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Abstract. This paper presents some rafined geometric inequalities in tri-
angle, based on Blundon’s inequality.
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In any triangle ABC we shall denote a = BC, b = AC, c = AB,

p =
a+ b+ c

2
, R the radius of circumcircle and r the radius of incircle.

The Blundon’s inequality was obtained for the first time by E. Rouché
in the year 1851, but in the mathematical literature it is known as Blundon’s
inequality.

We shall present several results published in many research papers,
which are true in any triangle.

Theorem 1. In any triangle ABC are valid the following inequalities:

1)
27Rr

2
≤ 16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2;

2) 24Rr − 12r2 ≤ a2 + b2 + c2 ≤ 8R2 + 4r2;
3) R ≥ 2r;
4) 6

√
3r ≤ a+ b+ c ≤ 4R+

(
6
√
3r − 8

)
r;

5)
4r
(
12R2 − 11Rr + r2

)

3R− 2r
≤ p2 ≤ R (4R+ r)2

2(2R− r)
≤ 4R2 + 4Rr + 3r2;

6)
∣∣p2 −

(
2R2 + 10Rr − r2

)∣∣ ≤ 2(R− 2r)
√
R(R− 2r);

7) a2 + b2 + c2 ≤ 72R4

9R2 − 4r2
;

8) a3 + b3 + c3 ≤ 4pR(2R− r) ≤ 4R
[
2R+

(
3
√
3− 3

)
r
]
(2R− r).

In the paper [1] W. J. Blundon proved the inequality p ≤ 2R +
+
(
3
√
3− 4

)
r. Blundon’s inequality which is represented by inequality 6)

from Theorem 1 was proved in the paper [2].
Also in this paper W. J. Blundon proved that if p ≤ kR + hr in any

triangle ABC then 2R+
(
3
√
3− 4

)
r ≤ kR+ hr.

The inequality 7) from Theorem 1 was given by prof. I. V. Maftei. The
inequality 5) from Theorem 1 was proved by S. J. Bilčev and E. A. Velikova
in the paper [4] and represents an extension of the inequality established by

1)Profesor dr., C. N. ,,Aurel Vlaicu“, Bucureşti
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A. Bager in the paper [5]. The inequality 8) from Theorem 1 was given in
the book [6].

In the following we shall use the next result:
Lemma 1. In any triangle ABC are valid the followings identities:

a2 + b2 + c2 = 2
(
p2 − r2 − 4Rr

)
, (1)

a3 + b3 + c3 = 2p
(
p2 − 3r2 − 6Rr

)
. (2)

In the next theorem we shall improve the Gerretsen’s inequality which
states that in any triangle ABC we have a2 + b2 + c2 ≤ 8R2 + 4r2.

Theorem 2. In any triangle ABC are true the following inequalities:

a2 + b2 + c2 ≤ 36
(
8R4 + tr4

)

36R2 + (t− 16)r2
, ∀ t ∈ [−2, 6] (3)

a2 + b2 + c2 ≤ 36
(
4R4 + 3r4

)

18R2 − 5r2
≤ 72R4

9R2 − 4r2
≤ 8R2 + 4r2, (4)

a2 + b2 + c2 ≤ 8R2 +
p2r2

2R2
+

5r4

2R2
≤ 72R4

9R2 − 4r2
≤ 8R2 + 4r2. (5)

Proof. In order to prove the inequality (3) we shall consider the function
f : [−2, 6] → R,

f(t) =
36
(
8x4 + t

)
r2

t+ 36x2 − 16
where x =

R

r
∈ [2,∞).

We have f ′(t) =

−288
(
x2 − 4

)(
x2 − 1

2

)
r2

(t+ 36x2 − 16)2
≤ 0, ∀ t ∈ [−2, 6], because

x ∈ [2,∞). It follows that f is a decreasing function.
The inequality

a2 + b2 + c2 ≤ 36
(
4R4 + 3r4

)

18R2 − 5r2
, (6)

is equivalent with the inequality a2 + b2 + c2 ≤ f(6) which implies the ine-
quality (3).

