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The limit, continuity, and Fréchet differentiability of some
bivariate functions
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Abstract. Let k ∈ N, 0 < p1, q1, . . . , pk, qk < ∞, and f : R → R be
such that f (0) = 0. We find the necessary and sufficient conditions for the
function g : R2 → R defined by

g (x, y) =


f(xy)

(|x|p1+|y|p1 )q1 ···(|x|pk+|y|pk )qk
if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) ,

to be continuous, respectively Fréchet differentiable at (0, 0). Moreover, we
show that these results can be extended to the case of real normed spaces.
Various examples are given.

Keywords: limit of a function, continuous function, bivariate function,
Fréchet differentiable.

MSC: Primary 26B05; Secondary 54C30.

1. Preliminaries

In the study of the Fréchet differentiability, the standard example is the
following: The function f : R2 → R defined by

f (x, y) =

® xy√
x2+y2

if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) ,
(1)

is continuous at (0, 0), there exist ∂f
∂x (0, 0), ∂f∂y (0, 0), but is not Fréchet differ-

entiable at (0, 0). In this note we study the existence of the limit, continuity,
and Fréchet differentiability of some functions which extend the example (1),
see Theorem 2. Moreover, we show in Theorem 7 that these results can be
extended to the case of normed spaces. Various examples are given. For
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results of different type, the reader can consult [6]. The notation and notions
used in this paper are standard, see any of the books [1, 2, 3, 4].

2. A technical lemma

In the following lemma we find the necessary and sufficient condition
for a bivariate function to have the limit 0 at the point (0, 0). It is the natural
analogue of [5] and [6, Proposition 1].

Lemma 1. Let m ∈ N, 0 < p1, q1, . . . , pm, qm < ∞, and f : R → R be such
that f (0) = 0 and g : R2 \ {(0, 0)} → R defined by

g (x, y) =
f (xy)

(|x|p1 + |y|p1)q1 · · · · (|x|pm + |y|pm)qm
.

Then the following assertions are equivalent:
(i) lim

(x,y)→(0,0)
g (x, y) = 0.

(ii) lim
x→0

f(x)

|x|
p1q1+···+pmqm

2

= 0.

Proof. (i)⇒ (ii). Let xn → 0 (in R) be such that xn > 0 for all n ∈ N. Then(√
xn,
√
xn
)
→ (0, 0) (in R2) and

(√
xn,
√
xn
)
6= (0, 0) for all n ∈ N. From (i)

lim
n→∞

g
(√
xn,
√
xn
)

= 0. Since for all x 6= 0, g(x, x) =
f(x2)

2q1+···+qm |x|p1q1+···+pmqm ,

we deduce that lim
n→∞

f(xn)

|xn|
p1q1+···+pmqm

2

= 0. It follows that

lim
x→0, x>0

f (x)

|x|
p1q1+···+pmqm

2

= 0. (2)

Now let xn → 0 (in R) be such that xn < 0 for all n ∈ N. Then
(
√
−xn,−

√
−xn) → (0, 0) (in R2) and (

√
−xn,−

√
−xn) 6= (0, 0) for all n ∈

N. The hypothesis (i) gives us that lim
n→∞

g (
√
−xn,−

√
−xn) = 0. Since

for all x 6= 0 we have g (x,−x) =
f(−x2)

2q1+···+qm |x|p1q1+···+pmqm , we deduce that

lim
n→∞

f(xn)

|xn|
p1q1+···+pmqm

2

= 0. It follows that

lim
x→0, x<0

f (x)

|x|
p1q1+···+pmqm

2

= 0. (3)

From (2) and (3) we get (ii).
(ii) ⇒ (i). Let ε > 0. From (ii) there exists δε > 0 such that for all

0 < |x| < δε the following inequality holds

|f (x)|

|x|
p1q1+···+pmqm

2

< 2q1+···+qmε. (4)
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Now notice that if x 6= 0 and y 6= 0, then

|g (x, y)| = |f (xy)|
(|x|p1 + |y|p1)q1 · · · (|x|pm + |y|pm)qm

=
|f (xy)|

|xy|
p1q1+···+pmqm

2

·
Ç√
|x|p1 |y|p1

|x|p1 + |y|p1

åq1
· · ·
Ç√
|x|pm |y|pm

|x|pm + |y|pm

åqm
≤ 1

2q1+···+qm ·
|f (xy)|

|xy|
p1q1+···+pmqm

2

. (5)

We have used that
√
ab

a+b ≤
1
2 for all a > 0, b > 0. Let (x, y) 6= (0, 0) be such

that max (|x| , |y|) <
√
δε. We can have the situations:

a) x = 0. In this case |g (x, y)| = |g (0, y)| = 0 < ε.
b) y = 0. In this case |g (x, y)| = |g (x, 0)| = 0 < ε.
c) x 6= 0 and y 6= 0. In this case, since max (|x| , |y|) <

√
δε, it follows that

0 < |x| <
√
δε and 0 < |y| <

√
δε. We deduce that 0 < |xy| < δε and from

(1), |f(xy)|

|xy|
p1q1+···+pmqm

2

< 2q1+···+qmε. From (5) we get |g (x, y)| < ε. Hence,

lim
(x,y)→(0,0)

g (x, y) = 0. 2

3. The main result

Theorem 2. Let k ∈ N, 0 < p1, q1, . . . , pk, qk < ∞, and f : R → R be such
that f (0) = 0 and g : R2 → R defined by

g (x, y) =


f(xy)

(|x|p1+|y|p1 )q1 ···(|x|pk+|y|pk )qk
if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) .

Then:
(i) g is continuous at (0, 0) if and only if lim

x→0

f(x)

|x|
p1q1+···+pkqk

2

= 0.

(ii) g is Fréchet differentiable at (0, 0) if and only if lim
x→0

f(x)

|x|
p1q1+···+pkqk

2 + 1
2

= 0.

Proof. (i) g is continuous at (0, 0) if and only if lim
(x,y)→(0,0)

g (x, y) = g (0, 0) =

0. By Lemma 1 for m = k, this is equivalent to the stated limit.
(ii) Let us note that g (x, 0) = 0 for all x ∈ R and hence ∂g

∂x (0, 0) = 0.

From g (0, y) = 0 for all y ∈ R we deduce ∂g
∂y (0, 0) = 0. Hence g is Fréchet

differentiable at (0, 0) if and only if lim
(x,y)→(0,0)

g(x,y)√
x2+y2

= 0, that is the function

h : R2 \ {(0, 0)} → R defined by

h (x, y) =
f (xy)

(|x|p1 + |y|p1)q1 · · · (|x|pk + |y|pk)qk
Ä
|x|2 + |y|2

ä 1
2
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has the property that lim
(x,y)→(0,0)

h (x, y) = 0. By Lemma 1 for m = k+ 1 and

pk+1 = 2, qk+1 = 1
2 , this is equivalent to the stated limit. 2

4. Some examples

Corollary 3. Let 0 < p < ∞, f : R → R be such that f (0) = 0 and
g : R2 → R defined by

g (x, y) =


f(xy)

(|x|p+|y|p)
1
p

if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) .

Then:
(i) g is continuous at (0, 0) if and only if lim

x→0

f(x)√
|x|

= 0.

(ii) g is Fréchet differentiable at (0, 0) if and only if f is derivable at 0 and
f ′ (0) = 0.

Proof. It follows from Theorem 2 for k = 1, p1 = p, q1 = 1
p . 2

Let us note that for p = 2 and f (x) = x in Corollary 3 we get the
standard example (1).

Corollary 4. Let f : R → R be such that f (0) = 0 and g : R2 → R defined
by

g (x, y) =


f(xy)√

x2+y2 4
√
x4+y4

if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) .

Then:
(i) g is continuous at (0, 0) if and only if f is derivable at 0 and f ′ (0) = 0.

(ii) g is Fréchet differentiable at (0, 0) if and only if lim
x→0

f(x)

x
√
|x|

= 0.

Proof. It follows from Theorem 2 for k = 2, p1 = 2, q1 = 1
2 , p2 = 4, and

q2 = 1
4 . 2

Corollary 5. Let α ∈ R and g : R2 → R be defined by

g (x, y) =


|x|α|y|α√

x2+y2 4
√
x4+y4 6

√
x6+y6

if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) .

Then:
(i) g is continuous at (0, 0) if and only α > 3

2 .
(ii) g is Fréchet differentiable at (0, 0) if and only if α > 2.
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Proof. We take k = 3, p1 = 2, q1 = 1
2 , p2 = 4, q2 = 1

4 , p3 = 6, q3 = 1
6 , and

f (x) = |x|α in Theorem 2. By (i), g is continuous at (0, 0) if and only if

lim
x→0

|x|α

|x|
3
2

= 0, or equivalently, α > 3
2 . By part (ii) of Theorem 2, g is Fréchet

differentiable at (0, 0) if and only if lim
x→0

|x|α
x2 = 0, or equivalently, α > 2. 2

5. The case of real normed spaces

In the sequel we show that the above results can be extended to the
context of real normed spaces. If (X, ‖ ‖), (Y, ‖ ‖) are two real normed
spaces, on the cartezian product X × Y we consider, as is usual, the norm
‖(x, y)‖ = max (‖x‖ , ‖y‖). For the definition of the Fréchet differentiable
function in the case of the real normed spaces we refer the reader to con-
sult the books [2, 3, 4]; in particular, we will use that Ψ : X × Y → R is
Fréchet differentiable at (0, 0) if and only if there exist ∂Ψ

∂x (0, 0), ∂Ψ
∂y (0, 0),

and lim
(x,y)→(0,0)

Ψ(x,y)−Ψ(0,0)− ∂Ψ
∂x

(0,0)(x)− ∂Ψ
∂y

(0,0)(y)√
‖x‖2+‖y‖2

= 0.

Lemma 6. Let m ∈ N, 0 < p1, q1, . . . , pm, qm < ∞, and ϕ : [0,∞) → R
be such that ϕ (0) = 0. Let X, Y be non-null real normed spaces and Ψ :
(X × Y ) \ {(0, 0)} → R defined by

Ψ (x, y) =
ϕ (‖x‖ ‖y‖)

(‖x‖p1 + ‖y‖p1)q1 · · · (‖x‖pm + ‖y‖pm)qm
.

Then the following assertions are equivalent:
(i) lim

(x,y)→(0,0)
Ψ (x, y) = 0.

(ii) lim
t→0, t>0

ϕ(t)

t
p1q1+···+pmqm

2

= 0.

Proof. (i)⇒ (ii). SinceX and Y are non-null, there exist a ∈ X with ‖a‖ = 1
and b ∈ Y with ‖b‖ = 1. Let λn → 0 (in R) be such that λn > 0 for all
n ∈ N. Then

(√
λna,

√
λnb
)
→ (0, 0) (in X × Y ) and

(√
λna,

√
λnb
)
6= (0, 0)

for all n ∈ N. From (i), lim
n→∞

Ψ
(√
λna,

√
λnb
)

= 0. Since ‖a‖ = 1, ‖b‖ = 1,

Ψ
(√
λna,

√
λnb
)

= ϕ(λn)

2q1+···+qmλ
p1q1+···+pmqm

2
n

and hence lim
n→∞

ϕ(λn)

λ
p1q1+···+pmqm

2
n

= 0.

It follows that lim
t→0, t>0

ϕ(t)

t
p1q1+···+pmqm

2

= 0.

(ii) ⇒ (i). Let ε > 0. From (ii), there exists δε > 0 such that for all
0 < t < δε the following inequality holds

|ϕ (t)|
t
p1q1+···+pmqm

2

< 2q1+···+qmε. (6)
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Now notice that if x 6= 0 and y 6= 0, then

|Ψ (x, y)| = |ϕ (‖x‖ ‖y‖)|
(‖x‖p1 + ‖y‖p1)q1 · · · (‖x‖pm + ‖y‖pm)qm

=
|ϕ (‖x‖ ‖y‖)|

(‖x‖ ‖y‖)
p1q1+···+pmqm

2

·
Ç√
‖x‖p1 ‖y‖p1

‖x‖p1 + ‖y‖p1

åq1
· · ·
Ç√
‖x‖pm ‖y‖pm

‖x‖pm + ‖y‖pm

åqm
≤ 1

2q1+···+qm ·
|ϕ (‖x‖ ‖y‖)|

(‖x‖ ‖y‖)
p1q1+···+pmqm

2

. (7)

Again we have used that
√
ab

a+b ≤
1
2 when a > 0, b > 0. Let (x, y) 6= (0, 0) be

such that max (‖x‖ , ‖y‖) <
√
δε. We can have the situations:

a) x = 0. In this case |Ψ (x, y)| = |Ψ (0, y)| = 0 < ε.
b) y = 0. In this case |Ψ (x, y)| = |Ψ (x, 0)| = 0 < ε.
c) x 6= 0 and y 6= 0. In this case, since max (‖x‖ , ‖y‖) <

√
δε, it follows that

0 < ‖x‖ <
√
δε and 0 < ‖y‖ <

√
δε. We deduce that 0 < ‖x‖ ‖y‖ < δε and

from (6)

|ϕ (‖x‖ ‖y‖)|

(‖x‖ ‖y‖)
p1q1+···+pmqm

2

< 2q1+···+qmε.

From (7) we deduce that |Ψ (x, y)| < ε. Hence, lim
(x,y)→(0,0)

Ψ (x, y) = 0. 2

Theorem 7. Let k ∈ N, 0 < p1, q1, . . . , pk, qk < ∞, and ϕ : [0,∞) → R
be such that ϕ (0) = 0. Let X, Y be non-null real normed spaces and Ψ :
X × Y → R defined by

Ψ (x, y) =


ϕ(‖x‖‖y‖)

(‖x‖p1+‖y‖p1 )q1 ···(‖x‖pk+‖y‖pk )qk
if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) .

Then:
(i) Ψ is continuous at (0, 0) if and only if lim

t→0, t>0

ϕ(t)

t
p1q1+···+pkqk

2

= 0.

(ii) Ψ is Fréchet differentiable at (0, 0) if and only if lim
t→0, t>0

ϕ(t)

t
p1q1+···+pkqk

2 + 1
2

=

0.

Proof. (i) Ψ is continuous at (0, 0) if and only if lim
(x,y)→(0,0)

Ψ (x, y) = Ψ (0, 0) =

0. By Lemma 6 for m = k, this is equivalent to the stated limit.
(ii) Let us note that Ψ (x, 0) = 0 for all x ∈ X and hence ∂Ψ

∂x (0, 0) = 0,

and from Ψ (0, y) = 0 for all y ∈ Y we deduce ∂Ψ
∂y (0, 0) = 0. Hence Ψ is

Fréchet differentiable at (0, 0) if and only if lim
(x,y)→(0,0)

Ψ(x,y)√
‖x‖2+‖y‖2

= 0, that is
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the function H : (X × Y ) \ {(0, 0)} → R defined by

H (x, y) =
ϕ (‖x‖ ‖y‖)

(‖x‖p1 + ‖y‖p1)q1 · · · (‖x‖pk + ‖y‖pk)qk
Ä
‖x‖2 + ‖y‖2

ä 1
2

has the property that lim
(x,y)→(0,0)

H (x, y) = 0. By Lemma 6 for m = k+1 and

pk+1 = 2, qk+1 = 1
2 , this is equivalent to the stated limit. 2

Corollary 8. Let 0 < p <∞, ϕ : [0,∞)→ R be such that ϕ (0) = 0. Let X,
Y be non-null real normed spaces and Ψ : X × Y → R defined by

Ψ (x, y) =


ϕ(‖x‖‖y‖)

(‖x‖p+‖y‖p)
1
p

if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) .

Then:
(i) Ψ is continuous at (0, 0) if and only if lim

t→0, t>0

ϕ(t)√
t

= 0.

