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SOME CONSEQUENCES OF W.J.BLUNDON’S
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Abstract. This paper presents some rafined geometric inequalities in tri-
angle, based on Blundon’s inequality.
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In any triangle ABC we shall denote a = BC, b = AC, ¢ = AB,

a+b+c
p= %, R the radius of circumcircle and r the radius of incircle.

The Blundon’s inequality was obtained for the first time by E. Rouché
in the year 1851, but in the mathematical literature it is known as Blundon’s
inequality.

We shall present several results published in many research papers,
which are true in any triangle.

Theorem 1. In any triangle ABC' are valid the following inequalities:

27R

1) 2% < 16Rr — 512 < p? < 4R? + 4Rr + 3r%;

2) 24Rr—12r <a?+ b+ <8R? + 4r?;

3) R >2r;
4) 6v3r <a-+b+c< AR+ (6V3r —8)r;
)
)
)

4r (12R? — 11Rr +1?) <2 (4R+r)2

5 < 4R? + 4Rr + 3r%;
3R — 2r SPS ooy ST R
6) [p? — (2R2 +10Rr — r?)| < 2(R - 2r)y/R(R — 2r);

) T2R'

a2+ +c2< Rz — 42

8) a® + b3+ 3 <4pR(2R —r) <4AR[2R+ (3v3—3)r| 2R — ).

In the paper [1] W. J. Blundon proved the inequality p < 2R +
+ (3\/§ — 4) r. Blundon’s inequality which is represented by inequality 6)
from Theorem 1 was proved in the paper [2].

Also in this paper W. J. Blundon proved that if p < kR 4 hr in any
triangle ABC' then 2R + (3v/3 —4) r < kR + hr.

The inequality 7) from Theorem 1 was given by prof. I. V. Maftei. The
inequality 5) from Theorem 1 was proved by S. J. Biléev and E. A. Velikova
in the paper [4] and represents an extension of the inequality established by
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A. Bager in the paper [5]. The inequality 8) from Theorem 1 was given in
the book [6].

In the following we shall use the next result:

Lemma 1. In any triangle ABC are valid the followings identities:

@B =2 (1 - AFr) (1)
a®+b° +c* =2p (p* —3r* —6Rr) . (2)
In the next theorem we shall improve the Gerretsen’s inequality which

states that in any triangle ABC we have a? + b + ¢? < 8R? + 472,
Theorem 2. In any triangle ABC are true the following inequalities:

36 (8R* + tr?)
2,12, 2
b <

TS SR (= 16)2

Vit e [-2,6] (3)

36 (4R* + 3r*) 72R*

2 2 2 2 2

b < < <8R244 4
AT T 52 SRz gz SO T (4)
2,..2 4 4
per or 2R 9 9

< < SR2 4 42, 5

oR? TopE SRz _gpz = O T (5)

Proof. In order to prove the inequality (3) we shall consider the function
f : [_27 6] - Ra

a4+ b+ <8R*>+

36 (821 +t) r?
f(t) = ( 2 )
t 4 362= — 16

1
—288 (ac2 — 4) <3:2 — 2) r?
We have f/(t) = 5 <0, Vt € [-2,6], because
(t + 3622 — 16)
z € [2,00). It follows that f is a decreasing function.
The inequality

R
where z = — € [2,00).
r

36 (4R* + 3r) 6
18R2 — 5r2 (6)
is equivalent with the inequality a? + b? 4+ ¢ < f(6) which implies the ine-
quality (3).
By identity (1) from Lemma 1 if follows that inequality (6) is equivalent
with the following inequality:

A+ +<

5 9 36 (4R* + 3r*)
2(p —-r —4R7") < ISRE 52
or in another form :

18 (4R* + 3r%) .
18R? — 5r2 (™)
According the Blundon’s inequality, in order to prove inequality (7) it

will be sufficient to prove that:

p? <r?+4Rr +
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18 (4R* + 3r%)

2 _ 2 \/ﬁ< 2 _ 7
2R* 4+ 10Rr —r* +2/R(R —2r)3 <r° +4Rr + SRZ 52 (8)

R
Using the notation x = — € [2, 00) inequality (8) may be written as:
r

222 + 10z — 1+ 2¢/x(z — 2)3 < 1+ 4z +

or in an equivalent form:
2(x — 2)° (3622 — 10)° < (¢ — 2)% (3627 — 362 — 262 — 22)°. (9)
The inequality (9) may be written as:
(1822 — 5)% (2 — 22) < (182% — 182% — 132 — 11)°
or in an equivalent form:
3627 (v2 — 8z + 15) + 3362 + 121 > 0, = € [2,00). (10)
If z € [2,3]U[5, 00), the inequality (10) is true because 22 — 8z +15 > 0.
If x € (3,5) we have the sequence of inequalities:
36x% (2% — 8z + 15) + 336z + 121 >
> 3622 + 3362 + 121 > —900 + 336 - 3 + 121 = 229 > 0
because 22 — 8z + 15 > —1 and 22 < 25.
So inequality (3) is proved.
In order to prove the inequalities (4) note that a? + b 4+ ¢ < f(6) <
< f(0) < f(—2) because f is a decreasing function.
In order to prove the inequalities (4) note that a® + b* 4+ ¢ < 8R? +
pr* 4+ 5t
2R?
2 (p2 —r? - 4Rr) <8R? +

