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THE ,,MATH STARS“ CONTEST

6-7 December 2008

presented by Dan Schwarz
1)

The contest was organized by the International Computer High School
from Bucharest, on the 6th and 7th of December 2008 and consisted of 6
IMO-style questions.

1. Prove that, for every positive integer m, the equation
n

m
=
⌊

3
√
n2
⌋
+
⌊√
n
⌋
+ 1

has at least a positive integer solution nm.
C. Lupu & D. Schwarz

2. The 2N vertices of the N -dimensional hypercube {0, 1}N are labeled
with numbers from 0 to 2N − 1 such that x = (x1, x2, . . . , xN ) gets the label

v(x) =
N∑

k=1

xk2k−1.

Find all n, 2 ≤ n ≤ 2N , so that the vertices from V = {v | 0 ≤ v ≤ n−1}
can be visited in a circuit using only edges of the hypercube which connect
vertices of V (each vertex is visited exactly once).

E. Băzăvan & C. Tălău

3. Consider a convex quadrilateral and the incircles of the two triangles
obtained drawing one of its diagonals. Prove that the tangency points of these
two circles to the diagonal are symmetrical with respect to the midpoint of
the diagonal if and only if the centers of the circles and the meeting point of
the diagonals are collinear.

D. Schwarz 2)

4. Find the maximum number of consecutive integer values which can
be assumed by a polynomial P ∈ Z[X] of degree n > 1, for integer values of
the variable.

B. Berceanu

5. Suppose that
√
23 >

m

n
, where m, n are positive integers.

i) Show that
√
23 >

m

n
+

3
mn

.

ii) Show that
√
23 <

m

n
+

4
mn

infinitely many times and find at least
three such cases. D. Schwarz

1)Teacher, International Computer High School of Bucharest.
2)See IMO 2008 Problem 6 in GM-B nr. 7-8 2008.
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6. Consider the infinite array consisting of the first quadrant of the
plane divided into unit squares, each square containing a real number. The
array will be called k−balanced (where k > 1 is an integer) if not all its
numbers are equal and the sum of the elements of each of its k×k subsquares
is the same vk. An array which is both p−balanced and q−balanced will be
called (p, q)−balanced. If p, q are relatively prime, the array will be called
coprime.

We will call (M×N)−seed of a (p, q)−balanced array aM×N rectangle,
having its left corner in the origin and which, extended periodically in both
dimensions of the plane, generates the array.

(i) Prove that, in a (p, q)−balanced array, q2vp = p2vq.
(ii) Prove that a coprime (p, q)−balanced array contains at least three

different numbers. Show that this is not necessarily true if the array is not
coprime ((p, q) > 1).

(iii) Prove that every coprime (p, q)−balanced array has a seed.
(iv) Show that for every p, q there exists a (p, q)−balanced array con-

taining only three different numbers.
(v) Prove that a k−balanced array and a (p, q)−balanced array which

is not coprime (p, q > 1) do not necessarily have a seed.
(vi) Find the minimum T for which there exists a (T × T )−seed of a

given coprime (p, q)−balanced array, when p, q are given primes.
(vii) Show that, for every relatively prime p, q, there exists a coprime

(p, q)−balanced array which has a square (T × T )−seed and does not have
”smaller” (M ×N)−seeds (M ≤ T , N ≤ T and MN < T 2).

D. Schwarz

Solutions

1. The sequence an = � 3
√
n2� + �√n� + 1 is made of positive integers

and non-decreasing. For n ≥ (2m)6 we clearly have an <
n

m
, since

an

n
≤

3
√
n2 +

√
n+ 1

n
≤ 1

4m2
+

1
8m3

+
1

64m6
≤ 1
m

(
1
4
+

1
8
+

1
64

)
<

1
m
,

so take k the largest n for which an ≥ n

m
(clearly this occurs for n = 1,

so the set is not empty). Assume ak >
k

m
; then mak+1 ≥ mak > k, so

mak+1 ≥ k+1, hence ak+1 ≥ k + 1
m

, in contradiction with the maximality of

k. Therefore we must have ak =
k

m
and we may take

nm = max
{
n ∈ N∗ | an ≥ n

m

}
.
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2. Consider the Hamming distance between N -vectors, given by the
number of differing coordinates between the two vectors. In our case this is
given by