By identity (1) from Lemma 1 if follows that inequality (6) is equivalent
with the following inequality:

2
(
p2 − r2 − 4Rr

)
≤ 36

(
4R4 + 3r4

)

18R2 − 5r2

or in another form :

p2 ≤ r2 + 4Rr +
18
(
4R4 + 3r4

)

18R2 − 5r2
. (7)

According the Blundon’s inequality, in order to prove inequality (7) it
will be sufficient to prove that:
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2R2 + 10Rr − r2 + 2
√
R(R− 2r)3 ≤ r2 + 4Rr +

18
(
4R4 + 3r4

)

18R2 − 5r2
. (8)

Using the notation x =
R

r
∈ [2,∞) inequality (8) may be written as:

2x2 + 10x− 1 + 2
√
x(x− 2)3 ≤ 1 + 4x+

18
(
4x4 + 3

)

18x2 − 5

or in an equivalent form:

x(x− 2)3
(
36x2 − 10

)2 ≤ (x− 2)2
(
36x3 − 36x2 − 26x− 22

)2
. (9)

The inequality (9) may be written as:
(
18x2 − 5

)2 (
x2 − 2x

)
≤
(
18x3 − 18x2 − 13x− 11

)2

or in an equivalent form:

36x2
(
x2 − 8x+ 15

)
+ 336x+ 121 ≥ 0, x ∈ [2,∞). (10)

If x ∈ [2, 3]∪ [5,∞), the inequality (10) is true because x2−8x+15 ≥ 0.
If x ∈ (3, 5) we have the sequence of inequalities:

36x2
(
x2 − 8x+ 15

)
+ 336x+ 121 ≥

≥ −36x2 + 336x+ 121 ≥ −900 + 336 · 3 + 121 = 229 ≥ 0

because x2 − 8x+ 15 ≥ −1 and x2 < 25.
So inequality (3) is proved.
In order to prove the inequalities (4) note that a2 + b2 + c2 ≤ f(6) ≤

≤ f(0) ≤ f(−2) because f is a decreasing function.
In order to prove the inequalities (4) note that a2 + b2 + c2 ≤ 8R2 +

+
p2r2 + 5r4

2R2
it will be sufficient according with the Lemma 1 to prove that

2
(
p2 − r2 − 4Rr

)
≤ 8R2 +

p2r2 + 5r4

2R2
(or with the equivalent form:

p2 ≤ 16R4 + 4R2r2 + 16R3r + 5r4

4R2 − r2
. (11)

In order to prove the inequality (11), it will be sufficient to prove ac-
cording Blundon’s inequality the following:

2R2 + 10R− r2 + 2(R− 2r)
√
R(R− 2r) ≤ 16R4 + 4R2r2 + 16R3r + 5r4

4R2 − r2

or in an equivalent form:
(
4R2 − r2

) (
2R2 + 10Rr − r2 + 2(R− 2r)

√
R(R− 2r)

)
≤

≤ 16R4 + 4R2r2 + 16R3r + 5r4.
(12)

The inequality (12) may be written also in the following form:
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2(R− 2r)
(
4R2 − r2

)√
R(R− 2r) ≤

≤ 8R4 − 24R3r + 10R2r2 + 10Rr3 + 4r4,
(13)

or with the equivalent form:
(
4R2 − r2

) (
R2 − 2Rr

)
≤
(
4R3 − 4R2r − 3Rr2 − r3

)2

which is equivalent with the inequality 16R2 + 8Rr + r2 ≥ 0.

In order to prove the inequality 8R2 +
p2r2 + 5r4

2R2
≤ 72R4

9R2 − 4r2
it will

be sufficient according the inequality p2 ≤ 4R2 + 4Rr + 3r2 to prove that

8R2 +

(
4R2 + 4Rr + 3r2

)
r2 + 5r4

2R2
≤ 72R4

9R2 − 4r2
. (14)

The inequality (14) may be written in an equivalent form as
(
9R2 − 4r2

) (
8R4 + 2R2r2 + 2Rr3 + 4r4

)
≤ 72R6. (15)

After performing some calculations, inequality (15) may be written as:

14R4 − 18R3r − 28R2r2 + 8Rr3 + 16r4 ≥ 0

or equivalent as:

2(R− 2r)
(
7R3 + 5R2r − 4Rr2 − 4r3

)
≥ 0. (16)

Because R ≥ 2r and 5R2r−4Rr2−4r3 = r
[
4R(R− r) +R2 − 4r2

]
≥ 0

if follows that the inequality (16) is true.
The purpose of the following theorem is to prove that the inequality of

Gerretsen is the best if we suppose that where a2+b2+c2 ≤ αR2+βRr+γr2

where α, β, γ ∈ R şi β ≥ 0.
This statement was proved by L.Panaitopol in the paper [7] with the

supplementary hypotesis β = 0.
Theorem 3. If α, β and γ are real numbers with β ≥ 0 and with the

property that the inequality a2 + b2 + c2 ≤ αR2 + βRr + γr2 is true in every
triangle ABC, then we have the inequality 8R2 + 4r2 ≤ αR2 + βRr + γr2 in
every triangle ABC.

Proof. If the triangle ABC is equilateral then from the inequality
a2 + b2 + c2 ≤ αR2 + βRr + γr2 it follows that:

4α+ 2β + γ ≥ 36. (17)

If we consider the case of the isoscel triangle with b = c and if we let a
tends to zero we obtain:

α ≥ 8. (18)

From (17), (18) and R ≥ 2r we shall obtain the following inequalities

(α− 8)R2 + βRr + (γ − 4)r2 ≥ r2 [4(α− 8) + 2β + γ − 4] =
= r2(4α+ 2β + y − 36) ≥ 0,
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or equivaletly 8R2 + 4r2 ≤ αR2 + βRr + γr2.
The following theorem establish an analogous inequality with the ine-

quality of Gerretsen.
Theorem 4. In every triangle ABC is true the following inequality :

a3 + b3 + c3 ≤ 16R3 − 6Rr2 +
(
72
√
3− 116

)
r3. (19)

Proof. According with Lemma 1 the inequality (19) is equivalent with
the following inequality:

2p
(
p2 − 3r2 − 6Rr

)
≤ 16R3 − 6Rr2 +

(
72
√
3− 116

)
r3. (20)

According Blundon’s inequality, in order to prove the inequality (20) it
will be sufficient to prove that:

√
2R2 + 10Rr − r2 + 2(R− 2r)

√
R(R− 2r)×

×
(
2R2 + 4Rr − 4r2 + 2(R− 2r)

√
R(R− 2r)

)
≤

≤ 8R3 − 3Rr2 +
(
36
√
3− 58

)
r3.

(21)

If we square the inequality (21) and we denote x =
R

r
it follows that

we have to prove that:[
2x2 + 10x− 1 + (2x− 4)

√
x2 − 2x

] [
2x2 + 4x− 4 + (2x− 4)

√
x2 − 2x

]
≤

≤
(
8x3 − 3x+ 36

√
3− 58

)2
. (22)

After some calculation it follows that the inequality (22) is equivalent with:
(
x4 + 3x3 +

27

4
x2 − 19

2
x+

3

2

)2 (
x2 − 2x

)
≤

≤
(
x5 + 2x4 +

13

4
x3 +

576
√
3− 1528

32
x2+

+
1152

√
3− 1751

32
x+

2088
√
3− 3634

32

)2

.

(23)

In order to prove the inequality (23) it will be sufficient to prove that:
(
x4 + 3x3 +

27

4
x2 − 9x+ 2

)2 (
x2 − 2x

)
≤

≤
(
x5 + 2x4 +

13

4
x3 − 17x2 + 7x− 1

)2

, x ∈ [2,∞)

(24)

After some calculations we obtain that the inequality (24) is equivalent
with the following true inequality:

3

2
x7 + 6x6 +

129

8
x5 +

7

2
x4 +

15

2
x3 + 7x2 − 6x+ 1, x ∈ [2,∞). (25)
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We shall prove in the sequel that the inequality (19) is the best of the
inequalities of the type a3+ b3+ c3 ≤ αR3+βR2r+γRr2+ δr3 with γ ≥ −6.

