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Abstract. The solution to a problem, which was published in the prob-
lem section of The College Mathematics Journal, is not correct. While the
outcome is the correct formula in a special case, the approach cannot be
considered as a proof. We give a correct solution and extend the problem.
To this end we demonstrate the application of a general method to derive
asymptotic expansions for integrals. Furthermore, we deal with a sequence
of very similar integrals, which appeared as a problem of the 14th South
Eastern European Mathematical Olympiad for University Students (SEE-
MOUS 2020) and was presented in Gazeta Matematică, Seria A.
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1. Introduction

Ovidiu Furdui and Alina Ŝıntămărian [1] posed the Problem 1181 to
calculate, for each real number k > 0, the limit

L = lim
n→∞

In

for the sequence of integrals

In =

∫ 1

0

Å
n
√
x+ k − 1

k

ãn
dx. (1)

Moreover, they asked for the value of the limit limn→∞ n (In − L). The pub-
lished solution [6] to Problem 1181 is not mathematically rigorous, and the
case k ∈ (0, 1) is not discussed in the given solution. The main purpose
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of this note is to present a correct and complete solution. Furthermore we
extend the solution by deriving an asymptotic expansion.

A similarly looking problem, viz., determine the limit of the sequence
of integrals

Jn =

∫ 1

0

Å
k

n
√
x+ k − 1

ãn
dx, (2)

appeared as a problem of the 14th South Eastern European Mathematical
Olympiad for University Students (SEEMOUS 2020) [5, Problem 2]. This
problem was proposed, for k > 1, in [2]. Six solutions by different solvers
were presented in [3]. A further solution was presented in [4, No 35/38, The
Asymptotic Behaviour of Integrals, pages 486–487]. We derive an asymptotic
expansion also for the sequence of integrals (2).

2. The integrals In

In [6] it was claimed that, for k > 0, it holds L = k/ (k + 1) as well

as limn→∞ n (In − L) = k (k − 1) / (k + 1)3. Both values are correct for k ≥
1, but the limit limn→∞ In does not exist for small positive values of the
parameter k, such that the second limit cannot be accepted. More precisely,
for 0 < k ≤ 3 −

√
8 ≈ 0.171573, the sequence (In)n≥1 is oscillating and

(−1)n In tends to infinity. Furthermore, the asymptotic relationÅ
n
√
x+ k − 1

k

ãn
= x1/k +

(k − 1)x1/k log2 (x)

2k2n
+O

(
n−2

)
(3)

as n→∞, was used to conclude that

In =

∫ 1

0
x1/kdx+

k − 1

2k2n

∫ 1

0
x1/k log2 (x) dx+O

(
n−2

)
(4)

as n → ∞. While the outcome is partially correct, this approach cannot
be considered as a proof, because it needs a precise study in which kind the
Landau term O

(
n−2

)
in Eq. (3) depends on the variable x. A well-known

counter-example is fn (x) = 2nx exp
(
−nx2

)
= o (1) as n → ∞, for each

x ∈ [0, 1], while limn→∞
∫ 1
0 fn (x) dx = 1 6= 0 =

∫ 1
0 limn→∞ fn (x) dx.

Evaluation of the integrals in (4) leads to the asymptotic relation

In =
k

k + 1
+

k (k − 1)

(k + 1)3 n
+O

(
n−2

)
(5)

as n→∞, which is the desired result.
In this note we give a closer inspection of the sequence (In)n≥1 in de-

pendence of the real parameter k > 0. Moreover, we use a method to derive
a complete asymptotic expansion

In ∼
∞∑
j=0

cj (k)

nj
(n→∞)
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and show how to determine the coefficients cj (k) in explicit form. The latter
relation means, that for each q ∈ N0,

In ∼
q∑
j=0

cj (k)

nj
+ o

(
n−q

)
(n→∞) .

Formula (5) provides the coefficients

c0 (k) = k/ (k + 1) and c1 (k) = k (k − 1) / (k + 1)3 .

By the change of variable z = 1− n
√
x, i.e., x = (1− z)n, we obtain the

representation

In = n

∫ 1

0

Å
k − z
k

ãn
(1− z)n−1 dz.

Let us first consider the case k > 1. Then (k − z) (1− z) > 0, for z ∈ [0, 1),
and we make a further change of variable:

e−t =
1

k
(k − z) (1− z) ,

−e−tdt =
1

k
(2z − k − 1) dz.

Since 0 ≤ z < 1, the quadratic equation ke−t = z2 − (k + 1) z + k yields

z =
k + 1

2
−

 Å
k + 1

2

ã2
− k (1− e−t) =

1

2

(
k + 1−

»
(k − 1)2 + 4ke−t

)
.

An easy calculation leads to the representation as a Laplace integral

In =
n

2

∫ ∞
0

Ñ
1 +

k − 1»
(k − 1)2 + 4ke−t

é
e−ntdt.

Thus, we can apply Watson’s lemma (see, e.g., [7, p. 22]) which states that

δ∫
0

e−stF (t) dt ∼
∞∑
j=0

aj
Γ (λj)

sλj
(s→∞) ,

provided that the integral exists for a certain s ≥ 0 and F (t) ∼
∑∞

j=0 ajt
λj−1

as t → 0+, where 0 < λ0 < λ1 < · · · , and Γ denotes the gamma function.
Taylor expansion of

F (t) := 1 +
k − 1»

(k − 1)2 + 4ke−t
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yields, for sufficiently small t,

F (t) =
2k

k + 1
+

2k (k − 1)

(k + 1)3
t−

k (k − 1)
(
k2 − 4k + 1

)
(k + 1)5

t2

+
k (k − 1)

(
k4 − 14k3 + 30k2 − 14k + 1

)
3 (k + 1)7

t3 + · · · ,

such that

In ∼ k

k + 1
+

k(k − 1)

(k + 1)3 n
−
k (k − 1)

(
k2 − 4k + 1

)
(k + 1)5 n2

+
k (k − 1)

(
k4 − 14k3 + 30k2 − 14k + 1

)
(k + 1)7 n3

+ · · · (6)

as n→∞, for k > 1. In particular,

L := lim
n→∞

In =
k

k + 1

and

lim
n→∞

n (In − L) =
k (k − 1)

(k + 1)3
.

In the trivial case k = 1 direct evaluation yields In = 1/2.
Now we turn to the case 0 < k < 1. To this end we split the integral In

into two parts

In = n

∫ k

0

Å
k − z
k

ãn
(1− z)n−1 dz+n

∫ 1

k

Å
k − z
k

ãn
(1− z)n−1 dz = I ′n+ I ′′n,

say. I ′n has the same asymptotic behavior like In. We rewrite the second
integral in the form

I ′′n = (−1)n
n

kn

∫ 1

k
(z − k) (g (z))n−1 dz,

where

g (z) = (z − k) (1− z) .
The quadratic polynomial g is nonnegative on the interval [k, 1] and attains

its maximum g (zk) =
(
1−k
2

)2
in the middle of the interval at the point

zk := (k + 1) /2, where 0 < k < zk < 1. With mk := (1− k) /2 we have

g (z) = m2
k − (z − zk)2 .

Noting that k − zk = −mk and 1− zk = mk, we obtain

I ′′n = (−1)n
n

kn

∫ mk

−mk
(z +mk)

(
m2
k − z2

)n−1
dz.
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Observing that z
(
m2
k − z2

)n−1
is an odd function, the representation simpli-

fies to

I ′′n = (−1)n
2n

kn
mk

∫ mk

0

(
m2
k − z2

)n−1
dz.