(ii) Ψ is Fréchet differentiable at (0, 0) if and only if ϕ is derivable at 0 and
ϕ′ (0) = 0.

Proof. It follows from Theorem 7 for k = 1, p1 = p, q1 = 1
p . 2

Let us give some concrete applications of these general results.

Corollary 9. Let ϕ : [0,∞)→ R be such that ϕ (0) = 0. Let Ψ : R3 → R be
defined by

Ψ (x, y, z) =


ϕ
Ä
|x|
√
y2+z2

ä
√
x2+y2+z2

if (x, y, z) 6= (0, 0, 0) ,

0 if (x, y, z) = (0, 0, 0) .

Then:
(i) Ψ is continuous at (0, 0, 0) if and only if lim

t→0, t>0

ϕ(t)√
t

= 0.

(ii) Ψ is Fréchet differentiable at (0, 0, 0) if and only if ϕ is derivable at 0
and ϕ′ (0) = 0.

Proof. Let us take in Corollary 8 X = R, Y = R2, and recall that the norm
in R is |x| and the norm in R2 is ‖(y, z)‖ =

√
y2 + z2. 2

In the next examples we write C ([0, 1]) to denote the real linear space
of all continuous functions f : [0, 1]→ R.
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Corollary 10. Let Ψ : C ([0, 1])× C ([0, 1])→ R be defined by

Ψ (f, g) =



Ç
sup

x∈[0,1]
|f(x)|

åÇ
sup

x∈[0,1]
|g(x)|

å…
sup

x∈[0,1]
|f(x)|2+ sup

x∈[0,1]
|g(x)|2

if (f, g) 6= (0, 0) ,

0 if (f, g) = (0, 0) .

Then: Ψ is continuous at (0, 0), there exist ∂Ψ
∂x (0, 0) and ∂Ψ

∂y (0, 0), but Ψ is

not Fréchet differentiable at (0, 0).

Proof. Let us note that, as is well known, ‖f‖ = sup
x∈[0,1]

|f (x)| is a norm on

C ([0, 1]). We apply Corollary 8 for p = 2 and ϕ (t) = t. 2

Corollary 11. Let Ψ : C ([0, 1])× C ([0, 1])→ R be defined by

Ψ (f, g) =


»

(
∫ 1
0 |f(x)|2 dx)(

∫ 1
0 |g(x)|2 dx)»∫ 1

0 (|f(x)|2+|g(x)|2) dx
if (f, g) 6= (0, 0) ,

0 if (f, g) = (0, 0) .

.

Then: Ψ is continuous at (0, 0), there exist ∂Ψ
∂x (0, 0) and ∂Ψ

∂y (0, 0), but Ψ is

not Fréchet differentiable at (0, 0).

Proof. In this case we consider on C ([0, 1]) the norm ‖f‖ =
»∫ 1

0 |f (x)|2 dx.
We apply Corollary 8 for p = 2 and ϕ (t) = t. 2
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Isogonal conjugation in isosceles tetrahedron

Saro Harutyunyan1)

Abstract. In this article we investigate the properties of isogonal con-
jugation in isosceles tetrahedron. Particularly we reveal three hyperbolic
parabolas each of which is formed by pairs of isogonal conjugate points
symmetric in the respective bimedian, as well as we prove that the circum-
sphere of an isosceles tetrahedron is invariant under isogonal conjugation
in that tetrahedron.

Keywords: Isosceles tetrahedron, isogonal conjugate, inversion, angle be-
tween circles/spheres.

MSC: 51M04, 51M20.

1. Introduction

Tetrahedron ABCD is called isosceles (or equihedral) if its opposite
edges are equal, i.e., AB = CD, BC = AD, AC = BD. This type of
tetrahedron is already well-investigated. One may refer to [3] for a list of its
known properties. For the purposes of this paper we will need only a few of
these properties which will be discussed in Section 2.

One may note that the isosceles tetrahedron is kind of a generalization
of the equilateral triangle and is inherently “symmetric” so it should have a
“center” that will coincide with its circumcenter, incenter, and centroid. Ac-
tually this is true for the high-dimensional analogue of isosceles tetrahedron
too, see [1] and [2].

We will need the notion of isogonal conjugation with respect to a poly-
hedron. This is the natural generalization of this transformation for polygons.
First, for a given dihedron D with edgeline e and a point P define the isogonal
plane of Pe in D as the plane symmetric to Pe with repect to the bisector
plane of D (if P lies on e then the plane Pe, as well as its isogonal, can be
any plane through e). Then, for a given polydron P and a point P define
the isogonal conjugate of P in P as the point Q (in case of existence) so that
P and Q lie on isogonal planes in each dihedron of P. Obviously if P is the
isogonal conjugate of Q, then Q is the isogonal conjugate of P .

Isogonal conjugation is well-defined for an arbitrary tetrahedron, that
is, any point of the space has an isogonal conjugate with respect to the
tetrahedron. On the other hand this is not the case with other polyhedra,
there might be only a few or not even a single point which have isogonal
conjugates. Anyway we will only work with tetrahedron and will give a proof
of the first sentence of this paragraph in Section 3.

Section 4 will address several auxiliary facts, mainly concerning circles
and spheres, which will be leveraged later.

1)Yerevan, Armenia 0012, saro.harutyunyan@gmail.com
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One of the main results of this paper will be presented in Section 5
where we consider isogonal conjugate pairs symmetric in bimedians of isosce-
les tetrahedron. We prove that they lie on hyperbolic paraboloids. This
is the only section where we will utilize coordinate chasing opposed to the
geometric techniques used elsewhere.

The other major result of this paper is that the circumsphere (except
for the vertices) of isosceles tetrahedron is invariant with respect to isog-
onal conjugation. In other words, the isogonal conjugate of any point of
the circumsphere of an isosceles tetrahedron other than a vertex lies on its
circumsphere. This will be proved in Section 6.

Interestingly, the two-dimensional case of isosceles tetrahedron,
namely the equilateral triangle, does not have any similar property. More-
over, the isogonal conjugate of any point P /∈ {A,B,C} of the circumcircle of
any triangle ABC is “infinite”, i.e., the isogonals of AP,BP,CP are parallel.

2. Properties of isosceles tetrahedron

Proposition 2.1. Isosceles tetrahedron has the following properties:

(i) any of its edges is seen in equal angles from the other two vertices
and its faces are congruent triangles (hence the name equihedral);

(ii) its circumcenter and incenter coincide;
(iii) its faces are acute triangles.

Proof. (i) Obvious by the equality of opposite edges.
(ii) LetO be the center of circumsphere Ω of ABCD. The locus of points

Z ∈ Ω such that ∠AZB = ∠ACB is a union of two circular arcs which are
symmetric with respect to the plane ABO. This means that the planes ADB
and ACB are symmetric with respect to ABO for ∠ADB = ∠ACB, which
follows from (i). So O lies on the bisector plane of dihedron AB. Similarly
O lies on the bisector planes of the other dihedrons and thus coincides with
the incenter.

(iii) Assume for the sake of contradiction that ∠ABC ≥ 90◦, for ex-
ample. Choose the point D′ in such a way that ABCD′ is a parallelogram.
Then if M is the midpoint of AC, we have 4ADC = 4AD′C and

BD < BM +MD = BM +MD′ = BD′ ≤ AC

which is obviously false (the last inequality follows from the fact that BD′

lies inside the circle with diameter AC). Thus the faces of ABCD are acute
angled. 2

3. Isogonal conjugation in tetrahedron

Here we will work out a proof of the correctness of isogonal conjugation
in tetrahedron. Note that by definition if P is a vertex of the tetrahedron,
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then, for any Q lying in the opposite faceplane, P and Q are isogonal con-
jugates. Note as well that any two points on the opposite edgelines of the
tetrahedron are isogonal conjugates too.

Theorem 1. For a given tetrahedron ABCD and a point P not lying on its
surface, its isogonal conjugate Q with respect to ABCD exists.

Proof. Let PA, PB, PC , PD be the reflections of P in the respective faces of
ABCD. Since DPA = DPB = DPC , the line through D perpendicular
to PAPBPC passes through the circumcenter Q of PAPBPCPD. The lines
through A,B,C defined similarly pass through Q too.

Now let’s show that, for example, the planes ABP and ABQ are isogo-
nal in dihedron AB, i.e., they make equal angles with its bisector plane; see
Figure 1 for a perspective in the direction of edge AB. Choose a positive
direction of rotation around AB and define ∠(ABX,ABY ) for X and Y not
lying on AB as the minimal angle of rotation in that positive direction that
sends the plane ABX to ABY . Then

∠(ABP,ABD) =
∠(ABP,ABPC)

2

=
∠(ABPD, ABPC)− ∠(ABPD, ABP )

2
= ∠(ABPD, ABQ)− ∠(ABPD, ABC)

= ∠(ABC,ABQ).

Similarly, planes eP and eQ are isogonal in dihedron e for any other
edge e of ABCD. Hence P and Q are isogonal conjugates.

AB
D

C

P

PC

PD

Q

Figure 1.

2

Recall that for a given tetrahedron ABCD and point P the sphere
passing through the projections of P onto the faces of ABCD is called the
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pedal sphere of P . For degenerated cases, i.e., when the set of projections
contains less than four points, the pedal sphere can be defined via limit.

Remark 1. Note that in the proof of Theorem 1 the homothety with coeffi-
cient 1/2 centered at P sends the vertices of PAPBPCPD and its circumcenter
Q to the projections of P onto the faces of ABCD and the midpoint MPQ

of PQ, respectively. So the resulting sphere centered at MPQ passes through
the projections of P . Similarly, it passes through the projections of Q too.
Hence we may formulate the following proposition which is the generalization
of the respective result for the triangle.

Corollary 2. The eight projections of two isogonal conjugate points in a
tetrahedron onto its faces lie on a (pedal) sphere centered at the midpoint of
the segment joining the two isogonal conjugate points. Moreover, the projec-
tions onto the same face are diametrically opposite in the intersection circle
of the sphere and the face.

It is not difficult to see that the reasonings in the proof of Theorem 1
and Remark 1 are reversible. This lets us formulate the following corollary.

Corollary 3. Points P and Q are isogonal conjugates in a tetrahedron iff
their pedal spheres coincide.

4. Auxiliary facts

When working with spheres it is useful to study the analogous config-
urations (if existing) for circles on the plane. Many properties of circles on
the plane are valid for spheres too. Particularly, this concerns to inversion.

Define the angle between two intersecting spheres as the angle between
their tangent planes in a point of their intersection. This definition can be
extended for a sphere and a plane too. Indeed, one may think of the plane
as a special case of a sphere whose center is at infinity.

It is well-known that angles between circles are preserved under inver-
sion. Naturally, this is the case with spheres too.

Proposition 4.1. Angles between spheres are preserved under inversion.

Proof. Let us be given two intersecting spheres γ1, γ2 and an inversion sphere
Ω. Consider their section with the plane π through their centers. Then the
angle between γ1 and γ2 is equal to the angle between the circles γ1 ∩ π
and γ2 ∩ π. Also note that for these two circles inversion in Ω is equivalent
to inversion in Ω ∩ π. Thus, since the angles between circles are preserved
under inversion on plane, the angles between the spheres constructed on these
circles having the same center and radius are also preserved. 2

The second fact that will come handy for the proof of the main result
is as well a generalization of a plane construction.
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Proposition 4.2. Let us be given a sphere Ω and a circle σ on it, as well
as a sphere Γ passing through σ. Suppose that Γ makes equal angles with Ω
and the plane of σ. Then the center of Γ lies on Ω.

Proof. Let Q be the center of Γ. Consider a section of the construction with
a plane through the centers of Γ and Ω. Let the sections of these spheres be
the circles γ and ω, respectively, and let S1, S2 be the points of intersection
of σ with the secant plane; see Figure 2. Let also UV be the diameter in
ω perpendicular to S1S2 and t be the tangent at S2 to ω. Without loss of
generality we may assume that Q and V lie in the same side of S1S2.

S1

ω
S2

V = Q

γ

U

t

Figure 2.

By simple angle chasing one may check that US2 bisects the angle
between t and S1S2. This means that γ should touch US2. Similarly, γ
should touch US1, too, so the center of γ coincides with V and thus lies on
Ω. 2

We will utilize the following property of isogonal conjugate points in a
triangle as well.

Proposition 4.3. Let X and Y be isogonal conjugate points in the triangle
ABC. Let M and N be the midpoints of arcs AB not containing and con-
taining C, respectively. Let γM and γN be the circles centered at M and N ,
respectively, passing through A,B. Then:

(i) each of the circles γM and γN makes equal angles with (bisects) the
circles ABX and ABY ;

(ii) N and M are respectively the external and internal homothety centers
of the circles ABX and ABY .
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Proof. Let I be the incenter of ABC, and S, T be the circumcenters of
ABX,ABY , respectively; see Figure 3. Recall that I lies on γM .

Since AI bisects ∠XAY and BI bisects ∠XBY , easy angle chasing
yields that AM bisects ∠TAS. Hence γM bisects the circles ABX and ABY .
But AN ⊥ AM , so AN bisects ∠TAS too and γN also bisects the circles
ABX and ABY . Thus part (i) is proved.

By the bisector property, SM
MT = SA

AT = SN
NT . This proves part (ii). 2

A

C

B

X

Y

N
M

I

T S

γM

γN

Figure 3.

Proposition 4.4. Let us be given two spheres Ω1 and Ω2 intersecting each
other through the circle σ. Let S be the center of their external homothety.
Then the sphere Γ centered at S and passing through σ bisects the spheres Ω1

and Ω2.

Proof. Consider a section of the construction by any plane π passing through
the centers of Ω1 and Ω2; see Figure 4. Let ωi = Ωi ∩ π, i ∈ {1, 2}, and
γ = Γ ∩ π. Let A be one of the points of intersection of ω1 and ω2. Let SA
intersect ω1 second time at B.

By known properties of homothety, the tangents of ω1 at B and of ω2 at
A are parallel. On the other hand, SA makes equal angles with the tangents
of ω1 at A and B. Thus SA bisects the angle between the tangents of ω1

and ω2 at A. Equivalently, this angle is bisected by the tangent at A to γ,
as needed. 2
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A

ω1

ω2

S

B

γ

Figure 4.

5. Isogonal conjugates symmetric in bimedians

From here on we will denote by ABCD our isosceles tetrahedron, by Ω
its circumsphere, and by O its center.

In this section we will heavily rely on coordinate chasing (though in-
corporating it with some crucial geometric reasonings) and will use several
quantitative characteristics of the tetrahedron in terms of its coordinates.
Namely, embed ABCD into the Cartesian coordinate system Oxyz so that

A = (−a, b, c), B = (a,−b, c), C = (a, b,−c), D = (−a,−b,−c) (1)

for some a, b, c ∈ R \ {0}.
The following proposition defines pretty much all the values that we

need.

Proposition 5.1. In ABCD

(i) if S is the area of a face

S = 2
√
a2b2 + b2c2 + c2a2;

(ii) if d is the distance from O to a face

d =
2|abc|
S

;

(iii) if θ is half the angle of dihedron CD (or equivalently AB)

sin θ =
d

|c|
.

Proof. (i) Taking into account that the sides of ABC are equal to AB =

2
√
a2 + b2 etc. and utilizing Heron’s formula, after some manipulations we

find the presented formula for S.
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(ii) Note that the volume of ABCD is [ABCD] =
4dS

3
. On the other

hand, [ABCD] is one third of the volume of the circumscribed parallelepiped,

which is rectangular in case of isosceles tetrahedron, i.e., [ABCD] =
8|abc|

3
.

Hence we find the presented value for d.
(iii) Let M be the midpoint of CD and Q be the circumcenter of ACD.

Then θ = ∠OMQ, so

sin θ =
OQ

OM
=

d

|c|
.