18 (4a* + 3)
1822 — 5

it will be sufficient according with the Lemma 1 to prove that
p?r? + 5t
2R?
4 2,.2 3 4
2§16R + 4Rr +16Rr—|—5r. (11)
4R? —r2

(or with the equivalent form:

In order to prove the inequality (11), it will be sufficient to prove ac-
cording Blundon’s inequality the following;:

16RY + 4R?%r2 + 16 R3r + 50
2R* + 10R — r* + 2(R — 2r)/R(R — 2r) < - 4;2:«2 —

or in an equivalent form:
(4R? — 12) <2R2 +10Rr — % + 2(R — 2r)\/R(R — 2r)> <
< 16R* + 4R*r? + 16R3r + 5.

The inequality (12) may be written also in the following form:

(12)
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2(R —2r) (4R* = r?) \/R(R — 2r) <

13
< 8R' — 24R3r + 10R?r? + 10Rr® + 414, (13)
or with the equivalent form:
(4R? —+?) (R? — 2Rr) < (4R® — 4R%*r — 3Rr? — %)’
which is equivalent with the inequality 16R? 4+ 8Rr + r2 > 0.
2,.2 4 4
5 2R
In order to prove the inequality 8R? + b r2 ;—2 i < R — 12 it will

be sufficient according the inequality p? < 4R? + 4Rr + 3r2 to prove that
(4R +4Rr +3r%) r® + 50t 72R!

8R? : 14
+ 2R? ~ OR2 — 492 (14)
The inequality (14) may be written in an equivalent form as

(9R? — 4r%) (8R* + 2R*r? + 2Rr® + 4r*) < T2RS. (15)

After performing some calculations, inequality (15) may be written as:
14R* — 18R*r — 28R*r? + 8Rr® + 167" > 0
or equivalent as:
2(R —2r) (TR* + 5R*r — 4Rr* — 4r%) > 0. (16)

Because R > 2r and 5R*r —4Rr? —4r3 = r [AR(R — 1) + R* — 4r?] > 0
if follows that the inequality (16) is true.

The purpose of the following theorem is to prove that the inequality of
Gerretsen is the best if we suppose that where a?+b%+c? < aR?+ SRr+~r?
where a, 8,7 € Rsi 5> 0.

This statement was proved by L.Panaitopol in the paper [7] with the
supplementary hypotesis 5 = 0.

Theorem 3. If o, B and v are real numbers with 8 > 0 and with the
property that the inequality a® 4+ b> + c? < aR? + BRr + yr? is true in every
triangle ABC, then we have the inequality 8R? + 4r? < aR? + BRr +yr? in
every triangle ABC.

Proof. If the triangle ABC' is equilateral then from the inequality
a? 4+ b* + ¢ < aR? + BRr + yr? it follows that:

da+ 26 + v > 36. (17)

If we consider the case of the isoscel triangle with b = ¢ and if we let a
tends to zero we obtain:

a>8. (18)
From (17), (18) and R > 2r we shall obtain the following inequalities

(@ —8)R?2+BRr+ (v —4)r? >r2[4la—8)+2B8+~—4] =
=r?(da+ 28 +y—36) >0,
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or equivaletly 8R? 4 4r? < aR? + BRr + yr?.

The following theorem establish an analogous inequality with the ine-
quality of Gerretsen.

Theorem 4. In every triangle ABC' is true the following inequality:

@b+ 0%+ cF < 16K — 6Rr? + (72v/3 - 116) ™. (19)

Proof. According with Lemma 1 the inequality (19) is equivalent with
the following inequality:

2 (p* = 3r* — 6Rr) < 16R* — 6Rr* + (72v/3 - 116) #°. (20)

According Blundon’s inequality, in order to prove the inequality (20) it
will be sufficient to prove that:

V2R + 10Rr — 2 + 2(R — 2r)\/R(R — 2r) x
X (2R2 +ARr — 472 + 2(R — 2r)\/R(R — 2r)) < (21)
< 8R3 —3Rr? + (36v/3 — 58) r®.