d(x,y) =
∑ N∑

k=1

|xk − yk|,

and since all edges are hypercube edges, distances between adjacent vertices
are all 1. Assume a Hamiltonian circuit (x0,x1, . . . ,xn−1,xn = x0) exists.
Notice that modulo 2 we have

n−1∑
v=0

d(xv,xv+1) =
n−1∑
v=0

N∑
k=1

|xv,k − xv+1,k| ≡
N∑

k=1

n−1∑
v=0

(xv,k − xv+1,k) = 0,

and since
n−1∑
v=0

d(xv,xv+1) =
n−1∑
v=0

1 = n,

in order for a Hamiltonian circuit to exist, n must be even.
To show that for any even n there exists a Hamiltonian circuit, we

start by building one for n = 2M , 1 ≤ M ≤ N . Consider the mapping
ρ(a1, a2, . . . , am) = am, . . . , a2, a1 which reverses the order of symbols in a
sequence, and the translation τt which adds t to each term of a numeric
sequence. Build now the iterative sequences W0 = 0, Wk+1 =Wk, ρ(τ2k(Wk)
for k ≥ 0. For instance, W4 = 0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8.

It is obvious thatWM , 0 is a Hamiltonian circuit. Moreover, notice that
any pair {2k, 2k + 1}, with 0 ≤ k ≤ 2M−1 − 1, appears as adjacent terms in
the above circuit. Take M = �log2 n�. Since n− 2M is even, it adds pairs of
vertices to be considered in the circuit. Now, any pair {2M +2k, 2M +2k+1},
with 0 ≤ k ≤ 2M−1 − 1, may be injected within the above sequence WM , 0,
inside the {2k, 2k + 1} pair, such that the even, respectively odd, terms are
adjacent, and so that the new sequence still observes the requirement that
adjacent terms are connected by edges in the hypercube.

3. Denote by ABCD the quadrilateral, with [AC] being the diagonal
in question, and by P , respectively Q, the tangency points with AC of the
incircle γB of the triangle ABC, respectively of the incircle γD of the triangle
ADC.

If BC and AD are parallel, and BA and CD are also parallel, then
ABCD is a parallelogram, with central symmetry, and all is clear. We thus
may assume (AD and (BC are crossing, beyond D, respectively C (otherwise
we either swap the pair of labels B and D, or the pair A and C, or both pairs
– while these moves invariate both stated conditions). Consider the circle Γ
tangent to (AD and (CD beyond D, and (BC beyond C. Let us also denote
by H±

γ2γ1
(X) the homothety of center X which transforms a circle γ1 into

another circle γ2, bearing the sign of the homothety ratio at superscript.
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For the direct, we are told that |AP | = |CQ|. We have

|AP | = 1
2
(|AC|+ |AB| − |BC|) and |CQ| = 1

2
(|AC|+ |CD| − |AD|),

so |AP | = |CQ| is equivalent to |AB| + |AD| = |CB| + |CD|. The other
tangent from B to Γ than BC meets AD at A′. Then a variant to Pithot’s
Theorem yields |A′B|+ |A′D| = |CB|+ |CD|, so |AB| = |A′B|±|AA′|, hence
the triangle ABA′ is degenerated, and so A′ must coincide with A (in fact a
proof of the converse to Pithot). This means that Γ is also tangent to (BA
beyond A.

Then, with R the center of the negative ratio homothety between γB

and γD (i.e. the crossing point of their internal common tangents), we have

H+
γBΓ(B) = H−

γBγD
(R) ◦H−

γDΓ(D),

so D, R and B are collinear, hence R ∈ BD. But AC is one of the internal
common tangents of γB and γD, so R ∈ AC. Finally, R = AC ∩ BD is on
the line of the incenters.