2

Recall that a bimedian of tetrahedron is a line joining midpoints of
opposite edges. We will denote by `A, `B, `C the bimedians of ABCD joining
the midpoints of edges DA and BC, DB and AC, DC and AB, respectively.

We will need the following fact too to prove the upcoming theorem.

Lemma 4. Let X be any point of the space. Let P and Q be its projections
on ACD and BCD, respectively. Also let R be its projection on `C . Then
PR = RQ.

Proof. Let S be the projection of X on the bisector plane of dihedron CD and
let T be the projection of S on CD; see Figure 5. Then X,P, S,Q, T lie on
a circle with diameter XT . Since TS bisects ∠PTQ, we get that PS = SQ.
Hence, from RS ⊥ PQR we deduce that PR = RQ. 2

Figure 5.
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Theorem 5. Let ` be a bimedian of ABCD. Then the pairs of isogonal
conjugate points in ABCD which are symmetric with respect to ` form a
hyperbolic paraboloid.

Proof. Without loss of generality we may assume that ` = `C . Let P and Q
be isogonal conjugate points symmetric in `. Then their midpoint M lies on
`. According to Corollary 2, the pedal spheres of P and Q coincide and have
the center M . Denote this sphere by Γ.

Since M lies on the bisector of dihedron CD, the circles γA and γB cut
from Γ by the planes BCD and ACD, respectively, are symmetric in the
bisector of dihedron CD.

The projections of P and Q on BCD lie on γA, so P and Q lie on the
straight cylinder CA based on γA. Similarly, P and Q lie on the straight
cylinder CB based on γB. On the other hand, P and Q lie on a plane π
perpendicular to `. Thus P and Q lie on the ellipses π ∩ CA and π ∩ CB.
However these ellipses coincide since both of them have the center M and
minor axes parallel to CD. Name this ellipse ε1.

Repeating the reasoning above for the dihedron AB, we find out that P
and Q lie on the ellipse ε2 defined similarly. Hence P and Q are an opposite
pair of the points of intersection ε1 ∩ ε2.

Now recall the embedding (1). Then M = (0, 0, z0) for some z0 ∈ R.
Note that ` coincides with Oz and the other two bimedians of ABCD coincide
with Ox and Oy.

Let d be the distance from O to the faces of ABCD. Then it is easy
to see that the distances d1 and d2 from M to ACD and ABC, respectively,

are

∣∣∣∣z0 + c

c

∣∣∣∣ d and

∣∣∣∣z0 − c
c

∣∣∣∣ d.

If r1 and r2 are the radii of γB and γC = Γ ∩ABD, respectively, then

r1 =
»
r2 − d2

1, r2 =
»
r2 − d2

2.

Clearly the minor axis of ε1 is equal to r1, while its major axis is
r1

sin θ
,

where θ is half the angle of dihedron CD (or equivalently AB).
Note that the minor axis of ε1 is parallel to CD. Thus ε1 can be

obtained from the ellipse 
x2

r2
1/ sin2 θ

+
y2

r2
1

= 1,

z = z0,

by rotating it around Oz in the negative direction (from y to x) in the angle
ϕ = arctan

(
a
b

)
. This gives the following equations for ε1:®

(x cosϕ− y sinϕ)2 sin2 θ + (x sinϕ+ y cosϕ)2 = r2
1,

z = z0.
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Similarly, ε2 is given by®
(x cosϕ+ y sinϕ)2 sin2 θ + (−x sinϕ+ y cosϕ)2 = r2

2,

z = z0.

Subtracting these equations we get the following equations which hold for
the points of ε1 ∩ ε2:®

−4xy sinϕ cosϕ cos2 θ = r2
2 − r2

1,

z = z0.
(2)

We have

sinϕ =
a√

a2 + b2
, cosϕ =

b√
a2 + b2

,

r2
2 − r2

1 = d2
1 − d2

2

=
(z0 + c)2 − (z0 − c)2

c2
d2 =

4z0

c
d2.

Using these as well as our calculated values in Proposition 5.1, we get

cos2 θ = 1− d2

c2
=

c2(a2 + b2)

a2b2 + b2c2 + c2a2

and (2) simplifies to −xy =
ab

c
z0,

z = z0.

Now letting z0 vary we get the hyperbolic paraboloid H containing all the
isogonal conjugate pairs P and Q symmetric in `:

z = − c

ab
xy.

However we still need to show that any pair of points P ′ and Q′ on H
symmetric in ` are isogonal conjugates. To this end we will use the equiva-
lence of isogonal conjugate points from Corollary 3.

Let PA, PB, PC , PD be the projections of P ′ on BCD, CDA, DAB,
ABC, respectively. Define similarly QA, QB, QC , QD. Also let M ′ be the
projection of P ′ (or equivalently of Q′) on `.

According to Lemma 4, PAM
′ = M ′PB. In view of symmetry in `C ,

we get that all the four points PA, PB, QA, QB are equidistant from M ′.
Similarly, PC , PD, QC , QD are equidistant from M ′ too. So if we prove that
PBM

′ = PCM
′, then the pedal spheres of P ′ and Q′ will coincide and we

will be done by Corollary 3.
We have the following equations for the faceplanes:

ACD :
x

a
− y

b
+
z

c
+ 1 = 0, ABD :

x

a
+
y

b
− z

c
+ 1 = 0.
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If P ′ = (x0, y0, z0), then

M ′P 2
B =

(
x0 −

p+ q

ar

)2

+
(
y0 +

p+ q

br

)2

+
(p+ q

cr

)2

,

M ′P 2
C =

(
x0 −

−p+ q

ar

)2

+
(
y0 −

−p+ q

br

)2

+
(−p+ q

cr

)2

,

where

p = −y0

b
+
z0

c
, q =

x0

a
+ 1, r =

1

a2
+

1

b2
+

1

c2
.

Then

M ′P 2
B −M ′P 2

C

4
= −p

a

(
x0 −

q

ar

)
+
q

b

(
y0 +

p

br

)
+
p

c
· q
cr

= −x0

a
p+

y0

b
q + pq

= −x0

a

(
−y0

b
+
z0

c

)
+
y0

b

(x0

a
+ 1
)

+
(
−y0

b
+
z0

c

)(x0

a
+ 1
)

=
x0y0

ab
+
z0

c
.

Since P ′ = (x0, y0, z0) lies on H, the last expression is zero, as needed. 2

Remark 2. Note that the other two bimedians different from ` lie on H
(z = 0 yields x = 0 or y = 0). Also note that the vertices of ABCD lie on H
as well.

Denote by HA,HB,HC the hyperbolic paraboloids defined above cor-
responding to bimedians `A, `B, `C .

Proposition 5.2. For any point P ∈ Ω the circles ABP and CDP touch iff
P ∈ HC .

Proof. Recall the embedding (1). Let P = (x, y, z).
We need to check if the line ABP∩CDP touches Ω, i.e., is perpendicular

to OP . Or, equivalently, whether (x, y, z) lies in the linear span of the normal
vectors of ABP and CDP . It is not hard to check that these normals are b(z − c)

a(z − c)
−(bx+ ay)

 and

 b(z + c)

−a(z + c)

−bx+ ay

 .
Their linear span coincides with the linear span of their half-sum and half-
difference:  bz

−ac
−bx

 ,
 bc

−az
ay

 .
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We need to check the singularity of matrix

M =

Ö
bz bc x

−ac −az y

−bx ay z

è
.

Taking into account the fact that P ∈ Ω, i.e., x2 + y2 + z2 = a2 + b2 + c2, we
get

det(M) = −abz(x2 + y2 + z2 − c2)− xyc(a2 + b2)

= −(a2 + b2)(abz + xyc),

which is zero iff abz + xyc = 0, that is, when P ∈ HC . 2

Remark 3. Obviously, similar results hold for HA and HB too.

6. Isogonal conjugation on the circumsphere

In this section too ABCD is an isosceles tetrahedron. All the notations
are preserved.

Theorem 6. Let X /∈ {A,B,C,D} be a point on Ω. Then the isogonal
conjugate of X with respect to ABCD lies on Ω.

Proof. Let Y be the second intersection point of Ω and the line joining D
with the isogonal conjugate of X. Points X and Y lie in isogonal planes with
respect to each of the dihedrons DA,DB,DC. We need to prove that they
lie in isogonal planes in the dihedrons AB,BC,CA as well.

Invert with center D; see Figure 6. For any point Z of space denote its
image by Z1.

Clearly A1, B1, C1, X1, Y1 are coplanar (they lie in the image plane of
Ω). By property (i) of isosceles tetrahedron we get

∠B1A1D = ∠ABD = ∠ACD = ∠C1A1D (*)

and two other similar equalities. Taking into account this, as well as the
fact that X1 and Y1 lie in isogonal planes in dihedrons DA1, DB1, DC1, we
deduce that X1 and Y1 are isogonal conjugates in A1B1C1.

Recall that by property (ii) O is also the incenter of ABCD. This
means that the plane eO is the bisector of the dihedron e for any edge e of
ABCD.

It is easy to see that O1 is the reflection of D in A1B1C1 (consider the
diametrically opposite point to D). Angles between spheres are preserved
under inversion (Proposition 4.1), so, since the planeABO makes equal angles
with ABD and ABC, the sphere A1B1O1D makes equal angles with the
plane A1B1D and the sphere A1B1C1D. According to Proposition 4.2, this
is possible only in the case when the circumcenter N of A1B1O1D lies on the
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sphere A1B1C1D. Tetrahedron A1B1O1D is symmetric with respect to the
plane A1B1C1, so N lies on the circle A1B1C1.

Note that N is the midpoint of arc A1C1B1. Indeed, NA1 = NB1, so
N is the midpoint of either one of the two arcs A1B1. By property (iii), the
angles in (*) are acute. This means that the projection of D on A1B1C1 lies
on the triangle A1B1C1, so the dihedrons A1B1, B1C1 and C1A1 in DA1B1C1

are acute. Thus N and C1 lie on the same side of A1B1 and N is on the arc
A1B1C1.

Figure 6.

According to Proposition 4.3, N is the external homothety center of
circles A1B1X1 and A1B1Y1. On the other hand, NA1 = NB1 = NC1, so
the line passing through the circumcenters of A1B1DX1 and A1B1DY1 passes
through N too. This and the previous argument lead to the conclusion that
N is the external homothety center of the spheres A1B1DX1 and A1B1DY1

too.
In view of Proposition 4.4, the sphere A1B1O1D with center N passing

through A1 makes equal angles with the spheres A1B1DX1 and A1B1DY1.
Therefore its preimage plane ABO also makes equal angles with the planes
ABX and ABY .
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Similarly, X and Y are in isogonal planes with respect to the dihedrons
BC and AC too, whence the conclusion follows. 2

In his proof of Theorem 6, Ilya Bogdanov, professor at Moscow Institute
of Physics and Technology, found the following interesting construction of
isogonal conjugate points on the circumsphere of isosceles tetrahedron (I.
Bogdanov, personal communication, January 17, 2020).

Proposition 6.1. Let X /∈ {A,B,C,D} be a point on Ω. Let XA, XB,
XC be the second intersection points of circles XDA and XBC, XDB and
XCA, XDC and XAB, respectively. Then the reflections of XA in `A, XB

in `B, and XC in `C coincide with the isogonal conjugate of X.

Proof. Let Y be the isogonal conjugate ofX. LetX ′ andX ′A be the reflections
of X and XA in `A, respectively. We will prove that Y = X ′A. Similarly, the
reflections of X in `B and `C will coincide with Y too.

Note that the planes DAXXA and DAX ′X ′A, as well as BCXXA and
BCX ′X ′A, are pairs of isogonals. This means that Y lies on X ′X ′A. According
to Theorem 6, Y also lies on Ω. Hence Y should coincide with either X ′ or
X ′A.

If Y = X ′A, then there is nothing to prove. Else Y = X ′. This means
that Y and X lie on HA. According to Proposition 5.2, X = XA and Y =
X ′ = X ′A, as desired. 2

Remark 4. To prove this result Bogdanov used inversion with respect to
one of the points `A ∩ Ω. Points A,B,C,D were mapped to the vertices of
a parallelogram and angle chasing finished the proof. However we chose a
different approach based on the results already proven.
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A new proof for a series similar to the Sandham–Yeung
quadratic series

Nandan Sai Dasireddy1)

Abstract. In both wonderful papers [1], [2], Ovidiu Furdui and Alina
Ŝıntămărian have recently given three new proofs for the following remark-
able Sandham–Yeung quadratic series formula

∞∑
n=1

Å
Hn
n

ã2

=
17

4
ζ (4) ,

where Hn = 1 + 1
2

+ · · ·+ 1
n

denotes the n-th classical harmonic number.
In this paper, we develop a new concise approach to the evaluation of the
following classical quadratic harmonic series formula

∞∑
n=1

H2
n

n3
=

7

2
ζ (5)− ζ (2) ζ (3) .

The proof utilizes a difficult definite integral formula due to Ali Shather.

Keywords: Classical harmonic numbers, linear harmonic sums, nonlinear
harmonic sums, logarithmic integrals, Riemann zeta function, polyloga-
rithm function, infinite summation formulas.

MSC: Primary 40A25; Secondary 11M06.

1. Introduction

In this paper, we give a new proof of the following classical quadratic
harmonic series formula:

∞∑
n=1

H2
n

n3
=

7

2
ζ (5)− ζ (2) ζ (3) . (1)

The motivation for this paper comes from the alternative proofs of Sand-

ham–Yeung quadratic series
∑∞

n=1

(
Hn
n

)2
, in the recent Gazeta Matematică,

Seria A articles [1], [2].
There are many proofs of (1) of varying levels of sophistication in the lit-

erature. But most of the proofs use advanced tools. For example, the proof in
[3, p. 24] invokes contour integration, while in [4] the author proves (1) using
the series formula

∑
n≥1

1
n3

(
1 + 1

22 + · · ·+ 1
n2

)
= −9

2ζ (5) + 3ζ (2) ζ (3) and

the two logarithmic integrals
∫ 1

0 ln (1− x)xn−1dx and
∫ 1

0 ln2 (1− x)xn−1dx.
Now, we construct an alternative approach to the classical quadratic

harmonic series (1), which solely relies on the calculation of the following
logarithmic integrals∫ 1

0

Li3 (x) ln (x)

x
dx and

∫ 1

0

ln (x) ln3 (1− x)

x
dx.

1)Hyderabad, Telangana, India, dasireddy.1818@gmail.com
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Throughout this paper, Hn denotes the n-th classical harmonic number
defined by Hn =

∑n
k=1

1
k , ζ (s) denotes the Riemann zeta function, which is

defined by ζ (s) =
∑∞

n=1
1
ns , <(s) > 1, and Lin(x) denotes the polylogarithm

function, which is defined for |x| ≤ 1 by Lin(x) =
∑∞

k=1
xk

kn , n ∈ N, n ≥ 2.
To evaluate (1), we shall establish some lemmas.

Lemma 1. Let n > 0. The following equality holds∫ 1

0
xn−1 ln (x) dx = − 1

n2
.

Proof. We have, using integration by parts, that∫ 1

0
xn−1 ln (x) dx =

ï
xn ln (x)

n

ò1
0

−
∫ 1

0

xn−1

n
dx = − 1

n2
.

2

Lemma 2. Let n > −1. The following equality holds∫ 1

0
xn ln3 (x) dx = − 6

(n+ 1)4 .

Proof. We have, using integration by parts, that

∫ 1

0
xn ln3 (x) dx =

xn+1 ln3 (x)

n+ 1

∣∣∣∣1
0

− 3

n+ 1

∫ 1

0
ln2(x)xndx

=
xn+1 ln3 (x)

n+ 1

∣∣∣∣1
0

− 3

n+ 1

Ç
xn+1 ln2 (x)

n+ 1

∣∣∣∣1
0

− 2

n+ 1

∫ 1

0
ln(x)xndx

å
= − 6

(n+ 1)4 .