The change of variable z = mk

√
t implies that

I ′′n = (−1)n
n

kn
m2n
k

∫ 1

0
(1− t)n−1 t−1/2dt = (−1)n

n

kn
m2n
k B

Å
n,

1

2

ã
,

where B (·, ·) denotes the Euler beta function. Taking advantage of the re-
lations B

(
n, 12

)
=
√
πΓ (n) /Γ (n+ 1/2) (n > 0) and Γ (n+ 1/2) /Γ (n) ∼√

n→∞ as n→∞, we arrive at

I ′′n ∼ (−1)n
√
πn

kn
m2n
k (n→∞) .

Now,

(−1)n I ′′n ∼
√
πn

kn
m2n
k =

√
πn

kn

Å
1− k

2

ã2n
=
√
πn

Å
1− 2k + k2

4k

ãn
decays to zero if and only if 1−2k+k2 < 4k. For 0 < k < 1, this is equivalent
to k > 3−

√
8 ≈ 0.171573. Note that

√
πnk−nm2n

k =
√
πn for k = 3−

√
8.

Summarizing, we have the following result:
For k > 3 −

√
8 ≈ 0.171573, the asymptotic expansion (6) holds true.

In the case 0 < k ≤ 3−
√

8 the sequence (In)n≥1 has an oscillating behaviour

such that limn→∞ (−1)n In =∞.

3. The integrals Jn

In this section we derive an asymptotic expansion for the sequence of
integrals (2). It turns out that this task is easier than the corresponding result
for the integrals (1). We follow the approach [4, No 35/38, The Asymptotic
Behaviour of Integrals, pages 486–487] by making the change of variable

x =

Å
(k − 1) s

k − s

ãn
and obtain

Jn = kn

∫ 1

0

1

k − s
sn−1ds.

A further change of variable s = e−t leads to the Laplace integral

Jn = kn

∫ ∞
0

1

k − e−t
e−ntdt.
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As in the previous section we can apply Watson’s lemma. Taylor expansion
of F (t) := 1/

(
k − e−t

)
yields, for sufficiently small t,

F (t) =
1

k − 1
− t

(k − 1)2
+

k + 1

2 (k − 1)3
t2 − k2 + 4k + 1

6 (k − 1)4
t3

+
k3 + 11k2 + 11k + 1

24 (k − 1)5
t4 + · · · ,

such that

Jn ∼ k

k − 1
− k

(k − 1)2 n
+

k (k + 1)

(k − 1)3 n2
− k3 + 4k2 + k

(k − 1)4 n3

+
k4 + 11k3 + 11k2 + k

(k − 1)5 n4
+ · · ·

as n→∞, for k > 1. In particular,

LJ := lim
n→∞

Jn =
k

k − 1

and

lim
n→∞

n (LJ − Jn) =
k

(k − 1)2
.
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Asymptotic expansions of the sum
n∑
k=1

f
Ä
kn
√
kn
ä

Dumitru Popa1)

Abstract. Let η > 0 and f : [1, 1 + η)→ R be a function. We prove:
a) if f is differentiable at 1, then

lim
n→∞

n

ln2 n

n∑
k=1

î
f
Ä

kn
√
kn
ä
− f (1)

ó
=

3f ′ (1)

2

b) if f is twice differentiable at 1, then
n∑
k=1

î
f
Ä

kn
√
kn
ä
− f (1)

ó
=

3f ′ (1)

2
· ln2 n

n
+ γf ′ (1) · lnn

n
+ γ1f

′ (1) · 1

n

+
π2 [f ′ (1) + f ′′ (1)]

12
· ln2 n

n2
+ o

Å
ln2 n

n2

ã
,

where γ is the Euler constant and γ1 the first Stieltjes constant. As an
application we deduce that

n∏
k=1

Ä
1− kn

√
kn+

kn
√
k2n2

ä
= 1 +

3 ln2 n

2n
+
γ lnn

n
+
γ1
n

+
9γ ln4 n

8n2
+

3γ ln3 n

2n2
+

(
π2 + 16γ1 + 6γ2

)
ln2 n

12n2
+ o

Å
ln2 n

n2

ã
.

Keywords: Convergence and divergence of series and sequences, Euler-
Maclaurin summation formula, orders of infinity, asymptotic expansion of
a function, asymptotic expansion of a sequence, Stolz–Cesàro lemma, Euler
constant, Stieltjes constant.

MSC: 40A05, 26A12, 40A25.

1. Introduction

In [4] the author proposed the following

Problem 1. Find the value of the limit lim
n→∞

n
ln2 n

n∑
k=1

Ä
kn
√
kn− 1

ä
.

The main purpose of this paper is to refine this evaluation. More-
over, this example suggested finding the asymptotic expansion of the sum
n∑
k=1

f
Ä
kn
√
kn
ä

in the case when f is differentiable, and when f is twice dif-

ferentiable. As application we find the asymptotic expansion of the product
n∏
k=1

ϕ
Ä
kn
√
kn
ä

for ϕ twice differentiable at 1.

1)Department of Mathematics, Ovidius University of Constanţa, Romania,
dpopa@univ-ovidius.ro



8 Articles

In this paper all notations and notions used are standard. We recall
just that the notation an = o (bn) means that ∀ε > 0, ∃nε ∈ N such that
∀n ≥ nε we have |an| ≤ ε |bn|. If bn 6= 0 ∀n ≥ n0, the condition an = o (bn)
is equivalent to lim

n→∞
an
bn

= 0, while the notation an w bn means lim
n→∞

an
bn

= 1.

Our solution for Problem 1 is the following. Let ε > 0. Since lim
x→0

ex−1
x =

1, there exists δε > 0 such that for all 0 < x < δε we have
∣∣ ex−1

x − 1
∣∣ < ε,

whence
|ex − 1− x| ≤ εx for all 0 ≤ x < δε. (1)

Since lim
n→∞

2 lnn
n = 0, for δε > 0 there exists nε ∈ N such that for all n ≥ nε

we have 2 lnn
n < δε. Let us take n ≥ nε. For all k = 1, . . . , n we have

0 ≤ ln(kn)
kn ≤ ln(n2)

kn ≤ ln(n2)
n = 2 lnn

n < δε and from (1), (for x = ln(kn)
kn ), it

follows that
∣∣∣e ln(kn)

kn − 1− ln(kn)
kn

∣∣∣ ≤ ε ln(kn)
kn , or

∣∣∣ kn√kn− 1− ln(kn)
kn

∣∣∣ ≤ ε ln(kn)
kn .

We deduce that∣∣∣∣∣
n∑
k=1

Ä
kn
√
kn− 1

ä
−

n∑
k=1

ln (kn)

kn

∣∣∣∣∣ ≤
n∑
k=1

∣∣∣∣Ä kn√kn− 1
ä
− ln (kn)

kn

∣∣∣∣
≤ ε

n∑
k=1

ln (kn)

kn

or equivalently ∣∣∣∣∣∣∣∣
n∑
k=1

Ä
kn
√
kn− 1

ä
n∑
k=1

ln(kn)
kn

− 1

∣∣∣∣∣∣∣∣ ≤ ε,
hence

lim
n→∞

n∑
k=1

Ä
kn
√
kn− 1

ä
n∑
k=1

ln(kn)
kn

= 1. (2)

Now let us note that
n∑
k=1

ln(kn)
kn = 1

nSn + lnn
n Hn, where Sn =

n∑
k=1

ln k
k , Hn =

n∑
k=1

1
k . Then, since from the Stolz–Cesàro lemma, lim

n→∞
Sn
ln2 n

= 1
2 , lim

n→∞
Hn
lnn =

1, we deduce that

lim
n→∞

n

ln2 n

n∑
k=1

ln (kn)

kn
=

3

2
. (3)

From the relations (2) and (3) we deduce that the desired limit is 3
2 .