For the reciprocal, we are told that R = AC ∩BD. Then, with B′ the
center of the positive ratio homothety between γB and Γ (i.e. the crossing
point of their external common tangents), we have

H+
γBΓ(B

′) = H−
γBγD

(R) ◦H−
γDΓ(D),

so D, R and B′ are collinear, hence B′ ∈ RD = BD. But BC is one of the
external common tangents of γB and Γ, so B′ ∈ BC, hence B′ must coincide
with B. This means that Γ is also tangent to (BA beyond A.

Finally, applying the variant to Pithot’s Theorem, we get |AB|+|AD| =
|CB|+ |CD|, equivalent to |AP | = |CQ|.

Remark. The same result is valid for the excircles (with respect to
AC) of the triangles ABC and ADC, with analogous proof, since a known
fact yields that their tangency points with AC are symmetrical with respect
to the midpoint of [AC] with those of the incircles, which are given so.

4. Let ak, 1 ≤ k ≤ m, ak+1 = ak + 1 for 1 ≤ k ≤ m − 1, be m
consecutive integer values taken for P (xk) = ak, with xk ∈ Z. It is easy to
prove that b− a | P (b)− P (a) for a, b ∈ Z.

Then xk+1 − xk | P (xk+1)− P (xk) = ak+1 − ak = 1, so |xk+1 − xk| = 1
for 1 ≤ k ≤ m− 1, therefore (xk)1≤k≤m is an arithmetic progression of ratio
r = ±1 (since the values of xk need be distinct).

But the polynomial Q(x) = r(x − x1) + a1 also satisfies Q(xk) = ak

for 1 ≤ k ≤ m, so m ≤ n, otherwise P − Q vanishes in more than degP
arguments, therefore P ≡ Q, absurd, since n > 1.

On the other hand, the polynomials

P (x) = λ
n−1∏
k=0

(
x− (a+ k)

) ± x+ b
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with λ, a, b ∈ Z, take values P (a+ k) = (b± a)± k for 0 ≤ k ≤ n− 1, which
are consecutive, therefore the maximal value n is reached (and in fact this is
the general form of polynomials reaching the maximal possible value).

5. From
√
23 >

m

n
follows 23n2 ≥ m2 + 1. But the quadratic residues

modulo 23 are 0, 1, 25 ≡ 2, 49 ≡ 3, 4, 121 ≡ 6, 100 ≡ 8, 9, 81 ≡ −11, 36 ≡
−10, 16 ≡ −7 and 64 ≡ −5, so the tightest inequality available would seem to
be 23n2 ≥ m2+5, only that modulo 5 we have 23 ≡ 3, and 3 is not a quadratic
residue modulo 5. Therefore the tightest inequality is 23n2 ≥ m2 + 7, for
which there exists the principal solution 23 · 12 = 42 + 7.

i) Hence 23n2 ≥ m2 + 7, or

23 ≥
(m
n

)2
+

7
n2

=
(
m

n
+

3
mn

)2

+
1
n2
− 9
m2n2

,

while
1
n2
− 9
m2n2

=
m2 − 9
m2n2

> 0, as long as m > 3.

Now, for m = 1 or 3,
(
m

n
+

3
mn

)2

=
16
n2

≤ 16 < 23; while for m = 2,(
m

n
+

3
mn

)2

=
49
4n2

≤ 49
4
< 23.

Therefore in all cases
√
23 >

m

n
+

3
mn

.

ii) For 23n2 = m2 + 7 we have

23 =
(m
n

)2
+

7
n2

=
(
m

n
+

4
mn

)2

− 1
n2
− 16
m2n2

<

(
m

n
+

4
mn

)2

,

hence
√
23 <

m

n
+

4
mn

, with the example (m,n) = (4, 1) provided by the
principal solution above.