2

Lemma 3. The following equality holds∫ 1

0
ln3 (1− x) (1− x)n dx = − 6

(n+ 1)4 .

Proof. We make the substitution u = 1− x and it follows that

∫ 1

0
ln3 (1− x) (1− x)n dx =

∫ 1

0
ln3 (u)undu = − 6

(n+ 1)4 .

2
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Lemma 4. The following identity holds

∞∑
n=1

H2
n x

n−1

n
=

Li3 (x)

x
− Li2 (x) ln (1− x)

x
− ln3 (1− x)

3x
, x ∈ [−1, 1).

Proof. In [5, Lemma 2.2], Seán Mark Stewart had evaluated the generating
function for the sequence {H2

n/n}n≥1 as follows:

∞∑
n=1

H2
n x

n

n
= Li3 (x)− Li2 (x) ln (1− x)− 1

3
ln3 (1− x) , x ∈ [−1, 1). (2)

Dividing by x on both sides of (2), gives us the desired result.
2

Lemma 5. The following equality holds∫ 1

0

Li3 (x) ln (x)

x
dx = −ζ (5) .

Proof. ∫ 1

0

Li3 (x) ln (x)

x
dx =

∫ 1

0

ln (x)

x
Li3 (x) dx

=

∫ 1

0

ln (x)

x

( ∞∑
k=1

xk

k3

)
dx

=
∞∑
k=1

1

k3

Ç∫ 1

0
xk−1 ln (x) dx

å
=

∞∑
k=1

1

k3

Å
− 1

k2

ã
= −

∞∑
k=1

1

k5

= −ζ (5) .

2

Lemma 6. The following equality holds∫ 1

0

ln (x) ln3 (1− x)

x
dx = 12ζ(5)− 6ζ(2)ζ(3).

Proof. Using the well-known generating function for the classical harmonic
number
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∞∑
n=1

Hnx
n = − ln (1− x)

1− x
, −1 ≤ x < 1, (3)

and changing x by 1− x on both sides of (3), gives

∞∑
n=1

Hn (1− x)n = − ln (x)

x
.

Then,∫ 1

0

ln (x) ln3 (1− x)

x
dx =

∫ 1

0
ln3 (1− x)

(
−
∞∑
n=1

Hn (1− x)n
)

dx

= −
∞∑
n=1

Hn

Ç∫ 1

0
ln3 (1− x) (1− x)n dx

å
= −

∞∑
n=1

Hn

Ç
− 6

(n+ 1)4

å
= 6

∞∑
n=1

Hn

(n+ 1)4

= 6

( ∞∑
n=1

Hn+1

(n+ 1)4 −
∞∑
n=1

1

(n+ 1)5

)

= 6

( ∞∑
i=1

Hi

i4
−
∞∑
i=1

1

i5

)

= 6

( ∞∑
i=1

Hi

i4
− ζ(5)

)
.

In [3, p. 16], Flajolet and Salvy have listed the following linear harmonic
sum

∞∑
i=1

Hi

i4
= 3ζ(5)− ζ(2)ζ(3).

It follows that

∫ 1

0

ln (x) ln3 (1− x)

x
dx = 6 (3ζ(5)− ζ(2)ζ(3)− ζ(5))

= 12ζ(5)− 6ζ(2)ζ(3).

2
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Theorem 7. The following identity holds
∞∑
n=1

H2
n

n3
=

7

2
ζ (5)− ζ (2) ζ (3) .

Proof.
∞∑
n=1

H2
n

n3
=

∞∑
n=1

H2
n

n

Ç
−
∫ 1

0
xn−1 ln (x) dx

å
= −

∫ 1

0
ln (x)

( ∞∑
n=1

H2
n x

n−1

n

)
dx

= −
∫ 1

0

Li3 (x) ln (x)

x
dx+

∫ 1

0

Li2 (x) ln (x) ln (1− x)

x
dx

+
1

3

∫ 1

0

ln (x) ln3 (1− x)

x
dx

= ζ (5) + 4ζ (5)− 2ζ (2) ζ (3) +

∫ 1

0

Li2 (x) ln (x) ln (1− x)

x
dx

= 5ζ (5)− 2ζ (2) ζ (3) +

∫ 1

0

Li2 (x) ln (x) ln (1− x)

x
dx.

Very recently, in an issue of the Romanian Mathematical Magazine [6], Ali
Shather has obtained the following definite integral formula∫ 1

0

Li2 (x) ln (x) ln (1− x)

x
dx = ζ (2) ζ (3)− 3

2
ζ (5) ,

which shows that
∞∑
n=1

H2
n

n3
= 5ζ (5)− 2ζ (2) ζ (3) + ζ (2) ζ (3)− 3

2
ζ (5)

=
7

2
ζ (5)− ζ (2) ζ (3) ,

and Theorem 7 is proved. 2

We used in the proofs of Lemma 5, Lemma 6 and Theorem 7, Bern-
stein's theorem [7, Thm. 9.30, p. 243] which justifies interchanging the order
of integration and summation because of the positivity of the coefficients.
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Abstract. The 19th South Eastern European Mathematical Olympiad for
University Students (SEEMOUS 2025) was held from March 4 to March
9, 2025, in Korc, ë, Albania. This paper presents the competition problems
along with their solutions as provided by the authors. Additionally, alter-
native solutions contributed by jury members or contestants are included.

Keywords: Frobenius norm, Gamma function, improper integrals,
Lebesgue dominated convergence theorem, normal matrices, Perron–
Frobenius theorem, positive matrices, series, summation by parts, Taylor’s
formula.

MSC: 15A21, 40A05, 26A24, 26A42.

The 19th South Eastern European Mathematical Olympiad for Univer-
sity Students with International Participation (SEEMOUS 2025) was hosted
between 4th and 9th of March by the Fan S. Noli University of Korc, ë, Alba-
nia, with the support of the Mathematical Society of South Eastern Europe
(MASSEE) and of the Albanian Mathematical Association. This competi-
tion is addressed to students in the first or second year of undergraduate
studies, from universities in countries that are members of the MASSEE, or
from invited countries that are not affiliated to MASSEE.

A number of 111 students participated in the contest, representing 27
universities from Albania, Bulgaria, Greece, North Macedonia, Romania, and
Turkmenistan. The jury awarded 11 gold medals, 23 silver medals, and 36
bronze medals. Five contestants achieved the maximum possible score, in-
cluding three Romanian students: S, tefan–George Ghinescu (National Univer-
sity of Science and Technology Politehnica Bucharest), Ana Negoit, ă and Vlad

1)University Politehnica of Bucharest, Romania, alexandru.negrescu@upb.ro
2)Technical University of Cluj-Napoca, Romania, Vasile.Pop@math.utcluj.ro
3)Gheorghe Asachi Technical University of Ias, i, Romania, marcelroman@gmail.com
4)Technical University of Cluj-Napoca, Romania, rus.mircea@math.utcluj.ro
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Perpelea (University of Bucharest). Moreover, the University of Bucharest
won the title of Best University.

We present the competition problems and their solutions as given by
the corresponding authors, together with alternative solutions provided by
members of the jury or by contestants.

Problem 1. Let A be an n×n matrix with positive elements and two vectors
u, v ∈ Rn, also with positive elements, such that Au = v and Av = u. Prove
that u = v.

Yiorgos–Sokratis Smyrlis, University of Cyprus, Cyprus

Author’s solution. We analyze two cases, depending on whether the vec-
tors u and v are linearly dependent or not.

If u and v are linearly dependent, there exists λ > 0, such that v = λu.
In this case, we have λu = v = Au = A(λ−1v) = λ−1Av = λ−1u. Therefore,
λ2 = 1 and, as λ > 0, we get that λ = 1, which leads to u = v.

Now, consider the case when u and v are linearly independent, with
u = (u1, u2, . . . , un)T and v = (v1, v2, . . . , vn)T . Let t = min

1≤i≤n
ui
vi

. Clearly,

ui ≥ tvi, for all i ∈ 1, n. Also, there exist k, l ∈ {1, 2, . . . , n} such that
uk = tvk and ul > tvl, since u and v are linearly independent. We consider
the vector w = u − tv. Let w = (w1, w2, . . . , wn)T . The elements of w are
all non-negative. In particular, wk = 0 and wl > 0. On the other hand, since
A2u = u and A2v = v, we have that A2w = A2(u− tv) = u− tv = w. All
the elements of the matrix A2 are positive and, since all the elements of the
vector w are non-negative, with at least one of them positive, we obtain that
the vector A2w should have only positive elements. This contradicts the fact
that the vector w = A2w has at least one zero element.

Alternative solution. This solution was given by Vlad–Andrei Perpelea,
from University of Bucharest, Romania (contestant).

From A2u = u, we deduce that 1 is an eigenvalue of A2, a matrix with
positive elements, and u is a corresponding eigenvector, also with positive
elements. Therefore, thanks to the Perron–Frobenius theorem (see [2], The-
orem 8.4.4 and Problem 8.4.P15, and [1], Theorem 12.1.7), we deduce that
λr = 1 is the Perron root of the matrix A2. Moreover, any other eigenvalue
of A2 has the absolute value strictly less than 1. It follows, also from the
Perron–Frobenius theorem, that any eigenvalue of the matrix A which is not
the Perron root has the absolute value less than 1.

Finally, suppose that u 6= v. Then, from A (u− v) = Au − Av =
v−u = − (u− v), we obtain that −1 is an eigenvalue of A, which contradicts
the last statement of the previous paragraph. Therefore, we have that u = v.

This problem had 23 complete solutions in the contest.
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Problem 2. Calculate

lim
n→∞

n

∫ ∞
0

e−x
n

 
ex − 1− x

1!
− x2

2!
− · · · − xn

n!
dx.

Ovidiu Furdui and Alina Ŝıntămărian,

Technical University of Cluj-Napoca, Romania

For convenience, we denote by (un) the sequence whose limit is to be
determined. We show that the limit equals e.

Authors’ first solution. The starting point is Taylor’s formula with the
Lagrange form of the remainder, applied to the function ex. It follows that
for every x ∈ R and n ∈ N, there exists some θ = θ(x, n) ∈ (0, 1) such that

ex = 1 +
x

1!
+
x2

2!
+ · · · + xn

n!
+

xn+1

(n+ 1)!
eθx. This leads to the inequalities

xn+1

(n+ 1)!
< ex−1− x

1!
− x

2

2!
−· · ·− x

n

n!
<

xn+1

(n+ 1)!
ex, which in turn show that

x1+ 1
n

n
√

(n+ 1)!
e−x < e−x

n

 
ex − 1− x

1!
− x2

2!
− · · · − xn

n!
<

x1+ 1
n

n
√

(n+ 1)!
e−(1− 1

n)x.

It follows, by integration, that

n
n
√

(n+ 1)!

∫ ∞
0

x1+ 1
n e−x dx < un <

n
n
√

(n+ 1)!

∫ ∞
0

x1+ 1
n e−(1− 1

n)x dx. (2a)

By the change of variable y =
(
1− 1

n

)
x on the right hand side integral,

this becomes
1(

1− 1
n

)2+ 1
n

∫ ∞
0

y1+ 1
n e−y dy. Finally, using Euler’s Gamma

function Γ, the inequalities (2a) can be further written as

n
n
√

(n+ 1)!
Γ

Å
2 +

1

n

ã
< un <

n
n
√

(n+ 1)!
· 1(

1− 1
n

)2+ 1
n

Γ

Å
2 +

1

n

ã
. (2b)

Passing to the limit, as n→∞, in (2b) and using that Γ is continuous

on (0,∞), Γ(2) = 1, and that lim
n→∞

n
n
√

(n+ 1)!
= e, the desired limit equals

e.

Authors’ second solution (simplified). This also uses Taylor’s formula
applied to the function ex, but with the integral form of the remainder, which
leads to

ex − 1− x

1!
− x2

2!
− · · · − xn

n!
=

∫ x

0

et

n!
(x− t)n dt =

ex

n!

∫ x

0
yne−y dy.
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Consequently,

un =
n
n
√
n!

∫ ∞
0

n

 ∫ x

0
yne−y dy e−(1− 1

n)x dx. (2c)

Let fn(x) = n

 ∫ x

0
yne−y dy e−(1− 1

n)x, for all x > 0 and n ≥ 2. The aim

is to find L = lim
n→∞

∫ ∞
0
fn(x) dx, using the Lebesgue dominated convergence

theorem, which in turn will give lim
n→∞

un = L · lim
n→∞

n
n
√
n!

= Le.

Let x > 0 and n ≥ 2. Then

fn(x) ≤ n

 ∫ x

0
xne−y dy e−(1− 1

n)x = x
n
√

1− e−x e−(1− 1
n)x ≤ xe−(1− 1

n)x. (2d)

For 0 < ε < x,

n

 ∫ x

0
yne−y dy ≥ n

 ∫ x

x−ε
yne−y dy ≥ n

 ∫ x

x−ε
(x− ε)ne−x dy = n

√
ε(x−ε)e−

x
n ,

so

fn(x) ≥ n
√
ε(x− ε)e−x. (2e)

Passing to the limit superior in (2d) and to limit inferior in (2e), it follows that
(x − ε)e−x ≤ lim inf

n
fn(x) ≤ lim sup

n
fn(x) ≤ xe−x. Letting ε → 0, leads to

lim
n→∞

fn(x) = xe−x. Also, (2d) gives fn(x) ≤ xe−
x
2 . Since

∫ ∞
0
xe−

x
2 dx < ∞,

it follows that the conditions in the Lebesgue dominated convergence theorem
are met. Concluding,

L = lim
n→∞

∫ ∞
0

fn(x) dx =

∫ ∞
0

(
lim
n→∞

fn(x)
)

dx =

∫ ∞
0

xe−x dx = 1,

so lim
n→∞

un = Le = e.

Third solution. This is based on several similar solutions proposed by mem-
bers of the jury and contestants.

Using Taylor’s formula as in the first solution, un can be written as

un = n

∫ ∞
0

e−x n

 
xn+1

(n+ 1)!
eθx dx =

n
n
√

(n+ 1)!

∫ ∞
0

xe−x
n
√
xeθx dx,

where θ = θ(x, n) ∈ (0, 1). Consider fn(x) = xe−x
n
√
xeθx, for all x > 0 and

n ≥ 2. As in the second solution, the argument will be based on the Lebesgue
dominated convergence theorem.
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Since n
√
x ≤ n

√
xeθx ≤ n

√
xex, it follows that lim

n→∞
n
√
xeθx = 1, for all

x > 0, so lim
n→∞

fn(x) = xe−x, for all x > 0. Also,

0 ≤ fn(x) ≤ x1+ 1
n e−(1− 1

n)x ≤ x1+ 1
n e−

x
2 ≤ max

{
1, x2

}
e−

x
2 ,

for all x > 0 and n ≥ 2. It is immediate that

∫ ∞
0

max
{

1, x2
}

e−
x
2 dx <∞, so

lim
n→∞

∫ ∞
0

fn(x) dx =

∫ ∞
0

(
lim
n→∞

fn(x)
)

dx =

∫ ∞
0

xe−x dx = 1.

Finally, lim
n→∞

un = lim
n→∞

n
n
√

(n+ 1)!
· lim
n→∞

∫ ∞
0

fn(x) dx = e.

Generalization. The authors remarked that the problem admits the follow-
ing immediate generalization:

lim
n→∞

n

∫ ∞
0

xke−x
n

 
ex − 1− x

1!
− x2

2!
− · · · − xn

n!
dx = e(k + 1)!

for all k ∈ N, since the inequalities corresponding to (2b) will replace
Γ
(
2 + 1

n

)
with Γ

(
k + 2 + 1

n

)
. Then the result is a consequence of Γ(k+2) =

(k + 1)!.

This problem had 16 complete solutions in the contest. Based on the
total number of points scored by the contestants, this problem ranked as the
second most difficult.