Remark 1. A different solution for Problem 1 was indicated to us by E.
Păltănea.
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2. A first refinement

We begin with a refinement of the evaluation from Problem 1. Let
us note here the appearance of the Euler constant γ and the first Stieltjes

constant γ1, that is, γ1 = lim
n→∞

Ç
n∑
k=1

ln k
k −

ln2 n
2

å
, see [2].

Theorem 2. The following estimate holds

n

ln2 n

n∑
k=1

Ä
kn
√
kn− 1

ä
=

3

2
+

γ

lnn
+

γ1

ln2 n
+
π2

12
· 1

n
+ o

Å
1

n

ã
.

Proof. Let ε > 0. Since lim
x→0

ex−1−x
x2

= 1
2 , there exists δε > 0 such that

∀0 < x < δε we have
∣∣ ex−1−x

x2
− 1

2

∣∣ < ε, or equivalently∣∣∣∣ex − 1− x− x2

2

∣∣∣∣ ≤ εx2 for all 0 ≤ x < δε. (4)

Since lim
n→∞

2 lnn
n = 0, for δε > 0 there exists nε ∈ N such that ∀n ≥ nε we have

2 lnn
n < δε. Let n ≥ nε. For all k = 1, . . . , n we have 0 ≤ ln(kn)

kn ≤ 2 lnn
n <

δε and by the relation (3) we deduce that
∣∣∣e ln(kn)

kn − 1− ln(kn)
kn − ln2(kn)

2k2n2

∣∣∣ ≤
ε ln2(kn)
k2n2 , that is,

∣∣∣ kn√kn− 1− ln(kn)
kn − ln2(kn)

2k2n2

∣∣∣ ≤ ε ln2(kn)
k2n2 . By an obvious sum-

mation we get∣∣∣∣∣
n∑
k=1

Ä
kn
√
kn− 1

ä
−

n∑
k=1

ln (kn)

kn
− 1

2

n∑
k=1

ln2 (kn)

k2n2

∣∣∣∣∣ ≤ ε
n∑
k=1

ln2 (kn)

k2n2
,

or ∣∣∣∣∣∣∣∣
n∑
k=1

Ä
kn
√
kn− 1

ä
−

n∑
k=1

ln(kn)
kn

n∑
k=1

ln2(kn)
k2n2

− 1

2

∣∣∣∣∣∣∣∣ ≤ ε,
hence

lim
n→∞

n∑
k=1

Ä
kn
√
kn− 1

ä
−

n∑
k=1

ln(kn)
kn

n∑
k=1

ln2(kn)
k2n2

=
1

2
.

From the equality

n∑
k=1

ln2 (kn)

k2n2
=

1

n2

n∑
k=1

ln2 k

k2
+

2 lnn

n2

n∑
k=1

ln k

k2
+

ln2 n

n2

n∑
k=1

1

k2
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it follows that

lim
n→∞

n∑
k=1

ln2(kn)
k2n2

ln2 n
n2

= lim
n→∞

(
n∑
k=1

1

k2
+

2

lnn

n∑
k=1

ln k

k2
+

1

ln2 n

n∑
k=1

ln2 k

k2

)
=
π2

6
.

Hence lim
n→∞

n∑
k=1

Ä
kn√
kn−1

ä
−

n∑
k=1

ln(kn)
kn

ln2 n
n2

= π2

12 , or equivalently

n∑
k=1

Ä
kn
√
kn− 1

ä
=

n∑
k=1

ln (kn)

kn
+
π2

12

ln2 n

n2
+ o

Ç
ln2 n

n2

å
. (5)

From the well-known evaluation
n∑
k=1

1
k = lnn + γ + 1

2n + o
(
1
n

)
, see [1, 2], it

follows that

lnn

n

n∑
k=1

1

k
=

ln2 n

n
+
γ lnn

n
+

lnn

2n2
+ o

Å
lnn

n2

ã
=

ln2 n

n
+
γ lnn

n
+ o

Ç
ln2 n

n2

å
.

Similarly, from
n∑
k=1

ln k
k = ln2 n

2 + γ1 + lnn
2n + o

(
lnn
n

)
, see [2], we get

1

n

n∑
k=1

ln k

k
=

ln2 n

2n
+
γ1
n

+
lnn

2n2
+ o

Å
lnn

n2

ã
=

ln2 n

2n
+
γ1
n

+ o

Ç
ln2 n

n2

å
.

We deduce that

n∑
k=1

ln (kn)

kn
=

1

n

n∑
k=1

ln k

k
+

lnn

n

n∑
k=1

1

k
=

3 ln2 n

2n
+
γ lnn

n
+
γ1
n

+ o

Ç
ln2 n

n2

å
.

(6)
Replacing (6) in (5) we get

n∑
k=1

Ä
kn
√
kn− 1

ä
=

3 ln2 n

2n
+
γ lnn

n
+
γ1
n

+
π2

12

ln2 n

n2
+ o

Ç
ln2 n

n2

å
,

which is equivalent to the evaluation stated in Theorem 2. 2

3. The case of differentiable functions

Theorem 3. Let η > 0 and f : [1, 1 + η)→ R be differentiable at 1. Then

lim
n→∞

n

ln2 n

n∑
k=1

î
f
Ä
kn
√
kn
ä
− f (1)

ó
=

3f ′ (1)

2
.



D. Popa, Asymptotic expansions of the sum
n∑
k=1

f
Ä

kn
√
kn
ä

11

Proof. Let ε > 0. Since f is differentiable at 1, lim
x→1

f(x)−f(1)
x−1 = f ′ (1), thus

there exists δε > 0 such that ∀x ∈ [1, 1 + η) with the property that |x− 1| <
δε, x 6= 1, it follows that

∣∣∣f(x)−f(1)x−1 − f ′ (1)
∣∣∣ < ε, or∣∣f (x)− f (1)− f ′ (1) (x− 1)
∣∣ ≤ ε (x− 1) , (7)

for all x ∈ [1, 1 + η) with 0 ≤ x− 1 < δε.
Let us define νε = min (η, δε) > 0 and note that from

lim
n→∞

Ä
e

2 lnn
n − 1

ä
= 0,

for νε > 0 there exists nε ∈ N such that ∀n ≥ nε we have 0 < e
2 lnn
n − 1 < νε.

Let n ≥ nε. For all k = 1, . . . , n we have 0 ≤ kn
√
kn − 1 = e

ln(kn)
kn − 1 ≤

e
2 lnn
n − 1 < νε and, by (4),∣∣∣f Ä kn√knä− f (1)− f ′ (1)

Ä
kn
√
kn− 1

ä∣∣∣ ≤ ε Ä kn√kn− 1
ä
.