It remains to show that we infinitely often may have 23n2 = m2+7 (1),
a Pell equation. Since the classical Pell equation 23y2 = x2 − 1 has the
principal solution (24, 5), the solutions for (1) are given by

m+ n
√
23 = (±4±

√
23)(24 + 5

√
23)s, s ∈ N,

enough for exhibiting the required examples.
6. Lemma. If a sequence (xn)n≥0 is both p-periodic and q-periodic,

with p, q relatively prime, then it must be constant.
Proof. There exist positive integers u, v such that 1 = up − vq. Then,

for all n ≥ 0, xn = xn+up = x(n+up)−vq = xn+(up−vq) = xn+1, hence (xn)n≥0

is of period 1, therefore the sequence is constant.
As an extension, if d = (p, q) > 1, the result is that the sequence

must be d-periodic. This follows from the proof above, by grouping together
,,molecules“ of d consecutive ”atom” terms. Now for p = dp′ and q = dq′ we
have (p′, q′) = 1 and we apply the Lemma. This means the ”molecules” are
equal, i.e. the sequence is d-periodic.
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We will now present some mostly trivial consequences of the definitions.
If an array is k-balanced, then it is mk-balanced for any positive integer m.
Hence, if it is (p, q)-balanced, then it is (mp,nq)-balanced for any positive
integers m, n.

The set L of all (M × N)-seeds for a (p, q)-balanced array is a lattice.
If there exists a (M ×N)-seed, then it canonically yields a (mM ×nN)-seed,
by extension through periodicity, therefore a square ([M,N ] × [M,N ])-seed
does exist. If there exists both a (M ×N)-seed and a (M ′ ×N ′)-seed, then
there exist a ([M,M ′]× [N,N ′])-seed, and a ((M,M ′)×(N,N ′))-seed (by the
extension to the Lemma). Finally, if L is not empty, there exists a minimal
(M0×N0)-seed, in the sense that for any other (M ×N)-seed we have M0|M
and N0|N , and a minimal square ([M0, N0]× [M0, N0])-seed.

(i) Clearly the k-balanced property is hereditary to any rectangular
m × n sub-array. Consider any pq × pq square sub-array. A little bit of
double counting shows that the sum of its elements is both q2vp (partition
it in p × p sub-squares), and p2vq (partition it in q × q sub-squares), hence
q2vp = p2vq.

(ii) Assume only two real values x �= y are used. Let us transform a

value v into
v − x
y − x , which turns x into 0 and y into 1. The sums of elements

of k× k sub-squares (for k equal to p or q) remain constant, in fact vk turns

into
vk − k2x

y − x , the number of y’s in the k × k sub-square. Now, the formula

from point (a) implies that p2|vp and q2|vq, but the array being non-constant
we must have 0 < vp < p2 and 0 < vq < q2, contradiction.

If (p, q) > 1, build the array by using as seed any (p, q) × (p, q) square
block made of two values only (of course the array will be ”constant” at the
coarser level of granularity of these blocks, but non-constant at the level of
granularity of unit squares).

(iii) We will show that a square (pq× pq)-seed will do, therefore L �= ∅.

Denote kri,j :=
k−1∑
�=0

ai,j+�, the sum of k consecutive elements on row i,

starting from column j. Similarly, denote kci,j :=
k−1∑
�=0

ai+�,j, the sum of k

consecutive elements on column j, starting from row i.
We have pri,k = pri+p,k for any non-negative integers i, j, and k ≥ j,

because of the p-balanced property. By iterating, this yields
pri,k = pri+qp,k.

Denote xn := ai,n−ai+qp,n, hence
p−1∑
�=0

xk+� = 0. Similarly
q−1∑
�=0

xk+� = 0.
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But this means the sequence (xk)k≥j is both p-periodic and q-periodic,
so according to the Lemma it must be constant. Now, that constant must

be 0, since
p−1∑
�=0

xj+� = 0. So xj = 0, hence ai,j = ai+qp,j for all non-negative

integers i, j.
In a totally similar manner (working along the other dimension) we get

ai,j = ai,j+pq for all non-negative integers i, j, and therefore we have proven
the array originates from a square (pq × pq)-seed.

