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The 26" Balkan Mathematical Olympiad was held in Kragujevac, Ser-
bia, between April 28" and May 4. A number of 20 teams attended the
competition: 11 from the member countries (Albania, Bosnia and Herze-
govina, Bulgaria, Cyprus, Greece, FYR Macedonia, Moldova, Montenegro,
Romania, Serbia and Turkey) and 9 from the invited countries (Azerbaijan,
City of Brno, France, Italy, Kazakhstan, Serbia 2, Tajikistan, Turkmenistan
and the United Kingdom).
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The members of the Romanian team were: Madalina Persu (I.C.H.B.),
Andrei Deneanu (1.C.H.B.), Tudor Pdadurariu (C. N. ,Grigore Moisil*,
Onesti), Radu Bumbdcea (C.N. ,Tudor Vianu“, Bucuresti), Omer Cerra-
hoglu (C.N. ,Vasile Lucaciu®, Baia Mare) and Horia Mania (C.N. ,Tudor
Vianu”, Bucuresti).

All six Romanian students were awarded medals: silver for Madalina,
Tudor, Radu and Omer, bronze for Andrei and Horia. In the unofficial
country ranking, Romania came on fourth place, after Serbia, Turkey and
Bulgaria.

The competitors had four and a half hours to solve four problems. Here
are the problems, with solutions.

Problem 1. Solve in positive integers the equation
3% —5Y = 22
Greece

Solution. Modulo 3, —(—1)¥ is a quadratic residue, hence y must be
odd: y = 2b+ 1.

Modulo 4, (—=1)* — 1 is a quadratic residue, hence x must be even:
z = 2a. Then 52*1 = (3% — 2)(3% + 2). But ged(3,2) = 1, and ged(3® — 2,
3%+ 2)|ged(2 - 3%,22) = 2gcd(3%,2) = 2, and since z is even, ged(3* — z,
3% +z) = 1. Since 3%+ z > 3% — z, this implies 3* —z = 1 and 3% + z = 520F1,
hence 2- 3% — 1 = 52+ = 5. 25,

Modulo 24 this yields 2-3% — 1 =5, or 6(3%~! — 1) = 0, hence a must
be odd, since for a even we always have 3°~! = 3. Thus ¢ must be odd:
a = 2c¢+ 1, and the equation writes 6 - 9¢ — 1 = 5 - 25°, with obvious solution
¢ =b=0, whence (z,y,2) = (2,1,2). Take then ¢ > 1.

Modulo 9 we have 5 - 7 = —1, only valid for b = 3d + 1, since 7% = 1.
Then we have 6 - 9¢ — 1 = 125 - 2537,

Modulo 7 this yields 2¢ 4+ 1 = 43¢ = 1, absurd.

Therefore the only solution is (x,y, 2) = (2,1, 2).

An alternative way to deal with the second part of the solution was
found by Tudor Padurariu: after obtaining the equality 2-3% — 1 = 521 he
observed that it can be written as

2-3“:1+52b+1:(1+5)(52b—52b*1+...—5+1>.
But, modulo 3 we have
5% 5%l 54 1=1—(-1)4+1—...—(=1)+1=2b+1.

Now, if a > 2, we obtain 3|2b + 1, hence y = 6n + 3. But then
230 = 1450 = 1 4 (53)*"! | therefore 126 = 1+ 5% divides 2 - 3%,
hence 7 divides 2 - 3%, a contradiction.
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Problem 2. Let M N be a line parallel with the side BC' of the triangle
ABC, meeting the sides AB and AC at the points M and N respectively.
The lines BN and CM meet at the point P. The circumcircles of the trian-
gles BM P and C'NP have a common point @ (other than P). Prove that
/BAQ = /CAP.

Moldova

A N C Solution. The quadrilaterals BM PQ
and CN PQ are cyclic. We therefore obtain
the relations < BQN = <BQP + <NQP =

M =9IPMA+INCP=n—-3IMAC =
Q =7 — IBAN. It follows that the quadrila-
B teral ABQN is cyclic.

We denote by r1 and ry the radii of the circumcircles of the triangles
BMP and CN P, respectively. The quadrilateral ABQN being cyclic

sin/BAQ  BQ  2risingBPQ 1
sindCAQ NQ 2rosinaINPQ 1y
From M N || BC follow the relations
singCAP  PC AM  BC AM AM  BM  2risingBPM
singMAP  MP AC  MN AC AN CN  2rysingCPN  ry
From the relations above follows the equality

sin YBAQ  sinCAP
sin xCAQ  sinaMAP’

Let ¥BAQ = a, SCAP = 8 and ¥ PAQ = x. From the last relation
we conclude that

Sin?ﬁni ) - sin?lotl—fﬁ— x) & sin(a+z)-sina =sin(f +z) - sinf <

cosx — cos(2a+ x) = cosx — cos(20 + x) < cos(2a + x) = cos(20 + z).

Since a + x + 8 = < BAC < m, we obtain the equality a = .

Alternative solution. (T. Padurariu) The quadrilaterals M BQP and
PQCN being cyclic, it follows <MQB = <M PB = <NPC = <NQC and
IBMQ = <BPQ = <NCQ, hence triangles BMQ and NC(Q are similar.

For T being the meeting point of lines AP and BC, Ceva’s theorem yields
AM BT CN
VB TC NA- 1, hence BT = TC, therefore T is the midpoint of BC.
Consider complex coordinates with origin at A, and denote by x the
affix of a point X. From the givens of the problem, there exists A € R} such
that m = Ab and n = Ac. Triangles BM @ and NC(@ being similar, it follows
m—b c—n mn — be be(L+X) . b+c
= , whence ¢ = = . Since t = ,
m+n—-—b—c b+c 2

qg—b qg—n
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1+ A 1+ A
it follows % = C(bj__ ) = —; . E, therefore, passing to arguments of the
c

affixes, arg (%) = arg (%), ie. SBAQ = <CAP.
(It is seen then that points M and N could be anywhere on lines AB

and AC respectively, with M N || BC).