Then we have∣∣∣∣∣
n∑
k=1

î
f
Ä
kn
√
kn
ä
− f (1)

ó
− f ′ (1)

n∑
k=1

Ä
kn
√
kn− 1

ä∣∣∣∣∣
≤

n∑
k=1

∣∣∣îf Ä kn√knä− f (1)
ó
− f ′ (1)

Ä
kn
√
kn− 1

ä∣∣∣ ≤ ε n∑
k=1

Ä
kn
√
kn− 1

ä
,

or ∣∣∣∣∣∣∣∣
n∑
k=1

î
f
Ä
kn
√
kn
ä
− f (1)

ó
n∑
k=1

Ä
kn
√
kn− 1

ä − f ′ (1)

∣∣∣∣∣∣∣∣ ≤ ε,
hence

lim
n→∞

n∑
k=1

î
f
Ä
kn
√
kn
ä
− f (1)

ó
n∑
k=1

Ä
kn
√
kn− 1

ä = f ′ (1)

and by Problem 1 we obtain the limit from the statement. 2

4. The case of twice differentiable functions

Proposition 4. The following estimate holds

lim
n→∞

n2

ln2 n

n∑
k=1

Ä
kn
√
kn− 1

ä2
=
π2

6
.
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Proof. Let ε > 0. Since lim
x→0

(
ex−1
x

)2
= 1, there exists δε > 0 such that

∀0 < x < δε we have
∣∣∣( ex−1x )2 − 1

∣∣∣ < ε, or equivalently∣∣∣(ex − 1)2 − x2
∣∣∣ ≤ εx2, ∀0 ≤ x < δε. (8)

We continue as in the proof of Theorem 2. There exists nε ∈ N such that
∀n ≥ nε we have 2 lnn

n < δε. For all n ≥ nε and all k = 1, . . . , n we

have 0 ≤ ln(kn)
kn < δε and, by (5),

∣∣∣∣(e ln(kn)
kn − 1

)2
− ln2(kn)

k2n2

∣∣∣∣ ≤ ε ln2(kn)
k2n2 , or∣∣∣Ä kn√kn− 1

ä2
− ln2(kn)

k2n2

∣∣∣ ≤ ε ln2(kn)
k2n2 . We deduce∣∣∣∣∣

n∑
k=1

Ä
kn
√
kn− 1

ä2
−

n∑
k=1

ln2 (kn)

k2n2

∣∣∣∣∣ ≤
n∑
k=1

∣∣∣∣∣Ä kn√kn− 1
ä2
− ln2 (kn)

k2n2

∣∣∣∣∣
≤ ε

n∑
k=1

ln2 (kn)

k2n2
,

or ∣∣∣∣∣∣∣∣
n∑
k=1

Ä
kn
√
kn− 1

ä2
n∑
k=1

ln2(kn)
k2n2

− 1

∣∣∣∣∣∣∣∣ ≤ ε,
hence

lim
n→∞

n∑
k=1

Ä
kn
√
kn− 1

ä2
n∑
k=1

ln2(kn)
k2n2

= 1.

From

n∑
k=1

ln2 (kn)

k2n2
=

1

n2

(
n∑
k=1

ln2 k

k2
+ 2 (lnn)

n∑
k=1

ln k

k2
+ (lnn)2

n∑
k=1

1

k2

)

w
(lnn)2

n2
· π

2

6

we deduce that lim
n→∞

n∑
k=1

Ä
kn√
kn−1

ä2
(lnn)2

n2

= π2

6 . 2

We prove now the evaluation for the case of twice differentiable func-
tions.
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n∑
k=1

f
Ä

kn
√
kn
ä

13

Theorem 5. Let η > 0 and f : [1, 1 + η) → R be twice differentiable at 1.
Then the following estimate holds

n∑
k=1

î
f
Ä
kn
√
kn
ä
− f (1)

ó
=

3f ′ (1)

2
· ln2 n

n
+ γf ′ (1) · lnn

n
+ γ1f

′ (1) · 1

n

+
π2 [f ′ (1) + f ′′ (1)]

12
· ln2 n

n2
+ o

Ç
ln2 n

n2

å
.

Proof. Let ε > 0. Since f is twice differentiable at 1,

lim
x→1

f (x)− f (1)− f ′ (1) (x− 1)

(x− 1)2
=
f ′′ (1)

2
,

thus there exists δε > 0 such that ∀x ∈ [1, 1 + η) with |x− 1| < δε, x 6= 1,

we have
∣∣∣f(x)−f(1)−f ′(1)(x−1)

(x−1)2 − f ′′(1)
2

∣∣∣ < ε, or ∀x ∈ [1, 1 + η), |x− 1| < δε the

following relation holds∣∣∣f (x)− f (1)− α (x− 1)− β (x− 1)2
∣∣∣ ≤ ε (x− 1)2 , (9)

where α = f ′ (1), β = f ′′(1)
2 . Let us define νε = min (η, δε) > 0 and note

that, from lim
n→∞

Ä
e

2 lnn
n − 1

ä
= 0, for νε > 0 there exists nε ∈ N such that

∀n ≥ nε we have 0 < e
2 lnn
n − 1 < νε. Let n ≥ nε. For all k = 1, . . . , n we

have 0 ≤ kn
√
kn− 1 = e

ln(kn)
kn − 1 ≤ e

2 lnn
n − 1 < νε and, by (6),∣∣∣f Ä kn√knä− f (1)− α

Ä
kn
√
kn− 1

ä
− β
Ä
kn
√
kn− 1

ä2∣∣∣ ≤ ε Ä kn√kn− 1
ä2
.

We deduce that∣∣∣∣∣
n∑
k=1

f
Ä
kn
√
kn
ä
− f (1)n− α

n∑
k=1

Ä
kn
√
kn− 1

ä
− β

n∑
k=1

Ä
kn
√
kn− 1

ä2∣∣∣∣∣
≤ ε

n∑
k=1

Ä
kn
√
kn− 1

ä2
,

or ∣∣∣∣∣∣∣∣
n∑
k=1

f
Ä
n
√
k
ä
− f (1)n− α

n∑
k=1

Ä
kn
√
kn− 1

ä
n∑
k=1

Ä
kn
√
kn− 1

ä2 − β

∣∣∣∣∣∣∣∣ ≤ ε.
Thus

lim
n→∞

n∑
k=1

î
f
Ä
kn
√
kn
ä
− f (1)

ó
− α

n∑
k=1

Ä
kn
√
kn− 1

ä
n∑
k=1

Ä
kn
√
kn− 1

ä2 = β
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and, by Proposition 4, we deduce that

lim
n→∞

n∑
k=1

î
f
Ä
kn
√
kn
ä
− f (1)

ó
− α

n∑
k=1

Ä
kn
√
kn− 1

ä
ln2 n
n2

= β · π
2

6
.

This is equivalent to
n∑
k=1

î
f
Ä
kn
√
kn
ä
− f (1)

ó
= f ′ (1)

n∑
k=1

Ä
kn
√
kn− 1

ä
+
π2f ′′ (1)

12
· ln2 n

n2
+ o

Ç
ln2 n

n2

å
,

which, by Theorem 2, gives us
n∑
k=1

î
f
Ä
kn
√
kn
ä
− f (1)

ó
= f ′ (1)

Ç
3 ln2 n

2n
+
γ lnn

n
+
γ1
n

+
π2

12

ln2 n

n2

å
+
π2f ′′ (1)

12

ln2 n

n2
+ o

Ç
ln2 n

n2

å
=

3f ′ (1)

2
· ln2 n

n
+ γf ′ (1) · lnn

n
+ f ′ (1) γ1 ·

1

n

+
π2 [f ′ (1) + f ′′ (1)]

12
· ln2 n

n2
+ o

Ç
ln2 n

n2

å
.