R
If we square the inequality (21) and we denote z = — it follows that
r

we have to prove that:

[212 +10z — 1+ (22 — 4)va? = 24 [2952 Az — 4+ (22 — 4)VaT = Qx] <

2
< <8x3 — 32+ 36v/3 — 58) . (22)
After some calculation it follows that the inequality (22) is equivalent with:

2 19 3\?
<x4—|—3x3+47$2—2x+2> (2% —22) <

13 ., 5763 — 1528
5 4 3 2
§<x + 2z +741, + 39 i (23)

2
1152v/3 — 1751 2088+/3 — 3634
+ 3 x + 39 .

In order to prove the inequality (23) it will be sufficient to prove that:
4 3 27 5 ’ 2
z*+3x° + —a* —9x 4 2 (a; —23;) <
4
2 (24)
5 4 13 3 2
< | z°+2x +Z:c — 172 +7x—1) , z € [2,00)

After some calculations we obtain that the inequality (24) is equivalent
with the following true inequality:

3 129 7 15
§x7+6$6+?x5+§x4+?x3+7$2—6x+1, x € [2,00). (25)
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We shall prove in the sequel that the inequality (19) is the best of the
inequalities of the type a® + b3+ ¢ < aR? + BR?*r +yRr? + 613 with v > —6.
Theorem 5. Let o, 3, 7, § real numbers with v > —6 and with the
property that in every triangle ABC we have:
a® + b3+ < aR®+ BR*r +yRr? + or.
Then in every triangle ABC is true the following inequality:
aR® + BR*r + yRr? + 6r° > 16R° — 6Rr? + (72\/§ - 116> =

Proof. If we consider the case of equilateral triangle then from the
inequality:
a® 4+ b+ & < aR® 4+ BR*r + yRr? + 013

we obtain that:

8o+ 4B 4 2y 4+ > 72V/3. (26)
In the case of the isoscel triangle with b = ¢ and with a tends zero we obtain:
a > 16. (27)

According with (26), (27) and R > 2r it follows that:
(o — 16)R® + BR*r + (7 + 6)Rr? + (5 —72V3 ¢ 116) r3 >

> [8(a—16)+45+2(fy+6)+5—72\/§+116] -

- (8a+4ﬁ+27+5—72\/§)r320.

In conclusion aR3+BR?*r+yRr?+6r® > 16R3—6Rr?+ (72v/3 — 116) r®
in every triangle ABC.

In the sequel we shall prove an inequality which improves the left of
inequality 5) from theorem 1.

Theorem 6. In every triangle ABC' are true the following inequalities:

2T [16R? + (16t — 4)Rr — (5t + 2)r?]
p

tel-1 28

> . L te[-100) (28)

2 (16R? — 20Rr + 3r?%) N 4r (12R? — 11Rr + %) | (20)
R—r 3R —2r

Proof. According Blundon’s inequality in order to prove inequality (28)
it will be sufficient to prove that:

2R? +10Rr —r? — 2(R — 2r)\/R(R — 2r) >

16R2 + (16t — 4)Rr — (5t + 2)r? 30
> + ( YRr — (5t + )r’ Fe 1, 00). (30)
R+ tr

Inequality (30) is equivalent with the inequality:
2R% 4 (2t — 2)Rr — (2t 4+ 1)r? > 2(R + tr)\/ R? — 2Ry (31)
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If we square inequality (31) we obtain the inequality:
AR + (44 — 8t +4) R*r? + (4% + 4t + 1) r* + (8t — 8) R%r — (8t + 4)R*r?—
— (8t — 4t — 4) Rr® > 4R* + 8tRr + 4t*R*r* — 8R%r — 16tR*r* — 8t*Rr?,
which is equivalent with the following true inequality:
4t+1)Rr+(2R+7)2>0, te[-1,00).

In order to prove inequality (29) we shall consider the function
16Rr — 5r?) t + 16R* — 4Rr — 2r?] r
filLoo) 2R, fie) = L ) lr

R +tr
r (27“2 — RT) ) )
Because f/(t) = W <0, Vt e [-1,00) it follows that f is a
+ir

decreasing function.
16R? — 4Rr — 2r?
Because f(—1) > f(0) and f(0) = ( ro2)r

R
(16R? — 20Rr + 3r?) r ) )
= e it follows the inequality (29).

and f(—1) =
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O REZOLVARE VECTORIALA A UNEI PROBLEME
LUCIAN VINTAND

Abstract. This article illustrates how vectorial methods can sotimes pro-
vide easier solutions.

Keywords: vectors, circles.
MSC : 51MO04.

Este binecunoscuta problema urmatoare:
Fie doua cercuri secante C1, Co si numarul real k > 0. Prin unul dintre
punctele lor de intersectie se duce o dreaptd variabild, care intersecteazd a

doua oara cercurile C1 st Co in My, respectiv M. Sa se afle locul geometric
al punctului M € (M Ms), pentru care MMy =k - M Ms.
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