Problem 3. Let A ∈ Mn(C) such that A∗A2 = AA∗. Prove that A2 = A.

(We denote by A∗ the conjugate transpose of A, i.e., the matrix A
T

.)

Claudiu Pop, Babes,–Bolyai University, Cluj–Napoca, Romania

Author’s solution. First, we will show that Ker (A∗) = Ker
(
A2
)
. Let

x ∈ Ker (A∗). Then AA∗x = 0, so A∗A2x = 0, wherefrom x∗ (A∗)2A2x = 0,

and we obtain that
∥∥A2x

∥∥2
= 0, from which it follows that A2x = 0, so

x ∈ Ker
(
A2
)
. Conversely, let x ∈ Ker

(
A2
)
. Then A2x = 0, so AA∗x = 0,

wherefrom x∗AA∗x = 0, and we obtain that ‖A∗x‖2 = 0, from which it
follows that A∗x = 0, so x ∈ Ker (A∗).

Since Ker (A∗) = Ker
(
A2
)
, we have that Ker

(
A2
)
⊥ ImA, and, since

KerA ⊆ Ker
(
A2
)
, we obtain that KerA ⊥ ImA. Taking into account that

dim (KerA)+dim (ImA) = n, it follows that we can construct an orthonormal
basis for Cn with vectors from KerA and ImA. Since KerA and ImA are
invariant subspaces for A, there exists a unitary matrix, U ∈ Mn(C), such
that

U∗AU =

Å
On−r On−r,r
Or,n−r P

ã
,
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where P ∈Mr(C) is an invertible matrix.
Since A∗A2 = AA∗, it follows that P ∗P 2 = PP ∗, which leads to

(P ∗P 2)∗ = (PP ∗)∗, wherefrom (P ∗)2P = PP ∗, and we obtain that P ∗P 2 =
(P ∗)2P , so P = P ∗, which implies that P 3 = P 2, so P 2 = P and, finally,
A2 = A.

Second solution. The following solution was given by Marian–Daniel Vasi-
le, from West University of Timis,oara, Romania (team leader).

First, we will show that KerA = Ker
(
A2
)

= Ker (A∗). Let x ∈ KerA.

Then Ax = 0, so A2x = 0, wherefrom AA∗x = A∗A2x = 0, and we obtain
that x∗AA∗x = 0, from which it follows that ‖A∗x‖2 = 0, which leads to
A∗x = 0 and, finally, x ∈ Ker (A∗). We have thus obtained that KerA ⊆
KerA2 ⊆ KerA∗. But dim (KerA) = dim (Ker (A∗)), so KerA = Ker

(
A2
)

=
Ker (A∗).

Taking the conjugates transpose of both sides of the equality from the
statement we obtain that (A∗)2A = AA∗ = A∗A2, so A∗

(
A∗A−A2

)
= On.

Since KerA = Ker (A∗), we obtain that AA∗A = A3. We multiply the
previous equality with A at right, and we obtain that A4 = AA∗A2 = A2A∗,
so A2(A2 −A∗) = On.

Now, we use the relation above and the fact that KerA = Ker
(
A2
)

=
Ker (A∗) and we obtain that

A∗
(
A2 −A∗

)
= On (3a)

and

A
(
A2 −A∗

)
= On. (3b)

From (3a), we get that A∗A2 = (A∗)2 and, using equality from the
statement, we obtain that AA∗ = (A∗)2. We consider the conjugate transpose
of this last relation, and we find that

A2 = AA∗. (3c)

From (3b), we obtain that

A3 = AA∗. (3d)

From (3c) and (3d), we conclude that A3 = A2, so A2(A − In) = On.
Taking into account that KerA = Ker

(
A2
)
, it follows that A2 = A.

Third solution. The following solution was given by David–Mihai Rucărea–
nu and S, tefan Solomon, from National University of Science and Technology
Politehnica Bucharest, Romania (contestants).

Recall that, for a matrix X ∈ Mn (C), its Frobenius norm is ‖X‖F =√
Tr (XX∗).

We will show that
∥∥A2 −A

∥∥
F

= 0, which is equivalent to A2−A = On.
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Taking the conjugates transpose of both sides of the equality from the
statement we obtain that (A∗)2A = AA∗, wherefrom Tr (AA∗) = Tr

(
(A∗)2A

)
= Tr

(
A(A∗)2

)
.

On the other hand, from trace properties and previous equality we
have that Tr

(
A2(A∗)2

)
= Tr

(
(A∗)2A2

)
= Tr (A∗AA∗) = Tr

(
(A∗)2A

)
=

Tr (AA∗) = Tr
(
A∗A2

)
= Tr

(
A2A∗

)
.

Therefore, we can write∥∥A2 −A
∥∥2

F
= Tr

(
A2(A∗)2 −A(A∗)2 −A2A∗ +AA∗

)
= Tr

(
A2(A∗)2

)
− Tr

(
A2A∗

)
+ Tr (AA∗)− Tr

(
A(A∗)2

)
= 0

and the conclusion follows immediately.

Fourth solution. The following solution was given by Marian Pant,iruc,
from Gheorghe Asachi Technical University of Ias, i, Romania (deputy leader).

Let λ ∈ C and x ∈ Cn, with x 6= 0, such that Ax = λx. From the
statement, we know that A∗A2x = AA∗x, so A (A∗x) = λ2 (A∗x). It follows
that either λ2 is an eigenvalue of A or A∗x = 0.

As in the second solution, it can be shown that KerA = Ker
(
A2
)

=
Ker (A∗). Therefore, if A∗x = 0, then Ax = 0, so λ = 0.

Otherwise, λ 6= 0 and λ2 ∈ σ (A), the spectrum of matrix A. It follows
that λ2n ∈ σ (A), for any non-negative integer n. Hence, |λ| = 1, otherwise
σ (A) would contain infinitely many distinct elements.

On the other hand, from AA∗x = λ2A∗x, it follows that λ2 〈A∗x,x〉 =

〈AA∗x,x〉, so λ2 〈x, Ax〉 = ‖A∗x‖2, wherefrom λ |λ‖2 ‖x‖2 = ‖A∗x‖2, hence
λ is a positive real number. Since |λ| = 1, it follows that λ = 1.

We have thus proved that σ (A) ⊂ {0, 1}.
Next, we will show that the algebraic and geometric multiplicities of

the values 0 and 1, respectively, are equal.
If the algebraic multiplicity of 0 is greater than the geometric one, then

there exists y ∈ Cn, with y 6= 0, Ay 6= 0, but A2y = 0. From A∗A2y =
AA∗y, it follows that AA∗y = 0, so y∗AA∗y = 0, wherefrom ‖A∗y‖2 =
0, hence, A∗y = 0, equivalent with y ∈ Ker (A∗) = KerA, so Ay = 0,
contradiction.

If the algebraic multiplicity of 1 is greater than the geometric one, then
there exists z ∈ Cn, with z 6= 0, (A− In) z 6= 0, but (A− In)2 z = 0. Let

w = Az − z. Then ‖A∗w −w‖2 = 〈A∗w −w, A∗w −w〉 = 〈A∗w, A∗w〉 +

‖w‖2 − 〈A∗w,w〉 − 〈w, A∗w〉 = 〈AA∗w,w〉+ ‖w‖2 − 〈w, Aw〉 − 〈Aw,w〉 =〈
A∗A2w,w

〉
− ‖w‖2 = 〈A∗w,w〉 − ‖w‖2 = 〈w, Aw〉 − ‖w‖2 = 0, so A∗w =

w. On the other hand, 0 < ‖w‖2 = ‖Az− z‖2 = 〈Az− z, Az− z〉 =
〈w, Az− z〉 = 〈w, Az〉 − 〈w, z〉 = 〈A∗w, z〉 − 〈w, z〉 = 〈w, z〉 − 〈w, z〉 = 0,
which is absurd.

Therefore, matrix A is diagonalizable, with 0 and/or 1 as eigenvalues,
so A2 = A.
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Fifth solution. The following solution was given by Petrut,–Rares, Gheorghi–
es, , from National University of Science and Technology Politehnica Bucha–
rest, Romania (contestant).

We multiply the equality from the statement with A at left, and we
obtain that (A∗)2A2 = A∗AA∗. Taking the conjugates transpose of both
sides of the previous equality we obtain that (A∗)2A2 = AA∗A, so A∗AA∗ =
AA∗A. On the other hand, the equality from the statement implies that

(AA∗)2 =
(
A∗A2

)2
= A∗A(AA∗A)A = A∗A(A∗AA∗)A, so

(AA∗)2 = (A∗A)3 . (3e)

It is known that the matrices AA∗ and A∗A have the same eigenvalues.

So, if λ is an eigenvalue of AA∗, then λ
2
3 is also an eigenvalue of AA∗, and,

by induction, λ
2k
3 is an eigenvalue of AA∗, for any positive integer k. Since

the spectrum of the hermitian matrix AA∗ has a finite number of elements,
all of which are real, it follows that σ (AA∗) ⊂ {−1, 0, 1}. If −1 would be an
eigenvalue of AA∗, then there would be another eigenvalue, µ, of AA∗ such
that µ2 = (−1)3, impossible. Hence, σ (AA∗) ⊂ {0, 1}.

Since AA∗ is a hermitian matrix, there exists a unitary matrix, say,

U ∈ Mn (C), such that AA∗ = U

Å
Ir Or,n−r

On−r,r On−r

ã
U∗. It follows that

(AA∗)2 = AA∗. From (3e), we get that (AA∗)2 = A∗ (AA∗)2A = A∗AA∗A =

(A∗A)2, so

AA∗ = (A∗A)2 . (3f)

Since A∗A is also a hermitian matrix, there exists a unitary matrix, say,

V ∈Mn (C), such that A∗A = V

Å
Ir Or,n−r

On−r,r On−r

ã
V ∗, so

(A∗A)2 = A∗A. (3g)

From (3f) and (3g), we obtain that A∗A = AA∗, so A is a normal ma-
trix. Consequently, there exist a unitary matrix P ∈Mn (C) and a diagonal
matrix D ∈Mn (C) with the eigenvalues of A on the main diagonal, such that
A = PDP ∗. Now, the equality from the statement implies that DD2 = DD.
Let δ be an eigenvalue of A. It follows that δδ2 = δδ, so δ ∈ {0, 1}. Hence,
A2 = PD2P ∗ = PDP ∗ = A.

Sixth solution. The following solution was given by Paul Burcă, from Na-
tional University of Science and Technology Politehnica Bucharest, Romania
(contestant).

As in the previous solution, it can be shown that A∗AA∗ = AA∗A.
The equality from the statement implies that AA∗A2 = A2A∗, so A2A∗ =
(AA∗A)A = (A∗AA∗)A, hence

(A∗A)2 = A2A∗. (3h)
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On the other hand, the equality from the statement also implies that
A∗A2A∗ = A (A∗)2. Taking the conjugates transpose of both sides of the

previous equality, we obtain that A (A∗)2A = A2A∗. From (3h), we get that

(A∗A)2 = A (A∗)2A. Taking the conjugates transpose of both sides of the

previous equality, we obtain that (A∗A)2 = A∗A2A∗. Using the last two
relations, it can be shown that the Frobenius norm of the matrix A∗A−AA∗
is zero, which means that A is a normal matrix. By repeating the final part
of the previous proof, the conclusion follows.

Remarks. From the previous solutions, it follows that the matrices A veri-
fying the relation A∗A2 = AA∗ have the properties:

(i) A2 = A, so they are projection matrices;
(ii) A∗A = AA∗, so they are normal matrices;
(iii) A∗ = A, so they are self-adjoint matrices.
Hence, the linear transformation A : Cn → Cn, with A (x) = Ax,

for any x ∈ Cn, is an orthogonal projection in the vector space Cn. More
precisely, each matrix A is uniquely determined by a subspace V1 ⊂ Cn,
V1 = FixA = {x ∈ Cn | Ax = x}, and, if x = x1 + x⊥1 , where x1 ∈ V1 and
x⊥1 ∈ V ⊥1 , then Ax = x1.

Moreover, there exists an orthogonal basis in Cn such that the matrix

A has the form JA =

Å
Ik Ok,n−k

On−k,k On−k

ã
in this basis.

Generalization. Given by Vasile Pop, from Technical University of Cluj–
Napoca, Romania.

In the following, we will show that,
if k, p, n are positive integers and A ∈ Mn (C) such that A∗Ak = ApA∗,
then Ak = Ap.

The complex vector space Mn (C), equipped with Frobenius norm

‖X‖F =
√

Tr (X∗X), is a normed vector space in which we have ‖X‖F = 0⇔
X = On. Thus, it will be enough to show that TrB = 0, where B = (Ak −
Ap)∗

(
Ak −Ap

)
= (Ak)∗Ak− (Ak)∗Ap− (Ap)∗Ak+(Ap)∗Ap = (Ak)∗AAk−1−

(Ak)∗AAp−1 − (Ap)∗Ak + (Ap)∗Ap = B1 −B2 −B3 +B4. From the equality
in the statement we have that (Ak)∗A = A(Ap)∗ and taking into account
the cyclic property of the trace, it follows that TrB1 = Tr(((Ak)∗A)Ak−1) =
Tr((A(Ap)∗)Ak−1) = Tr((Ap)∗Ak−1A) = Tr((Ap)∗Ak) = TrB3 and TrB2 =
Tr((Ak)∗AAp−1) = Tr(A(Ap)∗Ap−1) = Tr((Ap)∗Ap−1A) = Tr((Ap)∗Ap) =
TrB4. Hence, TrB = (TrB1 − TrB3)− (TrB2 − TrB4) = 0 and the conclu-
sion follows immediately.
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If p = 0 and k is a positive integer, the previous implication is not true

anymore. For example, A∗A2 = A∗ 6⇒ A2 = In. If A =

Ñ
1 0 0
0 −1 0
0 0 0

é
, then

A∗ = A and A3 = A, but A2 6= I3.

This problem had 26 complete solutions in the contest. Also, based on
the total number of points scored by the contestants, this problem ranked as
the easiest problem in the contest.

Problem 4. Let (an) be a monotone decreasing sequence of real numbers

that converges to 0. Prove that

∞∑
n=1

an
n

is convergent if and only if the se-

quence (an lnn) is bounded and
∞∑
n=1

(an − an+1) lnn is convergent.

***
Despite the jury’s efforts to select only original problems, this one was later

identified as a weaker version of Exercise 2.4 from Chapter IV, p. 37, of [3]. The
stronger version (Exercise 2.4) asks that (an lnn) is convergent to 0 (written in the
form of “small o” notation). Yet, [3] only provides some basic hints (see p. 181) on
how to approach the problem and not a full solution.

Proposer’s solution. This solution was given by the proposer and accompanied
the problem in the short list.

Define the sequences (SN ) and (TN ) of partial sums:

SN =

N∑
n=1

an
n

and TN =

N∑
n=1

(an − an+1) lnn (N ≥ 1).

Because (an) is decreasing to 0, an ≥ 0 and an−an+1 ≥ 0 for all n, so both (SN )N≥1
and (TN )N≥1 are increasing. Let S and T be their respective limits (finite or ∞).
In what follows, we make use of

lnn− ln(n− 1) =

∫ n

n−1

dx

x
∈
Å

1

n
,

1

n− 1

ã
, for all n ≥ 2.

(⇒) Assume S <∞. Let N ≥ 2. Then

aN lnN = aN

N∑
n=2

(lnn− ln(n− 1)) ≤ aN
N∑
n=2

1

n− 1
≤

N∑
n=2

an−1
n− 1

= SN−1 ≤ S.
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This implies that (an lnn) is bounded. Moreover,

TN =

N∑
n=1

(an − an+1) lnn =

N∑
n=1

an lnn−
N+1∑
n=2

an ln(n− 1)

=

N∑
n=2

an(lnn− ln(n− 1))− aN+1 lnN ≤
N∑
n=2

an
n− 1

≤
N∑
n=2

an−1
n− 1

= SN−1

≤ S,

hence T ≤ S <∞.