2

5. Some examples

The first application of Theorem 5 represents an extension of Proposi-
tion 4.

Proposition 6. Let η > 0 and ϕ : [1, 1 + η) → R be a function of the class
C1. Then the following estimate holds

n∑
k=1

Ä
kn
√
kn− 1

ä2
ϕ
Ä
kn
√
kn
ä

=
π2ϕ (1)

6
· ln2 n

n2
+ o

Ç
ln2 n

n2

å
.

Proof. Let us define f : [1, 1 + η) → R by f (x) = (x− 1)2 ϕ (x). Then

f ′ (x) = 2 (x− 1)ϕ (x) + (x− 1)2 ϕ′ (x) and since ϕ is of the class C1, f is
twice differentiable at 1 with f ′′ (1) = 2ϕ (1). We apply Theorem 5. 2

Proposition 7. (i) If lim
n→∞

an = 0, lim
n→∞

an
bn
∈ R, then

ean = 1 + an +
a2n
2

+
a3n
6

+ o
(
b3n
)
.
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f
Ä

kn
√
kn
ä
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(ii) If lim
n→∞

xn = 0, lim
n→∞

yn = 0, lim
n→∞

xn
bn
∈ R, lim

n→∞
yn
bn

= 0, then

exn+yn = 1 + xn + yn +
x2n
2

+ xnyn +
y2n
2

+
x3n
6

+ o
(
b3n
)
.

(iii) For all real numbers a, b, c, d we have

e
a ln2 n
n

+ b lnn
n

+ c
n
+ d ln2 n

n2
+o
(
ln2 n
n2

)

= 1 +
a ln2 n

n
+
b lnn

n
+
c

n
+
a2 ln4 n

2n2
+
ab ln3 n

n2
+

Ä
d+ ac+ b2

2

ä
ln2 n

n2

+o

Ç
ln2 n

n2

å
.

Proof. (i) From lim
n→∞

an
bn

= l it follows that there exists n0 ∈ N such that∣∣∣anbn ∣∣∣ < |l| + 1 := M , ∀n ≥ n0. From lim
t→0

et−1−t− t
2

2
t3

= 1
6 we deduce that

∀ε > 0, ∃δε > 0 such that
∣∣∣et − 1− t− t2

2 −
t3

6

∣∣∣ ≤ ε
M3 |t|3, ∀ |t| < δε. From

lim
n→∞

an = 0, there exists nε ∈ N such that |an| < δε, ∀n ≥ nε. We deduce

that
∣∣∣ean − 1− an − a2n

2 −
a3n
6

∣∣∣ ≤ ε
M3 |an|3, ∀n ≥ nε, and hence

∣∣∣∣ean − 1− an −
a2n
2
− a3n

6

∣∣∣∣ ≤ ε |bn|3 ,∀n ≥ max (n0, nε) .

(ii) From (i) applied for an = xn + yn we get

exn+yn = 1 + xn + yn +
(xn + yn)2

2
+

(xn + yn)3

6
+ o

(
b3n
)

= 1 + xn + yn +
x2n + 2xnyn + y2n

2
+
x3n + 3x2nyn + 3xny

2
n + y3n

6

+o
(
b3n
)
.

Now from the hypotheses lim
n→∞

x2nyn
b3n

= lim
n→∞

(
x2n
b2n
· ynbn
)

= 0, that is x2nyn =

o
(
b3n
)
; lim
n→∞

xny2n
b3n

= lim
n→∞

(
xn
bn
· y

2
n
b2n

)
= 0, that is xny

2
n = o

(
b3n
)

and y3n =

o
(
b3n
)
. The stated evaluation follows.

(iii) For xn = a ln2 n
n , yn = b lnn

n + c
n + d ln2 n

n2 + o
Ä
ln2 n
n2

ä
, and bn = ln2 n

n , the

result in (ii) gives us that
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e
a ln2 n
n

+ b lnn
n

+ c
n
+ d ln2 n

n2
+o
(
ln2 n
n2

)
= 1 +

a ln2 n

n
+
b lnn

n
+
c

n
+
d ln2 n

n2
+ o

Ç
ln2 n

n2

å
+
a2 ln4 n

2n2
+
a ln2 n

n

Ç
b lnn

n
+
c

n
+
d ln2 n

n2
+ o

Ç
ln2 n

n2

åå
+

1

2

Ç
b lnn

n
+
c

n
+
d ln2 n

n2
+ o

Ç
ln2 n

n2

åå2

+
a3 ln6 n

6n3
+ o

Ç
ln6 n

n3

å
= 1 +

a ln2 n

n
+
b lnn

n
+
c

n
+
d ln2 n

n2
+
a2 ln4 n

2n2
+
ab ln3 n

n2
+
ac ln2 n

n2

+
b2 ln2 n

2n2
+ o

Ç
ln2 n

n2

å
= 1 +

a ln2 n

n
+
b lnn

n
+
c

n
+
a2 ln4 n

2n2
+
ab ln3 n

n2
+

Ä
d+ ac+ b2

2

ä
ln2 n

n2

+o

Ç
ln2 n

n2

å
.

2

We use now Theorem 5 to find an estimate of a product.

Proposition 8. Let η > 0 and ϕ : [1, 1 + η)→ (0,∞) be twice differentiable
at 1. Then the following estimate holds

n∏
k=1

ϕ
Ä
kn
√
kn
ä

[ϕ (1)]n
= 1 +

3ϕ′ (1)

2ϕ (1)
· ln2 n

n
+
γϕ′ (1)

ϕ (1)
· lnn

n
+
γ1ϕ

′ (1)

ϕ (1)
· 1

n

+
9

8

ï
ϕ′ (1)

ϕ (1)

ò2
· ln4 n

n2
+

3γ

2

ï
ϕ′ (1)

ϕ (1)

ò2
· ln3 n

n2
+ F · ln2 n

n2

+o

Ç
ln2 n

n2

å
,

where F = π2

12

(
ϕ′(1)
ϕ(1) + ϕ′′(1)

ϕ(1) −
î
ϕ′(1)
ϕ(1)

ó2)
+ 3γ1

2

î
ϕ′(1)
ϕ(1)

ó2
+ γ2

2

î
ϕ′(1)
ϕ(1)

ó2
.

Proof. Let us define f : [1, 1 + η)→ R, f (x) = lnϕ (x). Then f ′ (x) = ϕ′(x)
ϕ(x) ,

f ′′ (x) = ϕ′′(x)ϕ(x)−[ϕ′(x)]2
ϕ2(x)

= ϕ′′(x)
ϕ(x) −

î
ϕ′(x)
ϕ(x)

ó2
. From Theorem 5 we have



n∑
k=1

î
lnϕ
Ä
kn
√
kn
ä
− lnϕ (1)

ó
=

3ϕ′ (1)

2ϕ (1)
· ln2 n

n
+
γϕ′ (1)

ϕ (1)
· lnn

n
+
γ1ϕ

′ (1)

ϕ (1)
· 1

n

+
π2
(
ϕ′(1)
ϕ(1) + ϕ′′(1)

ϕ(1) −
î
ϕ′(1)
ϕ(1)

ó2)
12

· ln2 n

n2

+o

Ç
ln2 n

n2

å
,

that is,
n∏
k=1

ϕ
Ä
kn
√
kn
ä

[ϕ (1)]n

= e
3ϕ′(1)
2ϕ(1)

· ln
2 n
n

+
γϕ′(1)
ϕ(1)

· lnn
n

+
γ1ϕ
′(1)

ϕ(1)
· 1
n
+

π2

Ñ
ϕ′(1)
ϕ(1)

+
ϕ′′(1)ϕ(1)−[ϕ′(1)]2

ϕ2(1)

é
12

· ln
2 n
n2

+o
(
ln2 n
n2

)
.