Another solution. (T. von Burg) From M N || BC follows the similitude
of triangles ABC and AM N, therefore 15 = %, or AM-AC = AN-AB =
= p?. Consider the inversion of center A and radius p, and denote by accented
letters the images of points through it.

Then AM' = AC, AN’ = AB, AB’ = AN, AC' = AM. On the other
hand, point @) is the Miquel point of the complete quadrilateral AMBPNC'.
Therefore @’ is the meeting point of lines B’N’ and C'M’. Lastly, P’
is the second meeting point of circles (AB'N’) and (AC'M’) (or, equiva-
lently, of circles (B'M'Q’) and (C'N'Q’), since P’ is the Miquel point of the
transformed figure). It follows that the transformed figure is symmetrical
to the initial one, with respect to the angle bisector of ZBAC, therefore
JBAQ = <B'AQ' = <CAP.

Problem 3. A rectangle 9 x 12 is partitioned into unit squares, and
the centers of all the squares, except for the four corner squares and the eight
squares orthogonally adjacent to them, are colored in red. Is it possible to
draw a closed broken line that has the following properties:

1) has all the 96 red points as its vertices, and them only;

2) has all its edges of length v/13;

3) has central symmetry?

Bulgaria

Solution. Such a broken line does not exist. To show this, color the
red point squares in a check pattern (black and white, so that every two red
points at distance 1 lie in squares of different color). It is easy to see then
that any two red points at distance /13 lie on squares of different color, so
black and white alternate along the broken line. Also, the center of symmetry
of the line must coincide with that of the set of points, and thus with that of
the rectangle.

Consider now the points A(2;2) and B(8;11) (as usual, the point (;j)
is the center of the unit square in the i-th row and the j-th column). The
line can be divided in two parts — one leading from A to B, and the other
from B to A. If they are symmetric to each other, each of them must consist
of 96/2 = 48 edges. So an even number of edges connects A to B, hence A
and B must lie in squares of same color, untrue.

So, each part is symmetric to itself (since the symmetrical of the part
leading from A to B can only be the other part, case dismissed in the above,
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or itself; and same for the part leading from B to A), and each part contains
an odd number of edges. Since the edges can be divided in symmetric pairs,
each part must contain some edge symmetric to itself. Only two such edges
are possible: one joining (4;5) and (6;8); the other joining (6;5) and (4;8).

Consider now the point (2;2). It can only be joined to (5;4) and (4;5),
so the line must include this two edges. A similar consideration for the
points (8;2), (8;11) and (2;11) shows that the line must include the edges
(4;5) = (2:2) = (5:4) = (8;2) = (6;5) — (4;8) — (23 11) = (5;9) — (8; 11) — (6 8) —
(4;5). But this is a closed broken line that does not contain all the points, a
contradiction.

Remark. (D. Schwarz) The issue of the existence of a (non-central

symmetric) Hamiltonian circuit has been settled by the computer-found re-
sult (due to C. Grosu) presented in the Table 1 below.

37174131 8 | 81|68 |39 |48
1124 |57|76|63 |18 |51 |46 |55]|90
731329 | 80673849 44| 7 |82|69 |40
36 | 75130 |19|96 (23|56 |89 |62 |17 |52 |47
251088 | 77| 2 |43 |10 |85 |64 |91 |50 |45 |54
1217972133 4 [27|66|93|70|41] 6 |83
291203586 (59|14 |95 (22|53 |83|61]16
312611 |78 |71 42| 5 |84 |65 |92
13128 (21|34 |87 (60|15 |94

TABLE 1. A Hamiltonian circuit on the 9 x 12 reduced array.

The site http://www.ktn.freeuk.com/, compiled by George Jellis is
a comprehensive monography on such topics.
Problem 4. Find all functions f : Z} — Z7 such that
F(f(m)? +2f(n)?) =m? + 2n* for any m,n € Z7.
Bulgaria
Solution. Notice that f is injective (for any fixed n, if f(m1) = f(m2)
then m? + 2n? = f(f(m1)? + 2f(n)?) = f(f(m2)? + 2f(n)?) = m3 + 2n?,
whence m? = m3 and so m; = may for positive integers), hence
1 2
Fm)*+2f(n)* = F(0)* + 2f(9)* & m* + 20" =p* +2¢°. (1)
Setting f(1) = a one has f(3a?) = 3. By (1)
f(5a*)? +2f(a*)? = f(3a*)* + 2f(3a*)* = 3f(3a*)? = 2T.
Since the solutions of the equation 22 + 2y?> = 27 in positive integers are
(z,y) = (3,3) and (x,y) = (5,1), it follows that f(a?) = 1 and f(5a?) = 5.

By (1)
2f(4a%)* — 2f(20%)* = f(5a®)* — f(a®)* = 24.
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Since the only solution of the equation 22 — % = 12 in positive integers is
(z,y) = (4,2), it follows that f(2a%) =2 and f(4a?) = 4. By (1) again
F((k+4)a*)? = 2f((k +3)a®)* = 2f ((k + 1)a®)* + f(ka®)?
(this is based on the identity (k + 4)% + 2(k + 1)? = k? + 2(k + 3)?) and
therefore f(ka?) = k by induction on k. Then f(a®) = a = f(1) and thus
a=1.
It is clear that the function f(k) = k satisfies the given condition.