(⇐) Assume T < ∞ and aN logN ≤ M , for all N ≥ 2, where M is some positive
number. Then

SN − a1 =

N∑
n=2

an
n
≤

N∑
n=2

an(lnn− ln(n− 1)) =

N∑
n=2

an lnn−
N−1∑
n=1

an+1 lnn

=

N−1∑
n=2

(an − an+1) lnn+ aN lnN = TN−1 + aN logN ≤ T +M

for all N ≥ 2, hence S ≤ a1 + T +M <∞.

Alternative solution. The following solution was given by Mircea Rus, from Tech-
nical University of Cluj-Napoca, Romania (team leader).

This solution uses the summation by parts – the discrete analog of integration
by parts that is used to evaluate or estimate sums, especially when one sequence is
monotone; a variant of this method is the well known Abel transformation. Addi-
tionally, the second solution also proves, in the affirmative case when the series are
convergent and (an lnn) is bounded, that lim

n→∞
an lnn = 0.

For any sequence (xn), define ∆xn = xn+1 − xn. This operation (called for-
ward difference) is the discrete analog of the derivative from calculus and satisfies
∆(xnyn) = xn ·∆yn + ∆xn · yn+1, for any sequences (xn), (yn). The verification is
trivial. The summation by parts states that

N∑
n=1

xn ·∆yn = (xN+1yN+1 − x1y1)−
N∑
n=1

∆xn · yn+1

and is a direct consequence of the previous identity.

Because (an) and (−∆an) have positive elements, lim
n→∞

ln(n+ 1)

lnn
= 1 and

lim
n→∞

∆ lnn
1
n

= lim
n→∞

ln(1 + 1
n )

1
n

= 1, it follows by the limit comparison test that

∞∑
n=1

an
n
<∞⇔

∞∑
n=1

an ·∆ lnn <∞

∞∑
n=1

(−∆an) · lnn <∞⇔
∞∑
n=1

(−∆an) · ln(n+ 1) <∞,
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so the problem reduces to proving the equivalence
∞∑
n=1

an ·∆ lnn <∞⇔ (an lnn) is bounded and

∞∑
n=1

(−∆an) · ln(n+ 1) <∞. (4a)

For series with positive elements, the convergence is equivalent to the (upper) bound-
edness. Because of this, (4a) follows straight from summation by parts, which gives

N∑
n=1

an ·∆ lnn = aN+1 ln(N + 1) +

N∑
n=1

(−∆an) · ln(n+ 1), for N ≥ 1. (4b)

Additional conclusions. In the affirmative case when the series are convergent
and (an lnn) is bounded, it follows by (4b) that (an lnn) is convergent. Let L =

lim
n→∞

an lnn. Then L = lim
n→∞

an
n

/ 1

n lnn
. Since

∞∑
n=1

an
n

is convergent and

∞∑
n=1

1

n lnn

is divergent (this can be easily justified by the Cauchy condensation test), it follows

by the limit comparison test that L must be 0. We also obtain

∞∑
n=1

an · ln
Å

1 +
1

n

ã
=

∞∑
n=1

(an − an+1) · ln(n+ 1) as consequence of (4b).

Although this was not an original problem, it turned out to be the most chal-
lenging of the contest, judging by the total number of points. Also, 16 contestants
achieved a full score on it.

References

[1] A. Greenbaum, T.P. Chartier, Numerical methods. Design, analysis, and computer im-
plementation of algorithms, Princeton University Press, 2012.

[2] R.A. Horn, C.R. Johnson, Matrix analysis, 2nd ed., Cambridge University Press, 2013.
[3] B.M. Makarov, M.G. Goluzina, A.A. Lodkin, A.N. Podkorytov, Selected problems in real

analysis, translated from the Russian by H. H. McFaden, Translations of Mathematical
Monographs, 107, American Mathematical Society, Providence, RI, 1992.



40 Proposed problems

PROBLEMS

Authors should submit proposed problems to gmaproblems@rms.unibuc.ro.
Files should be in PDF or DVI format. Once a problem is accepted and considered
for publication, the authorsquare will be asked to submit the TeX file also. The
referee process will usually take between several weeks and two months. Solutions
may also be submitted to the same e-mail address. For this issue, solutions should
arrive before 15th of November 2025.

PROPOSED PROBLEMS

570. Let f : [0, 1]→ R be a differentiable function with continuous derivative such

that f(0) = f(1) = 0 and
1∫
0

xf(x) dx = 0. Prove that

∫ 1

0

(f ′(x))
2

dx ≥ 192

Ç∫ 1

0

f(x) dx

å2

.

(This problem was inspired by problem 563 form the 3-4/2024 issue of GMA.
It states that if the condition f(0) = f(1) from the hypothesis of problem 563 is
strengthened to f(0) = f(1) = 0, then the constant 180 from problem 563 can be
improved to 192.)

Proposed by Ulrich Abel and Vitaliy Kushnirevych, Technische

Hochschule Mittelhessen, Germany.

571. Let a1, a2, a3, a4 ≥ 0 be real numbers. Prove that

a1 + a2 + 3a3 + 3a4 +
»

(a1 − a3)2 + (a2 − a4)2 ≥
4∑
k=1

»
a2k + a2k+1,

where a5 = a1.

Proposed by Leonard Giugiuc, Middle School Greci, Mehedint,i,

Romania.

572. Prove that there exists n0 ∈ N such that for all n ≥ n0 the equation

n2
x

[0,1]2

xnynexyz dxdy = e

has an unique real solution denoted by zn and, moreover, lim
n→∞

n (zn − 1) = 4.

Proposed by Dumitru Popa, Department of Mathematics, Ovidius

University of Constant,a, Romania.

573. Let B =
⋃
n≥1
Bn, where

Bn = {(x1, . . . , xn) ∈ Rn | xi ≤ xi+2 for all 1 ≤ i ≤ n− 2}.

On B we define the relations ≤ and ≺ as follows:
Let x, y ∈ B, x = (x1, . . . , xm) and y = (y1, . . . , yn).



Problems 41

We say that x ≤ y if m ≥ n and for every 1 ≤ i ≤ n we have either xi ≤ yi or
1 < i < m and xi + xi+1 ≤ yi−1 + yi. It is known that (B,≤) is partially ordered.1

We say that x ≺ y if x ≤ y, m−n ≤ 2, and for every 1 < i < m we have either
xi+1 ≥ yi−1 or i ≤ n and xi + xi+1 = yi−1 + yi.

If x ≺ y we denote δ(x, y) =
∑n
i=1(−1)i(xi − yi)+. (Here x+ := (x+ |x|)/2 is

the positive part of x, with x+ = x if x ≥ 0 and x+ = 0 if x ≤ 0.)
Prove that if x, y, z ∈ B such that x ≤ y ≤ z and x ≺ z, then x ≺ y ≺ z and

δ(x, y) + δ(y, z) = δ(x, z).

Proposed by Constantin-Nicolae Beli, IMAR, Bucures,ti, Romania.

574. The matrices A,B ∈Mn(C), n ≥ 2, satisfy the relations:

(1) A2 = B2; (2) A3 +BAB = 2In.

(a) Prove that A3 = In;
(b) Prove that if A and B have no common eigenvalues, then A+B = On.

Proposed by Vasile Pop and Constantin-Cosmin Todea, Technical

University of Cluj-Napoca, Romania.

575. Let n be a positive integer with n ≥ 3. Prove that
n

4
is the least positive value

of the constant k such that the inequality

a1 + a2 + · · ·+ an +
k(a1 − an)2

a1 + an
≥
»
n(a21 + a22 + · · ·+ a2n)

holds whenever a1 ≥ a2 ≥ · · · ≥ an ≥ 0.

Proposed by Vasile Cı̂rtoaje, Petroleum-Gas University of Ploies,ti,

Romania, and Leonard Giugiuc, Middle School Greci, Mehedint,i, Romania.

576. We say that x ∈ R is a nice number if

∞∑
k=1

knxk is an integer, for all n ∈ N,

n ≥ 1.
(a) Find all the nice numbers.

(b) If x is a nice number, show that

∞∑
k=1

knxk is an even natural number, for

all n ∈ N, n ≥ 1.

Proposed by Mircea Rus, Technical University of Cluj-Napoca,

Romania.

577. Let a ∈ R \ {0} and f : R→ R a differentiable function with the property

|f ′(x) + af(x)| ≤ 1, for all x ∈ R.
Prove that there exists a unique differentiable function g : R→ R that satisfies

g′(x) + ag(x) = 0 and |f(x)− g(x)| ≤ 1

|a|
, for all x ∈ R.

Proposed by Dorian Popa, Technical University of Cluj-Napoca,

Romania.

1See problem 331 from the 1-2/2011 issue of GMA, with solution in the 1-2/2012 issue.
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SOLUTIONS

553. Let ABCD be an isosceles tetrahedron with centroid G. Let M,N be two

points such that
−−→
NG = 3

−−→
GM . Prove that

NA+NB +NC +ND ≥MA+MB +MC +MD.

Proposed by Leonard Giugiuc, Drobeta Turnu-Severin, Romania.

Solution by the author. We recall that in an isosceles tetrahedron the centroid
G coincides with the circumcenter O. WLOG we may assume that the circumradius
is 1.

We regard the 3D space where ABCD lives in as a subspace of a 4D space
identified as the quaternions H, such that the zero element 0 ∈ H coincides with
G = O.

Recall that an element w ∈ H writes as w = α+ βi + γj + δk. Its conjugate is
w̄ = α−βi−γj− δk and the length is given by ‖w‖ =

√
ww̄ =

√
α2 + β2 + γ2 + δ2.

Let a, b, c, d ∈ H be the coordinates of A,B,C,D and let z be the coordinate

of M . Since G = 0 ∈ H, we have a + b + c + d = 0 and
−−→
NG = 3

−−→
GM writes as

N = −3M = −3z. And since O = 0 ∈ H, OA = OB = OC = OD = 1 write as
‖a‖ = ‖b‖ = ‖c‖ = ‖d‖ = 1.

We have

NB +NC +ND = ‖b+ 3z‖+ ‖c+ 3z‖+ ‖d+ 3z‖
= ‖b+ 3z‖ · ‖b̄‖+ ‖c+ 3z‖ · ‖c̄‖+ ‖d+ 3z‖ · ‖d̄‖
= ‖bb̄+ 3zb̄‖+ ‖cc̄+ 3zc̄‖+ ‖dd̄+ 3zd̄‖
= ‖1 + 3zb̄‖+ ‖1 + 3zc̄‖+ ‖1 + 3zd̄‖
≥ ‖1 + 3zb̄+ 1 + 3zc̄+ 1 + 3zd̄‖
= 3‖1 + z(b̄+ c̄+ d̄‖ = 3‖1− zā‖
= 3‖aā− zā‖ = 3‖a− z‖ · ‖ā‖ = 3‖a− z‖ = 3MA.

When we add the inequality above with the similar inequalities NA + NC +
ND ≥ 3MB, NA+NB+ND ≥ 3MC, and NA+NB+NC ≥ 3MD and we divide
by 3 we get NA+NB +NC +ND ≥MA+MB +MC +MD.

554. Let n ∈ N, n ≥ 2.
(a) Prove that det(A2 − B2)(C2 − B2) ≥ 0 for all A,B,C ∈ Mn(R) with

AB = BC.
(b) Find all values k ≥ 1 such that det(Ak − B2)(Ck − B2) ≥ 0 holds for all

A,B,C ∈Mn(R) with AB = BC.

Proposed by Mihai Opincariu, Brad, Romania, and Vasile Pop, Tech-

nical University of Cluj-Napoca, Romania.

Solution by the authors. First solution for (a). We consider the block

matrix M =

ï
A B
−B −C

ò
∈M2n(R). Then

M2 =

ï
A2 −B2 AB −BC
−BA+ CB C2 −B2

ò
=

ï
A2 −B2 O
CB −BA C2 −B2

ò
,
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so 0 ≤ (detM)2 = detM2 = det(A2 −B2) det(C2 −B2).

Second solution for (a). If A and C are invertible, then AB = BC leads
to B = A−1BC, hence A−1B = BC−1. Then

A−2B2 = A−1(A−1B)B = A−1(BC−1)B = (A−1B)C−1B = BC−2B.

From here,

det(A2 −B2) = detA2 det(I −A−2B2) = (detA)2 det(I −BC−2B). (1)

Recall that if P,Q ∈ Mn(R), then PQ and QP have the same characteristic poly-
nomial, so det(I − PQ) = det(I −QP ). Hence we have

det(I −BC−2B) = det(I − C−2B2) = det(C−2) det(C2 −B2)

= det(C−1)2 det(C2 −B2). (2)

Combining (1) and (2) leads to

det(A2 −B2) = (detA)2 det(C−1)2 det(C2 −B2),

so

det(A2 −B2) det(C2 −B2) =
(
(detA) det(C−1) det(C2 −B2)

)2 ≥ 0.

Without the assumption that A and C are invertible, let Ax = A − xI and
Cx = C − xI, for any x ∈ R. Then AxB = AB − xB = BC − xB = BCx. Since
the set of values of x for which either Ax or Cx is non-invertible is finite (being the
set of eigenvalues of A and C put together), it follows that there exists a sequence
(xm)m≥1 that is convergent to 0 such that Axm

and Cxm
are invertible, for all m ≥ 1.

Now, we can apply the previously obtained result for the invertible matrices Axm

and Cxm to obtain det(A2
xm
−B2) det(C2

xm
−B2) ≥ 0, i.e.,

det
(
(A− xmI)2 −B2

)
det
(
(C − xmI)2 −B2

)
≥ 0 (3)

Taking the limit in (3) as m → ∞ and using the continuity of the functions
det
(
(A− xI)2 −B2

)
and det

(
(C − xI)2 −B2

)
(as functions of x ∈ R), the con-

clusion follows.

(b) Let A,B,C ∈Mn(R) such that AB = BC. It follows that

A2B = A(AB) = A(BC) = (AB)C = (BC)C = BC2,

and, by induction, AmB = BCm, for all m ∈ N∗. Then (a) applied to the matrices
Am, B,Cm leads to det(A2m − B2)(C2m − B2) ≥ 0. This means that every even
number k is a solution.

We can show by counter-examples that odd numbers k are not solutions.

If n = 2, then let A = I2, B =

ï
0 1
0 0

ò
, C =

ï
−1 0
0 1

ò
. We can check that

AB = BC = B and B2 = O. Therefore, if k is odd, then

det
(
Ak −B2

)
det
(
Ck −B2

)
= det I2 (detC)

k
= (−1)k = −1 < 0.

If n ≥ 3, then we consider the block matrices

A =

ï
A2 O
O In−2

ò
= In, B =

ï
B2 O
O O

ò
, and C =

ï
C2 O
O In−2

ò
,
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where A2 = I2, B2 =

ï
0 1
0 0

ò
and C2 =

ï
−1 0
0 1

ò
are the matrices from the case

n = 2. Then, AB = BC = B, B2 = O, and

det
(
Ak −B2

)
· det

(
Ck −B2

)
= (−1)k = −1 < 0

for all k odd, just like in the previous case.

We also received a solution from Marian-Daniel Vasile, Timis,oara, Romania.
The proof of (a) is essentially the same as the authors’ first proof. For (b) the proof
of det(Ak − B2)(Ck − B2) ≥ 0 for k even is the same as the authors’, but for the
proof of the necessity of k being even he uses a different example, namely, A = In,
B = On, and C = diag (−1, 1, . . . , 1). We have AB = BC = On and the inequality
det(Ak −B2)(Ck −B2) ≥ 0 writes as (−1)k ≥ 0, which happens only if k is even.