(iv) Let us present a model of a (p × q)-seed using only three different
values, which results into a (p, q)-balanced array with vp = vq = 0.

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
-1 1 0 · · · 0
1 -1 0 · · · 0

Table 1. A general (p × q)-seed.
(v) We can build a k-balanced array starting with two orthogonal strips

of width k−1 made of arbitrary values, having the origin as lower left crossing
point, choosing an arbitrary value for vk, and filling up the rest of the array,
step by step, in the uniquely possible manner. For (p, q) > 1 just take
k = (p, q); the p× p and q × q sub-squares are made of k× k sub-squares, so
the array is doubly-balanced, with vp = p2

k2 vk and vq = q2

k2 vk. Then L = ∅.

...
. . .

...
...

. . .
ak−1,0 · · · ak−1,k−2 up to vk · · ·
ak−2,0 · · · ak−2,k−2 ak−2,k−1 · · ·

...
. . .

...
...

. . .
a0,0 · · · a0,k−2 a0,k−1 · · ·

Table 2. A general k-balanced array starting from (k − 1)-
wide strips.

(vi) We have seen at point (iii) that T = pq yields a square seed. Any
least value will have to be a divisor of pq.

Let us prove that for (p, q) = 1, p > q ≥ 2, there can never exist a
(q × q)-seed. Assume the converse; then pri,j = pri+mq,j and pci,j = pci,j+p,
for any positive integer m, from periodicity. But in a (p, q)-balanced array
we need have pri,j = pri+mp,j and pci,j = pci,j+mp. Since (p, q) = 1, there
exist positive integers u, v such that 1 = up − vq. Then pri,j = pri+up,j =
pr(i+up)−vq,j = pri+1,j, hence, by iteration, all pri+m,j are equal, for m ≥ 0.
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But
p−1∑
k=0

(pri+k,j+1 − pri+k,j) =
p−1∑
k=0

(pri,j+1 − pri,j) = p(pri,j+1 − pri,j),

and this is pci,j+p− pci,j = 0, hence we will have all pri,j+m equal, for m ≥ 0,
by iteration. This means that any row i is both q-periodic and p-periodic,
hence, according to the Lemma, constant, so there exists a (q× 1)-seed. But
then any column j will be both q-periodic and p-periodic, hence, according
again to the Lemma, constant, so there exists a (1 × 1)-seed, i.e. the array
would be constant, absurd.

Similarly, there can never exist a (p×p)-seed. Take p′ = (p−1)q > p =
= q′, so (q′, p′) = 1, and clearly a q-balanced array is also (p− 1)q-balanced,
hence the array would be (p′, q′)-balanced, so we can apply the above result.

Therefore T = pq is minimal for p, q both primes.
Otherwise take Q|q. If a (Q × Q)-seed would exist, then a (q × q)-

seed would exist, absurd. Similarly for P |p. Therefore a least square seed
need contain factors P , Q from both p, respectively q, and we have seen at
point (iv) how to build a (P ×Q)-seed resulting in a (P,Q)-balanced array,
which will also be (p, q)-balanced, so this shows there exist co-prime (p, q)-
balanced arrays originating from (P×Q)-seeds, hence from a (PQ×PQ)-seed.
The minimal value is achieved when P , Q are the least prime factors of p,
respectively q.

(vii) Let us exhibit the general structure of a minimal square (6 × 6)-
seed for a (2, 3)-balanced array with v2 = v3 = 0. We use arbitrary real a, b,

c and x, with µ =
1
3
(a+ b+ c) (of course, we can add any value v to all cells).