From Proposition 7, after some calculations, we get the stated evalua-
tion. 2

As a concrete example of Proposition 8 we give

Corollary 9. The following estimate holds

n∏
k=1

Ä
1− kn

√
kn+

kn
√
k2n2

ä
= 1 +

3 ln2 n

2n
+
γ lnn

n
+
γ1
n

+
9 ln4 n

8n2
+

3γ ln3 n

2n2
+

(
π2 + 16γ1 + 6γ2

)
ln2 n

12n2
+ o

Ç
ln2 n

n2

å
.
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1. Section A

Problem 1. Consider n ≥ 2 and A ∈ Mn (C) . Prove that there exists
k ∈ N, 1 ≤ k ≤ n, and B ∈Mn (C) such that

B2 = B, KerB = KerAk, and ImB = ImAk.

Vasile Pop, Technical University of Cluj-Napoca

Author’s solution. Let JA =

ï
J1 O
O J2

ò
= P−1AP be the Jordan canoni-

cal form associated to matrix A, where J1 ∈Mm(C) contains all the Jordan
cells corresponding to nonzero eigenvalues (J1 is invertible), and the Jor-
dan block J2 ∈ Mn−m(C) contains all the Jordan cells corresponding to the
eigenvalue λ = 0 (it is possible that J2 is empty).

If k is the maximal dimension of a Jordan cell from J2 block, then we
have

JkA =

ï
Jk1 O
O O

ò
= P−1AkP

(if m = n, then J2 is empty and k can be taken equal to 1). We define

JB =

ï
Im O
O O

ò
and B = PJBP

−1, for which we verify that the conclusion

of the problem is satisfied. More precisely,

B2 = PJ2
BP
−1 = PJBP

−1 = B.

For any X ∈ Cn, we denote by X1 ∈ Cn and X0 ∈ Cn−m the blocks from the

representation X =

ï
X1

X0

ò
(with X0 possibly empty).

For X ∈ Cn, let Y = P−1X. Then the following equivalences hold:

X ∈ KerB ⇐⇒ BX = O ⇐⇒ PJBP
−1X = O

⇐⇒ P

ï
Im O
O O

ò ï
Y1
Y0

ò
= O ⇐⇒ Y1 = O.

On the other hand,

X ∈ KerAk ⇐⇒ AkX = O ⇐⇒ PJkAP
−1X = O

⇐⇒ P

ï
Jk1 O
O O

ò ï
Y1
Y0

ò
= O ⇐⇒ Jk1 Y1 = O ⇐⇒ Y1 = O.

Therefore, KerB = KerAk.
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If Z ∈ Cn, then

Z ∈ ImB ⇐⇒ there exists X ∈ Cn : Z = BX = PJBP
−1X

⇐⇒ there exists Y ∈ Cn : Z = PJBY

⇐⇒ there exists Y ∈ Cn : Z = P

ï
Im O
O O

ò ï
Y1
Y0

ò
⇐⇒ there exists Y1 ∈ Cm : Z = P

ï
Y1
O

ò
(we used the equivalence Y = P−1X ⇐⇒ X = PY ). Similarly,

Z ∈ ImAk ⇐⇒ there exists U ∈ Cn : Z = AkU = PJkAP
−1U

⇐⇒ there exists V ∈ Cn : Z = PJkAV

⇐⇒ there exists V ∈ Cn : Z = P

ï
Jk1 O
O O

ò ï
V1
V0

ò
⇐⇒ there exists V1 ∈ Cm : Z = P

ï
Jk1 V1
O

ò
(we used the equivalence V = P−1U ⇐⇒ U = PV ). Since

Y1 = Jk1 V1 ⇐⇒ V1 =
(
J−11

)k
Y1,

we conclude that ImB = ImAk.

Alternative solution. The following solution was given by Ana-Maria Ne-
goiţă, from University of Bucharest (contestant).

First, we observe that KerAk ⊂ KerAk+1, which holds for every positive
integer k. If dim KerA = 0 then we have KerAk = {0}, for every positive
integer k.

Assume now that dim KerA ≥ 1. Then we have the following inequal-
ities 1 ≤ dim KerA ≤ · · · ≤ dim KerAn+1 ≤ n. This implies the exis-
tence of k ∈ N∗ such that dim KerAk = dim KerAk+1, which means that
KerAk = KerAk+1. By induction, for every positive integer s we get that
KerAk = KerAk+s.

So there exists a positive integer k ≤ n such that KerAk = KerAk+s

for every positive integer s. Let v ∈ KerAk ∩ ImAk. Then we have Akv = 0,
and there exists u such that v = Aku. This implies that A2ku = 0, and using
the fact that KerAk = KerA2k we get that Aku = 0, which gives v = 0.
Therefore, by using the Rank-Nullity Theorem, it holds KerAk⊕ImAk = Cn.

From this, we can write each x ∈ Cn uniquely as u+v, where u ∈ KerAk

and v ∈ ImAk. We define T : Cn → Cn such that T (x) = v, where v is as
above. Take U = KerAk, V = ImAk, and observe that T = prUV .

Let B be the matrix associated to T with respect to the canonical basis.
This means that KerB = KerT = U , and ImB = ImT = V.
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We see that T (T (x)) = T (v) = v = T (x), so T ◦ T = T , which implies
B2 = B.

So B and k verify the conditions of the problem.

Remark. In a similar way, contestants Mario Drăguţ and Cezar Tulceanu
from University of Bucharest determined k ≥ 1 such that KerAk ⊕ ImAk =
Cn. We take {e1, . . . , en} basis for Cn such that {e1, . . . , et} is a basis for
KerAk and {et+1, . . . , en} is a basis for ImAk. We take B the matrix with
respect to this basis, which has the following form:

B =


0 0 0 . . . 0
0 0 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


Problem 2. Let n ≥ 3 be a positive integer. Decide if the multiplicative
group U(Z/2nZ) is cyclic.

Teodor Chelmuş, Alexandru Ioan Cuza University of Ias, i

Author’s solution. We prove that the group is not cyclic. Suppose, by
contradiction, that the multiplicative group U(Z/2nZ) is cyclic. Using the
Euler totient function, we have

cardU(Z/2nZ) = ϕ (2n) = 2n − 2n−1 = 2n−1.

Hence, there exists a nonzero integer k such that

U(Z/2nZ) =
¶

1̂, k̂, k̂2, k̂3, . . . , k̂2
n−1−1

©
and all the 2n−1 classes are mutually disjoint.

Since k̂ is invertible in U(Z/2nZ), k is necessarily odd. Furthermore, it
can be proven by induction that, for any natural number n greater than 2,

k2
n−2 ≡ 1 (mod 2n) ,

that is, k̂2
n−2

= 1̂. Contradiction.

Remark. We can also see that the multiplicative group U(Z/2nZ) is not
cyclic for n ≥ 3 using the Lifting the Exponent Lemma (LTE). For each
k ∈ U(Z/2nZ), by using LTE, and also the fact that 8 | k2 − 1, we get that

v2
Ä
k2

n−2 − 1
ä

= v2(k
2 − 1) + v2(2

n−3) ≥ 3 + n− 3 = n,

because v2(k
2 − 1) ≥ 3.
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Problem 3. Let A,B,C ∈ Mn (C) with A 6= O such that A + BAC =
BA+AC. Prove that 1 is an eigenvalue either for matrix B or for matrix C,

with algebraic multiplicity at least
rankA

2
.