555. Let f : [0, 1]→ R be a differentiable function with continuous derivative such
that f(1) = 0 and f ′(1) = 1. Prove that there exists c ∈ (0, 1) such that

f(c) = f ′(c)

∫ c

0

f(x)dx.

Proposed by Cezar Lupu, Beijing Institute of Mathematical Sciences

and Applications (BIMSA) and Tsinghua University, Beijing, P.R. China.

Solution by the author. Let us consider the differentiable function ϕ : [0, 1]→ R
defined by

ϕ(t) = te−f(t)
∫ t

0

f(x) dx.

A computation of the derivative shows that

ϕ′(t) = (e−f(t) − te−f(t)f ′(t))
∫ t

0

f(x) dx+ te−f(t)f(t),

which is equivalent to

ϕ′(t) = e−f(t)
Ç∫ t

0

f(x) dx+ t

Ç
f(t)− f ′(t)

∫ t

0

f(x) dx

åå
,∀t ∈ [0, 1].

On the other hand, we have ϕ′(0) = 0 and

ϕ′(1) = e−f(1)
Ç∫ 1

0

f(x) dx+

Ç
f(1)− f ′(1)

∫ 1

0

f(x) dx

åå
=

∫ 1

0

f(x) dx−
∫ 1

0

f(x) dx = 0.

Now, by Flett’s mean value theorem (see [1]) there exists c ∈ (0, 1) such that

ϕ′(c) =
ϕ(c)− ϕ(0)

c
,

which is equivalent to

ce−f(c)
Å∫ c

0

f(x) dx+ c

Å
f(c)− f ′(c)

∫ c

0

f(x) dx

ãã
= ce−f(c)

∫ c

0

f(x) dx,
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which is further equivalent to

f(c) = f ′(c)

∫ c

0

f(x) dx

and this is exactly what we wanted to prove.

References

[1] T.M. Flett, A mean value problem, The Mathematical Gazette, 42 (1958), 38–39.

Solution by Marian-Daniel Vasile, Timis,oara, Romania. Let F : [0, 1] → R,
F (x) =

∫ x
0
f(t) dt and let g : [0, 1]→ R, g(x) = e−f(x)F (x). We have F (0) = 0 and

F ′(x) = f(x), so g(0) = 0 and g′(x) = e−f(x)(−f ′(x)F (x) + f(x)). Thus g′(c) = 0
is equivalent to f(c) = f ′(c)F (c) = f ′(c)

∫ c
0
f(t) dt. Hence we must prove that there

is c ∈ (0, 1) with g′(c) = 0. Suppose the contrary.
By Darboux’s theorem, g′ has the intemediate value property. So our assump-

tion that g′(c) 6= 0 for c ∈ (0, 1) implies that g′(x) > 0 for all x ∈ (0, 1) or g′(x) < 0
for all x ∈ (0, 1).

If g′(x) > 0 for all x ∈ (0, 1) then, again by the intermediate value property,
g′(1) ≥ 0. (If g′(1) < 0, since also g′(1/2) > 0, there is c ∈ (1/2, 1) ⊂ (0, 1) with
g′(c) = 0.) Also from g′(x) > 0 for all x ∈ (0, 1) we deduce that g is stictly increasing
on [0, 1]. In particular, g(1) > g(0) = 0.

Similarly, if g′(x) < 0 for all x ∈ (0, 1), then g′(1) ≤ 0 and g(1) < 0. In
conclusion, we have either g′(1) ≥ 0 and g(1) > 0 or g′(1) ≤ 0 and g(1) < 0. In both
cases, g′(1)/g(1) ≥ 0. But g′(x)/g(x) = −f ′(x) + f(x)/F (x). Since f(1) = 0 and
f ′(1) = 1, we get g′(1)/g(1) = −1 < 0. Contradiction. This concludes the proof.

Note. From Marian-Daniel Vasile’s proof we can see that the result remains
true if in the hypothesis we replace the condition f ′(1) = 1 by f ′(1) > 0.

556. For given n ≥ 3, prove that k = 2n− 3 is the smallest positive constant such
that

1

a1 + k
+

1

a2 + k
+ · · ·+ 1

an + k
≤ n

1 + k

holds for any nonnegative real numbers a1, . . . , an such that at most one of them is

> 1 and
∑

1≤i<j≤n

aiaj =
n(n− 1)

2
.

Proposed by Vasile Cı̂rtoaje, Petroleum-Gas University of Ploies,ti,

Romania.

Solution by the author. For a1 =
2n− 3

n− 2
, a2 = · · · = an−1 = 1, and an = 0,

since an = 0, we have∑
1≤i<j≤n

aiaj =
∑

1≤i<j≤n−1

aiaj = a1

n−1∑
i=2

ai +
∑

2≤i<j≤n−1

aiaj

=
2n− 3

n− 2
· (n− 2) +

(n− 2)(n− 3)

2
=
n(n− 1)

2
,
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so the constraints are satisfied. And the inequality writes as

n− 2

2n− 3 + (n− 2)k
+
n− 2

1 + k
+

1

k
≤ n

1 + k
,

i.e.,
n− 2

2n− 3 + (n− 2)k
≤ 2

1 + k
− 1

k
=

k − 1

k(1 + k)
,

which, after reductions, becomes k ≥ 2n − 3. To show that 2n − 3 is the smallest

value of k, we need to show that E ≤ n

1 + k
for k = 2n− 3, where

E =
1

a1 + k
+

1

a2 + k
+ · · ·+ 1

an + k
.

Assume that a1 = max{a1, a2, . . . , an} and an = min{a1, a2, . . . , an}. If a1 = 1 or
an = 1, then a1 = a2 = · · · = an = 1, and the inequality becomes an equality.
Consider now a1 > 1, an < 1, and

a2, . . . , an−1 ∈ [an, 1].

If S =
∑n
k=3 ai and Q =

∑
3≤i<j≤n aiaj , then the constraint relation writes as

a1a2 + (a1 + a2)S +Q =
n(n− 1)

2
,

i.e., as a1 =
1

a2 + S

Å
n(n− 1)

2
− a2S −Q

ã
.

If a3, . . . , an are fixed, then S and Q are constants and, by the constraint
relation, a1 is a function of a2 and so is E. We claim that E′(a2) ≥ 0. If this claim
is true, then E(a2) is increasing and it is maximum when a2 is maximum, hence
when a2 = 1.

By differentiating the constraint relation, we get

(S + a2)a′1 + S + a1 = 0, i.e., a′1 = −S + a1
S + a2

.

Then

E′(a2) =
−a′1

(a1 + k)2
− 1

(a2 + k)2
=

S + a1
(S + a2)(a1 + k)2

− 1

(a2 + k)2
.

To prove that E′(a2) ≥ 0, we write it as follows:Å
a2 + k

a1 + k

ã2
≥ S + a2
S + a1

,

Å
a2 + k

a1 + k

ã2
− 1 ≥ S + a2

S + a1
− 1,

(a2 − a1)(a1 + a2 + 2k)

(a1 + k)2
≥ a2 − a1

S + a1
.

Since a2 − a1 < 0, this is equivalent to

a1 + a2 + 2k

(a1 + k)2
≤ 1

S + a1
,

i.e.,

k2 ≥ a1a2 + (a1 + a2)S + 2kS =
n(n− 1)

2
−Q+ 2kS.
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(Here we used the constraint relation a1a2 + (a1 + a2)S +Q =
n(n− 1)

2
.)

Denoting

xi = 1− ai ≥ 0, i = 3, . . . , n,

we have

S = n− 2−
n∑
i=3

xi,

Q =
∑

3≤i<j≤n

(1− xi)(1− xj) =
∑

3≤i<j≤n

xixj − (n− 3)

n∑
i=3

xi +
(n− 2)(n− 3)

2
,

and the inequality becomes

k2 ≥ 2n− 3 + 2(n− 2)k −
∑

3≤i<j≤n

xixj − (2k − n+ 3)

n∑
i=3

xi,

which, since k = 2n− 3, is equivalent to∑
3≤i<j≤n

xixj + 3(n− 1)

n∑
i=3

xi ≥ 0.

Similarly, we can prove that for fixed a2, . . . , ai−1, ai+1, . . . , an, where i ∈ {3, . . . , n−
1}, the expression E is maximum when ai = 1. So, we only need to prove the original
inequality for a2 = a3 = · · · = an−1 = 1, i.e., to show that

1

a1 + 2n− 3
+

1

an + 2n− 3
≤ 1

n− 1

for a1an + (n − 2)(a1 + an) = 2n − 3. It is easy to verify that this inequality is an
identity.

For k = 2n − 3, a1 = max{a1, a2, . . . , an}, and an = min{a1, a2, . . . , an}, the
equality occurs when a2 = · · · = an−1 = 1 and a1an + (n − 2)(a1 + an) = 2n − 3,
with a1 ≥ 1 ≥ an.

557. Find the differentiable functions f : (0,∞)→ R that satisfy the identity:

f ′(x) = x · f
Å

1

x

ã
(1)

for all x ∈ (0,∞).

Proposed by Dorian Popa, Technical University of Cluj-Napoca,

Romania.

Solutions by the author. First solution. Based on (1), f is twice differentiable
and

f ′′(x) =

Å
x · f

Å
1

x

ãã′
= f

Å
1

x

ã
− 1

x
f ′
Å

1

x

ã
(1)
=

1

x
f ′(x)− 1

x
· 1

x
f(x)

=
1

x2
(x · f ′(x)− f(x)) ,

for all x ∈ (0,∞), which leads to

x2f ′′(x)− x · f ′(x) + f(x) = 0, for all x ∈ (0,∞). (2)
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Let x = et and g(t) = f(x) = f(et) in (2), for arbitrary t ∈ R. Then

g′(t) = et · f ′(et) = x · f ′(x),

g′′(t) = et · f ′(et) + e2t · f ′′(et) = x · f ′(x) + x2f ′′(x)

and (2) becomes

g′′(t)− 2g′(t) + g(t) = 0, for all t ∈ R. (3)

Equation (3) is a homogeneous linear ODE with constant coefficients with the
general solution g(t) = et(a+ bt), a, b ∈ R constants, that leads to

f(x) = g(lnx) = x(a+ b · lnx), for all x ∈ (0,∞).

Then the identity (1) becomes

a+ b · lnx+ b = x · 1

x
(a− b · lnx) , for all x ∈ (0,∞),

which is equivalent to b = 0.
Concluding, the solutions are the functions f(x) = ax, for all x ∈ (0,∞), with

a ∈ R constant.

Alternative approach. It is possible to solve (2) without prior knowledge

about linear ODEs, by letting h(x) =
f(x)

x
for all x ∈ (0,∞), so f(x) = x · h(x).

Then (2) becomes xh′′(x) + h′(x) = 0, which means that (x · h′(x))′ = 0. This leads

to x ·h′(x) = a ∈ R (constant), then h′(x) =
a

x
, with the solutions h(x) = a lnx+ b.

Then f(x) = x (a lnx+ b), and b = 0 follows as above.

Second solution. Writing f(x) = x · h(x), the initial identity (1) becomes

x · h′(x) = h

Å
1

x

ã
− h(x), for all x ∈ (0,∞), (4)

hence

x · h′(x) = h

Å
1

x

ã
− h(x) = −

Å
h(x)− h

Å
1

x

ãã
= − 1

x
h′
Å

1

x

ã
, for all x ∈ (0,∞),

which leads to

h′(x) = − 1

x2
h′
Å

1

x

ã
=

Å
h

Å
1

x

ãã′
, for all x ∈ (0,∞).

This means that h(x)−h
Å

1

x

ã
is constant over (0,∞), hence, by (4), x·h′(x) = a ∈ R

for all x ∈ (0,∞). The rest follows as presented in the previous solution.

We received a solution from Marian-Daniel Vasile, Timis,oara, Romania, which
follows the same line as the author’s Alternative approach.

We also received a solution from G.C. Greubel, Newport News, VA, USA, but
this is not entirely correct. He considers the more general equation

df(x)

dx
= αx f

Å
1

x

ã
,



Problems 49

where α is a constant. Upon making the substitution xu = 1, which gives
du

dx
=

−u2, so
d

dx
= −u2 d

du
, our equation becomes

u3
d

du
f

Å
1

u

ã
= −α f(u).

Differentiating on both sides, we getÅ
u3

d2

du2
+ 3u2

d

du

ã
f

Å
1

u

ã
= −α df(u)

du
= −α2 u f

Å
1

u

ã
,

which, after dividing by u, becomesÅ
u2

d2

du2
+ 3u

d

du
+ α2

ã
f

Å
1

u

ã
= 0.

So u 7→ f(1/u) is the solution of the differential equation x2y′′ + 3xy′ + α2y = 0.
This is a Cauchy–Euler equation, which has solutions of the type y(x) = xp, where
p is a solution of the equation p(p − 1) + 3p + α2 = 0, i.e., p2 + 2p + α2 = 0. We

have the solutions p1,2 = −1±
√

1− α2, so

y(x) = Ax−1+
√
1−α2

+B x−1−
√
1−α2

,

from which we get

f(u) = Au1−
√
1−α2

+B u1+
√
1−α2

.

Using this form of f(u) in the original equation it is determined that

f(u) = A

Ç
u1−

√
1−α2

+
1−
√

1− α2

α
u1+
√
1−α2

å
, (5)

where A is a constant. The constant α leads to some special cases:
f(u) = 2Au α = 1,

f(u) = 0 α = −1,

f(u) = A α = 0.

Remarks. Here are some issues regarding G.C. Greubel’s solution.
First note that, because of the denominator α, formula (5) doesn’t apply when

α = 0. An alternative formula, which works for all α, is

f(u) = C
Ä
αu1−

√
1−α2

+
Ä
1−

√
1− α2

ä
u1+
√
1−α2

ä
.

Next, recall that formula y(x) = Axp1 + Bxp2 doesn’t apply if we have a
double root, i.e., if p1 = p2 =: p. In this case the general solution of the Cauchy-
Euler equation is y(x) = xp(A lnx + B). In our case, p2 + 2p + α2 = 0 has a
double root iff α = ±1 and this double root is −1, so y(x) = x−1(A lnx + B).
Then f(u) = y(1/u) = u(−A lnu + B). After plugging this formula in the original
equation, we get f(u) = Cu if α = 1 and f(u) = Cu(2 lnu+ 1) if α = −1.

Finally, if p1,2 are complex conjugates, i.e., p1,2 = a ± bi, with b > 0, then
xa±bi = xa(cos b lnx ± i sin b lnx). So the solution of the Cauchy-Euler equation is
spanned by xa cos b lnx and xa sin b lnx. In our case, this happens when |α| > 1,

when we have p1,2 = −1 ± i
√
α2 − 1. We get y(x) = x−1(A cos

√
α2 − 1 lnx +

B sin
√
α2 − 1 lnx). Then f(u) = y(1/u) writes as f(u) = u(A cos

√
α2 − 1 lnu −
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B sin
√
α2 − 1 lnu). We plug this formula in the original equation and we get f(u) =

Cu(
√
α+ 1 cos

√
α2 − 1 lnu−

√
α− 1 sin

√
α2 − 1 lnu).

Hence we have a formula for f(u) in each of the cases α = 1, α = −1, |α| < 1
and |α| > 1.

558. Let f : [0, 1]→ R be a continuous function such that∫ 1

0

xkf(x) dx = 0 for 0 ≤ k ≤ n− 1

and ∫ 1

0

xnf(x) dx = 1.

Prove that ∫ 1

0

f2(x) dx ≥ (2n+ 1)

Ç
2n

n

å2

.

Proposed by Cezar Lupu, Beijing Institute of Mathematical Sciences

and Applications (BIMSA), Tsinghua University, Beijing, P.R. China.