Theorem 5. Let α, β, γ, δ real numbers with γ ≥ −6 and with the
property that in every triangle ABC we have:

a3 + b3 + c3 ≤ αR3 + βR2r + γRr2 + δr3.

Then in every triangle ABC is true the following inequality :

αR3 + βR2r + γRr2 + δr3 ≥ 16R3 − 6Rr2 +
(
72
√
3− 116

)
r3.

Proof. If we consider the case of equilateral triangle then from the
inequality:

a3 + b3 + c3 ≤ αR3 + βR2r + γRr2 + δr3

we obtain that:

8α+ 4β + 2γ + δ ≥ 72
√
3. (26)

In the case of the isoscel triangle with b = c and with a tends zero we obtain:

α ≥ 16. (27)

According with (26), (27) and R ≥ 2r it follows that:

(α− 16)R3 + βR2r + (γ + 6)Rr2 +
(
δ − 72

√
3 + 116

)
r3 ≥

≥
[
8(α− 16) + 4β + 2(γ + 6) + δ − 72

√
3 + 116

]
r3 =

=
(
8α+ 4β + 2γ + δ − 72

√
3
)
r3 ≥ 0.

In conclusion αR3+βR2r+γRr2+δr3 ≥ 16R3−6Rr2+
(
72
√
3− 116

)
r3

in every triangle ABC.
In the sequel we shall prove an inequality which improves the left of

inequality 5) from theorem 1.
Theorem 6. In every triangle ABC are true the following inequalities:

p2 ≥ r
[
16R2 + (16t− 4)Rr − (5t+ 2)r2

]

R+ tr
, t ∈ [−1,∞) (28)

p2 ≥ r
(
16R2 − 20Rr + 3r2

)

R− r
≥ 4r

(
12R2 − 11Rr + r2

)

3R− 2r
. (29)

Proof. According Blundon’s inequality in order to prove inequality (28)
it will be sufficient to prove that:

2R2 + 10Rr − r2 − 2(R− 2r)
√
R(R− 2r) ≥

≥ 16R2 + (16t− 4)Rr − (5t+ 2)r2

R+ tr
, t ∈ [−1,∞).

(30)

Inequality (30) is equivalent with the inequality:

2R2 + (2t− 2)Rr − (2t+ 1)r2 ≥ 2(R+ tr)
√
R2 − 2Rr. (31)
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If we square inequality (31) we obtain the inequality:

4R4 +
(
4t2 − 8t+ 4

)
R2r2 +

(
4t2 + 4t+ 1

)
r4 + (8t− 8)R3r − (8t+ 4)R2r2−

−
(
8t2 − 4t− 4

)
Rr3 ≥ 4R4 + 8tR3r + 4t2R2r2 − 8R3r − 16tR2r2 − 8t2Rr3,

which is equivalent with the following true inequality:

4(t+ 1)Rr + (2R+ r)2 ≥ 0, t ∈ [−1,∞).

In order to prove inequality (29) we shall consider the function

f : [−1,∞) → R, f(t) =

[(
16Rr − 5r2

)
t+ 16R2 − 4Rr − 2r2

]
r

R+ tr
.

Because f ′(t) =
r
(
2r2 −Rr

)

(R+ tr))2
≤ 0, ∀ t ∈ [−1,∞) it follows that f is a

decreasing function.

Because f(−1) ≥ f(0) and f(0) =

(
16R2 − 4Rr − 2r2

)
r

R
and f(−1) =

=

(
16R2 − 20Rr + 3r2

)
r

R− r
it follows the inequality (29).
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O REZOLVARE VECTORIALĂ A UNEI PROBLEME

Lucian Vinţan1)

Abstract. This article illustrates how vectorial methods can sotimes pro-
vide easier solutions.

Keywords: vectors, circles.

MSC : 51M04.

Este binecunoscută problema următoare:

Fie două cercuri secante C1, C2 şi numărul real k > 0. Prin unul dintre
punctele lor de intersecţie se duce o dreaptă variabilă, care intersectează a
doua oară cercurile C1 şi C2 ı̂n M1, respectiv M2. Să se afle locul geometric
al punctului M ∈ (M1M2), pentru care MM1 = k ·MM2.
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