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ARTICOLE ŞI NOTE MATEMATICE

SQUARE ROOTS OF REAL 2 × 2 MATRICES

Nicolae Anghel1)

Abstract. In this note we investigate the real 2× 2 matrices which admit
real square roots.
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Only non-negative real numbers admit real square roots. Thinking of
a real number as the simplest square matrix, a 1 × 1 matrix, an interesting
question emerges. Which real n × n matrices, n ≥ 1, admit real square
roots? In other words, for which A ∈ Mn(R) is there an S ∈ Mn(R) such
that S2 = A?

In this short note we will give a complete answer to the above question
in the case n = 2. As a corollary, we will also establish how many distinct
real square roots a given 2×2 matrix has, and then proceed to describe them
exactly.

Theorem. For a given matrix A ∈ M2(R) there are matrices S ∈
∈M2(R) such that S2=A if and only if detA≥0 and, either A = −

√
detAI

or trA+2
√
detA > 0, where I is the 2× 2 identity matrix. Obviously, in the

latter case, trA+ 2
√
detA = 0.

Proof. Necessity. Assume that S is a real square root of A. From
S2 = A we conclude that (detS)2 = detA, so we must have detA ≥ 0.
Any matrix M ∈ M2(R) satisfies the Cayley-Hamilton equation, namely
M2 − (trM)M + (detM)I = 0. In particular, S2 − (trS)S + (detS)I = 0
implies A− (trS)S + (detS)I = 0. There are two cases to consider:
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(1) trS ̸= 0. Since for a matrix M ∈ M2(R) we have tr(M2) =
= (trM)2 − 2 detM , by taking M = S we have trA + 2detS = (trS)2 > 0.
However, trA + 2| detS| ≥ trA + 2detS, and so we get trA + 2|detS| > 0.

Now (detS)2 = detA is equivalent to | detS| =
√
detA. In conclusion,

trA+ 2
√
detA > 0.

(2) trS = 0. In this case, A − (trS)S + (detS)I = 0 becomes A =

= −(detS)I. If detS < 0, trA + 2
√
detA = −4 detS > 0, and there is no-

thing to prove. If detS ≥ 0, we have detS =
√
detA, and so A = −

√
detAI.

Clearly, then trA + 2
√
detA = 0. Therefore, there are no matrices A with

trA+ 2
√
detA < 0, which admit real square roots.

Sufficiency. If detA ≥ 0 and trA + 2
√
detA > 0, a direct calculation

taking into account that A2 = (trA)A− (detA)I shows that

S :=
1√

trA+ 2
√
detA

(A+
√
detAI)

is a real square root of A. Suitable equations, found in the necessity part
of the proof, show that this is the only possible real square root of A with
positive trace and non-negative determinant.

If detA ≥ 0 and A = −
√
detAI, then it is easily seen that

S :=

(
0 1

−
√
detA 0

)
is a square root of A. �

Corollary. As the existence of real square roots goes, the following is
true about any matrix A ∈ M2(R):

(1) If A ̸= aI, a ∈ R, then A admits only finitely many real square
roots, as follows:

(a) If detA > 0 and trA − 2
√
detA > 0, there are exactly four

distinct square roots, given by

S = ± 1√
trA+ 2

√
detA

(A+
√
detAI)

or

S = ± 1√
trA− 2

√
detA

(A−
√
detAI).

(b) If detA < 0, or detA ≥ 0 and trA + 2
√
detA ≤ 0, there are

no real square roots.

(c) Otherwise, there are exactly two distinct real square roots, given

by S = ± 1√
trA+ 2

√
detA

(A+
√
detAI).
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(2) If A = aI, a ∈ R, then A admits infinitely many real square roots.

Regardless of a, the doubly infinite family S =

 s t
a− s2

t
−s

, s, t ∈ R,

t ̸= 0, is in. If a = 0 we add to the above family the matrices S =

(
0 0
s 0

)
,

s ∈ R, while if a > 0 we add the family S =

(
±
√
a 0

s ∓
√
a

)
, s ∈ R, plus

the two more matrices given by S =

(
±
√
a 0

0 ±
√
a

)
(the signs correspond).

Proof. If we are in case (1)(a), a direct calculation, similar to that in
the sufficiency part of the Theorem, shows that indeed the four proposed
matrices are real square roots of A. Conversely, let S be a real square root
of A. As in the proof of the Theorem, we then have (detS)2 = detA,
(trS)2 = trA+ 2detS, and A− (trS)S + (detS)I = 0.

If detS =
√
detA, then trS = ±

√
trA+ 2

√
detA, and so

S = ± 1√
trA+ 2

√
detA

(A+
√
detAI).

Similarly, if detS = −
√
detA we get the other two matrices in the

family of square roots.
The four matrices are distinct because, for instance, their traces are

distinct:√
trA+2

√
detA >

√
trA−2

√
detA >−

√
trA−2

√
detA >−

√
trA+2

√
detA.

The case (1)(b) follows immediately from the Theorem, by negation,
since A ̸= aI, a ∈ R.

In case (1)(c) ,,otherwise“ means after some ,,detective work“, A ̸= aI,

a ∈ R and in addition, detA > 0 and trA+2
√
detA > 0 and trA−2

√
detA ≤

≤ 0, or detA = 0 and trA > 0. The claimed conclusion can then be reached
as in (1)(b).

Finally, the case (2) is an easy ‘by hand’ calculation, given the simple
structure of A.