Solution by the author. Let Pk be the k-th Legendre polynomial. By Ro-
drigues’s formula,

Pk(x) =
1

2kk!

dk

dxk
(x2 − 1)k.

Then Pk is of degree k, with the leading coefficient
1

2k

Ç
2k

k

å
, and we have the

following property ∫ 1

−1
Pj(x)Pk(x) dx =

2

2k + 1
δj,k.

Next, we define the shifted Legendre polynomials ‹Pk(x) = Pk(2x− 1). Then,
by a change of variables, we get∫ 1

0

‹Pj(x)‹Pk(x) dx =
1

2k + 1
δj,k.

Also, the shifted Legendre polynomial ‹P (x) has degree n and the leading

coefficient equal to

Ç
2n

n

å
. Then the hypothesis implies that∫ 1

0

‹Pn(x)f(x) dx =

Ç
2n

n

å
and ∫ 1

0

‹Pk(x)f(x) dx = 0 for 0 ≤ k ≤ n− 1.

If we denote by 〈·, ·〉 the inner product and by ||·|| the norm from L2([0, 1]), then

the above relations write as 〈‹Pj , ‹Pk〉 =
1

2k + 1
δj,k, 〈‹Pn, f〉 =

Ç
2n

n

å
, and 〈‹Pk, f〉 = 0

for 0 ≤ k ≤ n− 1.
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If ek(x) =
√

2k + 1 ‹Pk(x), then e1, e2, . . . is a sequence of orthonormal functions

in L2([0, 1]) and we have 〈f, en〉 =
√

2n+ 1

Ç
2n

n

å
and 〈f, ek〉 = 0 for 0 ≤ k ≤ n− 1.

Then, by Bessel’s inequality, we have

||f || ≥
n∑
k=1

|〈f, ek〉|2,

which translates to∫ 1

0

f2(x) dx ≥
Ç
√

2n+ 1 ·
Ç

2n

n

åå2

= (2n+ 1)

Ç
2n

n

å2

and this concludes the proof.
The equality holds iff

f =

n∑
k=1

〈f, ek〉ek =
√

2n+ 1

Ç
2n

n

å
en = (2n+ 1)

Ç
2n

n

å‹P (x).

Note. As pointed out by Ulrich Abel, Technische Hochschule Mittelhessen,
Friedberg, Germany, this result is a consequence of Satz 2.1 in [1], which states that

if a < b and

∫ b

a

xkf(x) dx = 0 for k = 0, . . . , n− 1, then∣∣∣∣∣
∫ b

a

xnf(x) dx

∣∣∣∣∣ ≤ Cn
Ç∫ b

a

|f(x)|2 dx

å1/2

,

where

Cn =

 
(n!)4(b− a)2n+1

(2n)!(2n+ 1)!
=

(b− a)n+1/2

√
2n+ 1

Ç
2n

n

å−1
,

with equality iff f is of the form f(x) = c
dn

dxn
[(x− a)(x− b)]n.

If

∫ b

a

xnf(x) dx = 1, this implies

∫ b

a

|f(x)|2 dx ≥ C−2n =
2n+ 1

(b− a)2n+1

Ç
2n

n

å2

.

In our case a = 0 and b = 1, so we get the claimed equality.

References

[1] U. Abel, Integralungleichungen aus der Hilbertraum-Theorie, Elemente der Mathe-
matik, 38 (1983), 144–152.

559. Let f : [0, 1]→ [−1, 1] be a continuous function, with finite derivative in 0 and

f(0) = 1. Find lim
n→∞

∫ 1

0

fn(xn) dx.

Proposed by Mircea Rus, Technical University of Cluj-Napoca,

Romania.

Solution by the author. Since |fn(xn)| ≤ 1, for all n ≥ 1 and all x ∈ [0, 1],
we may find the limit by using the bounded convergence theorem, so we need to
investigate de pointwise limit lim

n→∞
fn(xn).
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Since f has finite derivative at 0, there exists a ∈ (0, 1) such that∣∣∣∣f(t)− f(0)

t
− f ′(0)

∣∣∣∣ ≤ 1,

for all t ∈ (0, a), which leads to

|f(t)− 1| ≤ bt, for all t ∈ [0, a),

where b = 1 + |f ′(0)|. Also |f(t)| ≤ 1, so

|fn(t)− 1| =
∣∣fn−1(t) + · · ·+ 1

∣∣ · |f(t)− 1| ≤ n |f(t)− 1|
for all t ∈ [0, 1] and n ≥ 1. Hence

|fn(t)− 1| ≤ bnt, for all t ∈ [0, a) and n ≥ 1. (1)

Now, let x ∈ [0, 1). Since lim
n→∞

xn = 0, there exists k ∈ N such that xn ∈ [0, a),

for all n ≥ k. Letting t = xn in (1), we obtain

|fn(xn)− 1| ≤ bnxn, for all n ≥ k. (2)

Since lim
n→∞

nxn = 0, it follows from (2) that

lim
n→∞

fn(xn) = 1, for all x ∈ [0, 1).

We can apply now the bounded convergence theorem and obtain

lim
n→∞

∫ 1

0

fn(xn) dx =

∫ 1

0

dx = 1.

560. Let (xn)n≥1 be the sequence defined by x1 ∈ (0, 1) and xn+1 = xn − x2
n

2n for
all n ≥ 1. Prove that the sequence (xn)n≥1 is convergent to a limit C > 0 and
moreover,

lim
n→∞

8n−1
Å
xn − C −

C2

2n−1
− C3

3 · 4n−2

ã
=

12C4 + 32C3

21
.

Proposed by Dumitru Popa, Ovidius University of Constant,a, Roman-

ia.

Solution by the author. The sequence (xn)n≥1 is obviously decreasing and, by

induction, we deduce that xn ∈ (0, 1) for all n ≥ 1. From xn − xn+1 =
x2
n

2n for all

n ≥ 1 we deduce that x1−xn+1 =
n∑
k=1

x2
n

2n ≤
n∑
k=1

x2
1

2n = x21
(
1− 1

2n

)
< x21 (the sequence

is decreasing positive). Thus xn ≥ x1−x21. Since (xn)n≥1 is decreasing and bounded
bellow by x1− x21, it is convergent and lim

n→∞
xn = C, with C ∈ [x1− x21, x1] ⊂ (0, 1).

Let yn = xn − C. From the recurrence relation we deduce that

lim
n→∞

yn+1 − yn
1
2n −

1
2n−1

= lim
n→∞

xn+1 − xn
− 1

2n

= lim
n→∞

x2n = C2

By the 0
0 case of Cesàro’s lemma, we get lim

n→∞
yn
1

2n−1
= C2, i.e., lim

n→∞
xn−C

1

2n−1
= C2.

Now let zn = yn − C2

2n−1 = xn − C − C2

2n−1 . We have

zn+1 − zn = xn+1 − xn +
C2

2n
= −x

2
n

2n
+
C2

2n
= − 1

2n
(xn − C)(xn + C).
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Hence

lim
n→∞

zn+1 − zn
1

4n−1 − 1
4n−2

= lim
n→∞

− 1
2n (xn − C)(xn + C)

− 3
4n−1

= lim
n→∞

xn − C
− 3

2n−2

· (xn + C)

=
C2

6
· 2C =

C3

3
.

Again by the case 0
0 of Cesàro’s lemma, lim

n→∞
zn
1

4n−2
= C3

3 , that is lim
n→∞

4n−2zn = C3

3 .

Since zn = yn − C2

2n−1 = xn − C − C2

2n−1 we get

lim
n→∞

4n−2
Å
xn − C −

C2

2n−1

ã
=
C3

3
. (1)

Finally, let wn = zn − C3

3·4n−2 = xn − C − C2

2n−1 − C3

3·4n−2 . Note that

wn+1 − wn = zn+1 − zn −
C3

4n−1
= −x

2
n

2n
+
C2

2n
+

C3

4n−1
= − 1

2n

Å
x2n − C2 − C3

2n−2

ã
.

From (1) we get xn = C + 2C2

2n + 16C3

3·4n + o
(

1
4n

)
, which implies that

x2n =

Å
C +

2C2

2n
+

16C3

3 · 4n

ã2
+ o

Å
1

4n

ã
= C2 +

C3

2n−2
+

4C4

4n
+

32C3

3 · 4n
+ o

Å
1

4n

ã
= C2 +

C3

2n−2
+

12C4 + 32C3

3 · 4n
+ o

Å
1

4n

ã
.

It follows that

wn+1 − wn = − 1

2n

Å
x2n − C2 − C3

2n−1

ã
= − 1

2n

Å
12C4 + 32C3

3 · 4n
+ o

Å
1

4n

ãã
= −12C4 + 32C3

3 · 8n
+ o

Å
1

8n

ã
,

or, equivalently, lim
n→∞

8n(wn+1 − wn) = − 12C4+32C3

3 . Then

lim
n→∞

wn+1 − wn
1
8n −

1
8n−1

= lim
n→∞

−8n(wn+1 − wn)

7
=

12C4 + 32C3

21
.

Then, by the case 0
0 of Cesàro’s lemma, lim

n→∞
wn
1

8n−1
= 12C4+32C3

3 , i.e. lim
n→∞

8n−1wn =

12C4+32C3

21 and the proof is finished.

561. Calculate
∞∑
n=1

ï
n2
Å

1

n3
− 1

(n+ 1)3
+

1

(n+ 2)3
− · · ·

ã
− 1

2n

ò
.

Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical Uni-

versity of Cluj-Napoca, Romania.

Solution by the authors. The series equals π2

12 .

Let an = 1
n3 − 1

(n+1)3 + 1
(n+2)3 −· · · . We observe that an+an+1 = 1

n3 , ∀n ≥ 1.
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Using the relation 1
k3 = 1

2

∫ 1

0
xk−1 ln2 xdx for k ≥ 1, we get

an =
1

n3
− 1

(n+ 1)3
+

1

(n+ 2)3
− · · · = 1

2

∫ 1

0

(
xn−1 − xn + xn+1 + · · ·

)
ln2 x dx

=
1

2

∫ 1

0

xn−1

1 + x
ln2 xdx <

1

2

∫ 1

0

xn−1 ln2 xdx =
1

n3
.

It follows that 0 < n2an <
1
n , and so lim

n→∞
n2an = 0.

We calculate
∞∑
n=1

ï
n2
Å

1

n3
− 1

(n+ 1)3
+

1

(n+ 2)3
− · · ·

ã
− 1

2n

ò
=

∞∑
n=1

Å
n2an −

1

2n

ã
=

∞∑
n=1

n2
Å
an −

1

2n3

ã
=

∞∑
n=1

n2
(
an −

an + an+1

2

)
=

1

2

∞∑
n=1

(n2an − n2an+1)

=
1

2

∞∑
n=1

(n2an − (n+ 1)2an+1) +
1

2

∞∑
n=1

(2n+ 1)an+1

=
1

2

(
a1 − lim

n→∞
(n+ 1)2an+1

)
+

1

2

∞∑
n=1

(2n+ 1)an+1

=
1

2
a1 +

1

2

∞∑
n=1

(2n+ 1)an+1 =
1

2

∞∑
n=1

(2n− 1)an.

We calculate the preceding series. We have

∞∑
n=1

(2n− 1)an =

∞∑
n=1

(2n− 1)
1

2

∫ 1

0

xn−1

1 + x
ln2 xdx

=
1

2

∫ 1

0

ln2 x

1 + x

( ∞∑
n=1

(2n− 1)xn−1

)
dx

=
1

2

∫ 1

0

ln2 x

1 + x
· 1 + x

(1− x)2
dx =

1

2

∫ 1

0

ln2 x

(1− x)2
dx

=
1

2

∫ 1

0

ln2 x

( ∞∑
n=1

nxn−1

)
dx =

1

2

∞∑
n=1

n

∫ 1

0

xn−1 ln2 xdx

=

∞∑
n=1

1

n2
=
π2

6
,

and it follows that
∞∑
n=1

ï
n2
Å

1

n3
− 1

(n+ 1)3
+

1

(n+ 2)3
− · · ·

ã
− 1

2n

ò
=
π2

12
.

The problem is solved.

562. For any matrix M , let M
∗

= M
t

denote the transpose conjugate of M . The
matrix M is called anti-Hermitian if M

∗
= −M .
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Prove that if A ∈Mn(C) is invertible and anti-Hermitian, then the function

f :Mn(C)→Mn(C), f(X) = AX −XA2, X ∈Mn(C),

is bijective.

Proposed by Mihai Opincariu, Brad, Romania, and Vasile Pop, Tech-

nical University of Cluj-Napoca, Romania.

Solution by the authors. We first prove that all eigenvalues of A are non-zero
purely imaginary numbers.

Indeed, let λ ∈ C be an eigenvalue of A, and U a corresponding eigenvector,
i.e., AU = λU . Then

U∗AU = (U∗A)U = −(U∗A∗)U = −(AU)∗U = −(λU)∗U = −λ(U∗U)

and, at the same time,

U∗AU = U∗(AU) = U∗λU = λ(U∗U),

therefore (λ+ λ)(U∗U) = 0. With U =
[
u1 . . . un

]t 6= O, it follows that U∗U =∑n
k=1 |uk|2 6= 0, so λ + λ = 0, proving that <λ = 0, i.e., λ is purely imaginary.

Moreover, λ 6= 0, since A is invertible.
Now, f is a linear function between two vector spaces over C of the same

dimension n2. Therefore, in order to prove its bijectivity, it suffices to prove it
is injective, i.e., that ker f = 0. This means that the only solution of f(X) =
AX −XA2 = O is X = O. Henceforth, it remains to show that if X satisfies

AX = XA2, (1)

then X = O.
Let X ∈Mn(C) verifying (1). Then A2X = A(AX) = A(XA2) = (AX)A2 =

(XA2)A2 = XA4 and by induction,

AkX = XA2k, for all k ∈ N. (2)

Let PA(z) = c0 + c1z+ · · ·+ cnz
n be the characteristic polynomial of A. Then,

by (2), we have
∑n
k=0 ckA

kX =
∑n
k=0 ckXA

2k, i.e., PA(A)X = XPA(A2), which
leads to

XPA(A2) = O, (3)

since PA(A) = O. The eigenvalues of A are ia1, . . . , ian, for some a1, . . . , an ∈
R∗. Then PA(A2) =

(
A2 − (ia1)In

)
· · ·
(
A2 − (ian)In

)
. But the eigenvalues of

A2 are (ia1)2, . . . , (ian)2, that is, −a21, . . . ,−a2n. Then, for every k we have iak /∈
{−a21, . . . ,−a2n}, so iak is not an eigenvalue for A2 and so det

(
A2 − (iak)In

)
6= 0.

It follows that detPA(A2) 6= 0, so PA(A2) is invertible. Based on (3), we obtain
X = O, which concludes the proof.

Solution by Robert Rogoszan, Baia Mare, Romania. Recall Sylvester’s equa-
tion AX − XB = C. It is known that for A,B,C ∈ Mn(C) this equation has a
unique solution iff Spec(A) ∩ Spec(B) = ∅. (Here Spec(X) denotes the spectrum of
X, i.e., the set of all eigenvalues of X.)

We will now prove that if A = −A∗, then Spec(A) ∩ Spec(A2) = ∅, which, by
the above property of Sylvester’s equation, is equivalent to f being bijective.
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It can be easily proved that if A is anti-Hermitian, then all its eigenvalues
are purely imaginary numbers, i.e., Spec(A) ⊂ iR. As A is invertible, we have
0 /∈ Spec(A), so Spec(A) ⊂ iR∗.

Now every eigenvalue of A2 is of the form λ2, for some λ ∈ Spec(A). Then
λ = ai for some a ∈ R∗, so λ2 = −a2 ∈ R∗. Thus Spec(A2) ⊂ R∗. Since Spec(A) ⊂
iR∗, we have Spec(A) ∩ Spec(A2) = ∅ and so f is bijective.
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