Teodor Chelmuş, Alexandru Ioan Cuza University of Ias, i

Author’s solution. We look for information concerning the kernels of the
matrices B − In and C − In. The given relation can be rewritten as

(B − In)A (C − In) = O.

Using the Frobenius rank inequality for the matrices B − In, A, and C − In,
we deduce that

0 = rank ((B − In)A (C − In))

≥ rank ((B − In)A) + rank (A (C − In))− rankA.

By applying the Sylvester rank inequality for (B − In)A and A (C − In), we
obtain

0 ≥ rank (B − In) + rank (C − In) + rankA− 2n.

The conclusion follows if we observe that, from the last inequality, we have

n− rankA

2
≥ min{rank (B − In) , rank (C − In)}.

Problem 4. Let (an)n≥1 be a sequence of real numbers such that

lim
n→∞

an = 0 and lim
n→∞

(a1 + a2 + · · ·+ an − nan+1) = ` ∈ R.

Prove that the series
∞∑
n=1

an converges and determine its sum.

Teodor Chelmuş, Alexandru Ioan Cuza University of Ias, i

Author’s solution. For any positive integer n, denote Sn = a1+a2+· · ·+an
and Tn = Sn − nan+1. We prove that (Sn)n≥1 converges to `.

Observe that, for any n, we have

Sn+1 − Sn = an+1 =
Sn
n
− Tn

n
=⇒ Tn

n (n+ 1)
=
Sn
n
− Sn+1

n+ 1
. (1)

It follows that, for any p ≥ 1,
p∑

n=1

Tn
n (n+ 1)

=

p∑
n=1

Å
Sn
n
− Sn+1

n+ 1

ã
= S1 −

Sp+1

p+ 1
= S1 −

Tp+1

p+ 1
− ap+2.

Since an → 0, we obtain that (an)n≥1 is bounded, hence from relation above

it follows that the series
∞∑
n=1

Tn
n (n+ 1)

is absolutely convergent.
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Moreover, we deduce that the remainder of the series is

∞∑
n=p+1

Tn
n (n+ 1)

=
Sp+1

p+ 1
.

Since Tn → `, we have that

∀ε > 0, ∃nε ∈ N,∀n ≥ nε : `− ε < Tn < `+ ε.

By combining this relation with the expression of the remainder, we obtain
that, for any p ≥ nε,

Sp+1

p+ 1
=

∞∑
n=p+1

Tn
n (n+ 1)

≤
∞∑

n=p+1

(`+ ε)
1

n (n+ 1)
= (`+ ε)

1

p+ 1
,

hence Sp+1 ≤ `+ ε for all p ≥ nε. Similarly, Sp+1 ≥ `− ε for all p ≥ nε. This
shows that lim

n→∞
Sn = ` ∈ R.

Alternative solution. Some contestants and members of the jury observed
that relation (1) implies

Tn =

Sn+1

n+1 −
Sn
n

1
n+1 −

1
n

,∀n ≥ 1,

and since

` = lim
n→∞

Tn = lim
n→∞

Sn+1

n+1 −
Sn
n

1
n+1 −

1
n

,

by applying the Stolz–Cesàro lemma, we obtain that

lim
n→∞

Sn
n
1
n

= lim
n→∞

Sn = ` ∈ R.

2. Section B

Problem 1. Let P,Q ∈ R [X] be nonconstant monic polynomials such that
k = degP = degQ+ 1.

a) Prove that

lim
x→∞

∫ 2x

x

tk−1

P (t)
dt = ln 2.

b) If f : R → R is a continuous function such that lim
x→∞

f (x)

x
= 1,

compute the limit

lim
x→∞

∫ 2x

x

f (Q(t))

P (f (t))
dt.

Radu Strugariu, Gheorghe Asachi Technical University of Ias, i
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Author’s solution. a) Observe that there exist δ > 0 and constants m,M ∈
R such that

tk +mtk−1 ≤ P (t) ≤ tk +Mtk−1, ∀t > δ. (2)

This easily follows if we suppose that P (t) = tk + ak−1t
k−1 + · · · + a1t + a0

and we remark that

lim
t→∞

P (t)− tk

tk−1
= ak−1 ∈ R.

Relation (2) implies that, for any t sufficiently large (for which also P (t) > 0),

1

t+M
≤ tk−1

P (t)
≤ 1

t+m
.

We deduce that, for any x sufficiently large,

ln

Å
2x+M

x+M

ã
=

∫ 2x

x

1

t+M
dt ≤

∫ 2x

x

tk−1

P (t)
dt

≤
∫ 2x

x

1

t+m
dt = ln

Å
2x+m

x+m

ã
,

so passing to the limit for x→∞ we get the conclusion of assertion a).

b) Observe first that the fraction
f (Q(t))

P (f (t))
is well defined for t sufficiently

large.
We easily deduce that lim

t→∞
P (t) = lim

t→∞
Q(t) = lim

t→∞
f(t) =∞, and

lim
t→∞

f (Q(t))

tk−1
= lim

t→∞

f (Q(t))

Q(t)
· Q (t)

tk−1
= 1,

lim
t→∞

P (f(t))

tk
= lim

t→∞

P (f(t))

(f (t))k
· (f (t))k

tk
= 1.

Let ε ∈ (0, 1) . From the previous relations, we get the existence of δ > 0
such that, for any t > δ, the above fractions are well defined and∣∣∣∣f (Q(t))

tk−1
− 1

∣∣∣∣ < ε and

∣∣∣∣P (f(t))

tk
− 1

∣∣∣∣ < ε,

i.e.,

(1− ε) tk−1 < f (Q(t)) < (1 + ε) tk−1,

(1− ε) tk < P (f(t)) < (1 + ε) tk.

From here,
1− ε
1 + ε

· 1

t
<
f (Q(t))

P (f (t))
<

1 + ε

1− ε
· 1

t
, ∀t > δ,

and then

1− ε
1 + ε

· ln 2 =
1− ε
1 + ε

·
∫ 2x

x

1

t
dt ≤

∫ 2x

x

f (Q(t))

P (f (t))
dt ≤ 1 + ε

1− ε
· ln 2, ∀x > δ.
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By denoting, for every x > δ,

G (x) :=

∫ 2x

x

f (Q(t))

P (f (t))
dt,

we obtain that

∀ε ∈ (0, 1) ,∃δ > 0, ∀x > δ : − 2ε

1 + ε
· ln 2 ≤ G (x)− ln 2 ≤ 2ε

1− ε
· ln 2,

from where we deduce that the desired value of the limit is ln 2.

Problem 2. Consider A,B ∈ Mn(C) such that AB + BA = A + B. Prove
that the following assertions are equivalent:

a) rankAB + n = rankA+ rankB,
b) KerB ⊂ ImA.

Mihai Opincariu, Avram Iancu National College, Brad

Vasile Pop, Technical University of Cluj-Napoca

Authors’ solution. We use the equality case in the Sylvester rank inequality

rankAB + n ≥ rankA+ rankB,

with equality if and only if KerA ⊂ ImB.
Using this characterization, assertion b) is equivalent to

rankBA+ n = rankA+ rankB,

and we are driven to the idea that rankAB = rankBA, which we prove in
the following.

