București

Let's notice that we can equate the condition from the problem's hypothesis to a more interesting one: $PX = PY \Leftrightarrow OP \perp d^{"}$. Thus, the new condition no longer requires that point P lies in the interior of circle C. This leads us to the following result,

Extended Butterfly Theorem (EBT). Let C be a circle of center O and P be a point in its plane, so that $P \notin C$. Two lines through P meet the circle at points A, C and B, D, respectively. Let d be a line that contains point P and is perpendicular to PO. Let $\{M\} = d \cap AD$ and $\{N\} = d \cap BC$. Then PM = PN.

Proof. Let $\{R\} = AB \cap CD$, $\{Q\} = BC \cap AD$, $\{T\} = QR \cap AC$, $\{S\} = QR \cap BD$. Since QR is the polar line of point P, QR is perpendicular to PO. Thus, QR||MN. We now obtain that $\triangle DQS \sim \triangle DMP$ and $\triangle CTQ \sim \\ \sim \triangle CPN$; therefore, $\frac{QS}{MP} = \frac{DS}{DP}$ and $\frac{TQ}{PN} = \frac{CT}{CP}$. Showing that MP = PN is now equivalent to proving that

$$\frac{QS \cdot DP}{DS} = \frac{TQ \cdot CP}{CT} \Leftrightarrow \frac{QS}{QT} = \frac{DS}{DP} \cdot \frac{CP}{CT}$$
(1)

Since (T, Q, S, R) is a harmonic division,

$$\frac{QS}{QT} = \frac{RS}{RT}.$$
(2)

We will now apply Menelaus' Theorem in the triangle PTS, using the transversal line A - B - R;

$$\frac{BP}{BS} \cdot \frac{AT}{PA} \cdot \frac{RS}{RT} = 1 \Rightarrow \frac{RS}{RT} = \frac{BS}{BP} \cdot \frac{PA}{AT}.$$
(3)

Given the relations (1), (2) and (3), it suffices to prove that

$$\frac{BS}{BP} \cdot \frac{PA}{AT} = \frac{DS}{DP} \cdot \frac{CP}{CT}.$$

This follows from the fact that (P, A, T, C) and (P, B, S, D) are harmonic divisions, meaning that

$$\frac{AP}{AT} = \frac{CP}{CT}$$
 and $\frac{SB}{BP} = \frac{DS}{DP}$.

Here is a simple, yet very beautiful application of the previous result.

Application. Consider the degenerated quadrilateral ABAC inscribed in circle C of center O.

Let $\{X\} = AA \cap BC$. (AA represents the tangent line to C, taken at point A.) Let d be a line that passes through X and is perpendicular to OX. Using EBT, it follows that XY = YZ, where $\{Y\} = d \cap AC$ and $\{Z\} = d \cap AB$.

This fact is embodied by the following problem.

Problem. The tangent line at point A to the circumcircle of triangle ABC intersects BC at point X. d is a line that passes through X and is perpendicular XO. Prove that point X is the midpoint of line segment YZ. (Argentina, 2003)

We will further present some olympiad problems that can be solved using EBT.

2. Applications

1. Let ABC be an acute-angled, isosceles triangle (CA = CB) and let D be the midpoint of base AB. E is an arbitrary point on line AB and O is the circumcenter of triangle ACE. Show that the parallel to AC through B, the perpendicular onto BC at E and the perpendicular onto OD at D are concurrent.

(Bulgaria, 2000)

Proof. Let M be the second intersection of CD and the circumcircle of triangle ACE. Let $\{F\} = ME \cap BC$. Since ACEM is a cyclic quadrilateral, $\sphericalangle CME \equiv \measuredangle CAB$. But $\measuredangle CAB \equiv \measuredangle CBA$, so $\measuredangle CME \equiv \measuredangle CBA$, which means that points F, B, M and D are concyclic.

Consequently, $m(\sphericalangle BFM) = m(\sphericalangle MDB) = 90^\circ$. We obtained that $ME \perp BC$. Let T be the intersection between ME and the perpendicular from D onto OD. Let $\{S\} = DT \cap AC$. Since $DO \perp DT$, by applying EBT in quadrilateral ACEM it follows that DS = DT. Using this relation and

the fact that DA = DB, we find that ASBT is a parallelogram and, thus, BT||AC. Hence, the three lines in the problem meet at point T.

2. Let F be the projection of point C on side AB of the triangle ABC, with AC > BC. Let P, O, H be the reflection of A over F, the circumcenter of triangle ABC and the orthocenter, respectively. Lines HP and BC intersect at point X. Prove that $OF \perp FX$.

(BMO, 2008)

Proof. Let C' be the reflection of H into F. A well-known result says that C' lies on the circumcircle of $\triangle ABC$. Since FH = FC' and FA = FP, we obtain that HPC'A is a parallelogram. Let $\{Y\} = FX \cap AC'$. Then FX = FY and, applying the reciprocal of EBT in quadrilateral ACBC', it results that $OF \perp FX$, q.e.d.

3. Let ABC be an acute-angled triangle with BC > CA. Let O, H and F be the circumcenter, orthocenter and the foot of its altitude CH, respectively. The perpendicular onto OF at F meets the side CA at point P. Prove that $\triangleleft FHP \equiv \triangleleft BAC$.

(Turkey, TST)

Proof. Let the perpendicular onto OF at F meet the circle again at points Q and R, respectively. Let CH meet the circle again at H', which is the reflection of H over AB. Now, let P' be the intersection point of H'B and QR. F is the midpoint of QR so, using EBT, it results that FP = FP'. The triangles FHP and FH'P' are therefore congruent. Hence, $\langle FH'P' = \langle A = \langle FHP \rangle$.