A general minimal (2 × 3)-seed is obtained for a = b = c = µ. A general
minimal (3× 2)-seed is obtained for µ = x = 0.

b− 2µ −b− x+ 2µ b+ x− µ −b b− x −b+ x+ µ
c −c+ x c− x− µ −c+ 2µ c+ x− 2µ −c− x+ µ
a− 2µ −a− x+ 2µ a+ x− µ −a a− x −a+ x+ µ
b −b+ x b− x− µ −b+ 2µ b+ x− 2µ −b− x+ µ
c− 2µ −c− x+ 2µ c+ x− µ −c c− x −c+ x+ µ
a −a+ x a− x− µ −a+ 2µ a+ x− 2µ −a− x+ µ
Table 3. The minimal square (6× 6)-seed for a (2, 3)-balanced array.

This suggests there exist co-prime (p, q)-balanced arrays for which the
minimal seed is the square (pq×pq)-seed prescribed at point (iii). Moreover, it
was obvious already from the result at point (iii) that the number of different
values such an array uses is at most p2q2, and from the result at point (iv)
that it is at least 3. (For the particular case, one can see that the number of
different values can indeed be 2232 = 36.)

Indeed, the conjecture formulated in the above turns to be true! The
linear combination, with αβ �= 0, of the array A generated by the (p×q)-seed
at point (d), and the array tA generated by the transposed (q × p)-seed, is
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an array B = αA + β tA, clearly (p, q)-balanced, and with minimal seed the
square (pq × pq)-seed thus obtained.

PROBLEME

PROBLEME PENTRU CICLUL PRIMAR1)

P:121. Care este diferenţa dintre cel mai mare şi cel mai mic număr
natural de trei cifre dacă ambele numere ı̂ndeplinesc simultan următoarele
condiţii:

i) diferenţa dintre cifra sutelor şi cifra zecilor este egală cu 3;
ii) diferenţa dintre cifra zecilor şi cifra unităţilor este egală cu 2 ?

Iuliana Drăgan, Bucureşti

P:122. Însumând jumătatea, sfertul şi optimea unui număr se obţine
diferenţa dintre cel mai mare număr natural de patru cifre distincte şi cel
mai mare număr natural par de trei cifre distincte. Care este numărul?

Iuliana Drăgan, Bucureşti

P:123. Care este cel mai mic număr natural de forma abcdef , scris cu
cifre diferite, ştiind că a+ f = b+ e = c+ d ?

Iuliana Drăgan, Bucureşti

P:124. Un producător a vândut la piaţă 1800 kg de mere de trei calităţi
având preţurile: 2 lei pe kg; 3 lei pe kg şi 4 lei pe kg. Pentru marfa vândută
a ı̂ncasat 5200 lei. Cantitatea de mere cu preţul de 3 lei pe kg a fost dublul
cantităţii de mere cu preţul de 2 lei pe kg. Determinaţi cantităţile de mere
din fiecare sortiment vândut.

D.M. Bătineţu-Giurgiu, Bucureşti

P:125. Peste 4 ani, Ionel ar avea o treime din vârsta de acum a tatălui
său. Acum, au ı̂mpreună 52 de ani. Câţi ani va avea tatăl lui Ionel când
acesta va avea vârsta de acum a tatălui său ?

Ana Popa, 23 August, Constanţa

P:126. Un grup de turişti inteţionează să ia prânzul la o cantină
forestieră. Dacă s-ar aşeza câte 3 persoane la masă, ar rămâne 9 persoane ı̂n
picioare, iar aşezându-se câte 4, la ultima masă ar rămâne un singur turist.
Câţi turişti şi câte mese are cantina?

Ana Popa, 23 August, Constanţa

P:127. Trie stilouri costă cât patru pixuri, iar ı̂mpreună valoarea lor
este de 48 de lei. Aflaţi cu câţi lei costă mai mult 6 stilouri decât 4 pixuri.

Ana Popa, 23 August, Constanţa

1) Se primesc soluţii până la 30 iunie 2009 (data poştei). (N.R.)