From AB +BA = A+B, it follows that

AB = A+B −BA = A+B(In −A) = In − (In −A) +B(In −A)

= In − (In −B)(In −A) = In −DC,

with D = In −B, C = In −A. Similarly, we obtain BA = In − CD, hence

rankAB = rankBA ⇐⇒ rank(In − CD) = rank(In −DC). (3)

We give two different methods to prove relation (3).

Method 1. For any matrices C,D ∈Mn(C), we prove the inclusions:

Ker(In − CD) ⊂ ImC, (4)

KerC ⊂ Im(In −DC). (5)

We have

X ∈ Ker(In − CD)⇐⇒ X = C(DX) =⇒ X ∈ ImC,

X ∈ KerC =⇒ X = X −D(CX) = (In −DC)X =⇒ X ∈ Im(In −DC).
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According to the equality case in Sylvester rank inequality, we have

(4)⇐⇒ rank ((In − CD)C) + n = rank(In − CD) + rankC,

(5)⇐⇒ rank (C(In −DC)) + n = rank(In −DC) + rankC,

and since (In − CD)C = C(In − DC), it follows that rank(In − CD) =
rank(In −DC).

Method 2. We have

rank(In − CD) + n = rank

ï
In − CD O

O In

ò
L1= rank

ï
In − CD C

O In

ò
C1= rank

ï
In C
D In

ò
C2= rank

ï
In O
D In −DC

ò
L2= rank

ï
In O
O In −DC

ò
= n+ rank(In −DC).

The matrices of elementary transformations on lines and columns are:

L1 =

ï
In C
O In

ò
, C1 =

ï
In O
D In

ò
, C2 =

ï
In −C
O In

ò
, L2 =

ï
In O
−D In

ò
.

In conclusion,

a)⇐⇒ rankAB + n = rankA+ rankB ⇐⇒
rankBA+ n = rankA+ rankB ⇐⇒ b).

Problem 3. Let V be a finite dimensional vector space and T : V → V be
an endomorphism.

a) Prove that there exist a positive integer k and an endomorphism
P : V → V such that

P ◦ P = P, KerP = KerT k, and ImP = ImT k.

b) The assertion of a) remains true if V is infinite dimensional ?

Vasile Pop, Technical University of Cluj-Napoca

Author’s solution. a) Consider the sequence of subspaces of V : KerT ⊆
KerT 2 ⊆ · · · ⊆ KerTn ⊆ · · · . Since V has finite dimension, it follows that
there exists k ≥ 1 such that KerT k = KerT k+1. We prove by induction that
KerT k+p = KerT k, for any p ≥ 1.

For p = 1 we have KerT k = KerT k+1. At the inductive step, suppose
that KerT k+p = KerT k. The inclusion KerT k+p+1 ⊆ KerT k follows because

x ∈ KerT k+p+1 ⇐⇒ T k+p+1(x) = 0⇐⇒ T k+p(T (x)) = 0

⇐⇒ T (x) ∈ KerT k+p = KerT k

⇐⇒ T k+1(x) = 0⇐⇒ x ∈ KerT k+1 = KerT k

=⇒ x ∈ KerT k,

which closes the induction argument.
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We prove now that V = KerT k ⊕ ImT k. Since

dim KerT k + dim ImT k = dimV,

it is sufficient to prove that

KerT k ∩ ImT k = {0}.

Indeed, if x ∈ KerT k ∩ ImT k, then T k(x) = 0 and there exists x1 ∈ V such
that x = T k(x1). Hence, T 2k(x1) = T k(x) = 0, so x1 ∈ KerT 2k = KerT k,
therefore x = T k(x1) = 0.

Denote V1 = ImT k and V2 = KerT k, such that V = V1 ⊕ V2. We can
define P : V → V by P (x1 + x2) = x1, for any x1 ∈ V1, x2 ∈ V2 (P is the
projection on V1 parallel to V2). Obviously, P satisfies the conclusion of the
problem.

b) The assertion a) is no longer true if V is infinite dimensional.
For instance, take V = R[X] and T : R[X] → R[X], T (f) = f ′ (the

differentiation operator). Then, for any positive k we have KerT k = Rk−1[X]
(the vector subspace consisting of all polynomials of degree less than k) and
ImT k = R[X]. If P : R[X] → R[X] satisfies the properties from a) for a
certain k ≥ 1, then 1 ∈ Rk−1[X] = KerT k = KerP , so P (1) = 0. Also,
1 ∈ R[X] = ImT k = ImP , so there exists f ∈ R[X] such that 1 = P (f).
Since P 2 = P , we obtain the following contradiction: 1 = P (f) = P 2(f) =
P (1) = 0.

Remark. We observe that the item a) of Problem 3 above is nothing else
than the reformulation in terms of operators of Problem 1 from Section A.

Problem 4. We consider an even function f : [−1, 1] → R of class C2 for
which f (0) = 0 and f ′′ (0) > 0. Define the sequence (an)n≥1 by

an =

n∑
k=1

f

Å
k

n
√
n

ã
, ∀n ≥ 1.

a) Prove that the sequence (an)n≥1 converges and compute ` = lim
n→∞

an.

b) Suppose, additionally, that f is of class C4, with f (4)(0) > 0. Study

the convergence of the series
∞∑
n=1

(an − `) and
∞∑
n=1

f (an − `).

Radu Strugariu, Gheorghe Asachi Technical University of Ias, i

Author’s solution. Observe first that f ′ is an odd function, hence f ′ (0) =
0. Since f is of class C2 and f ′′ (0) > 0, we get that f ′′ (x) > 0 in a neighbor-
hood of 0, hence f ′ is increasing in that neighborhood. Furthermore, since
f ′ (0) = 0, we have that there exists ε > 0 such that f ′ (x) ≥ 0 on [0, ε) , so
f is nondecreasing, hence it has also nonnegative values on [0, ε) .
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a) Using the monotonicity of f, we will have successively, for any n ≥ 1,
that

f

Å
k

n
√
n

ã
≤
∫ k+1

k
f

Å
x

n
√
n

ã
dx ≤ f

Å
k + 1

n
√
n

ã
, ∀k = 0, n− 1,

an + f (0)− f
Å

1√
n

ã
=

n−1∑
k=0

f

Å
k

n
√
n

ã
≤
∫ n

0
f

Å
x

n
√
n

ã
dx

≤
n∑
k=1

f

Å
k

n
√
n

ã
= an,

and, finally, that∫ n

0
f

Å
x

n
√
n

ã
dx ≤ an ≤

∫ n

0
f

Å
x

n
√
n

ã
dx+ f

Å
1√
n

ã
− f (0) . (6)

Since f is continuous, it admits antiderivatives, so denoting by F an anti-
derivative which vanishes at 0, we have

F (0) = F ′ (0) = F ′′ (0) = 0.

Using the Taylor formula for the function F, we deduce

F

Å
1√
n

ã
=
F ′′′ (0)

6n
√
n

+ o

Å
1

n
√
n

ã
,

hence

lim
n→∞

∫ n

0
f

Å
x

n
√
n

ã
dx = lim

n→∞
n
√
nF

Å
1√
n

ã
=
f ′′ (0)

6
. (7)

By relation (6), using also the fact that lim
n→∞

f
Ä

1√
n

ä
= f (0) from the conti-

nuity of f, it follows that lim
n→∞

an =
f ′′ (0)

6
= ` ∈ R.

b) As above, from f ′ odd it follows that f ′′ is an even function, then f ′′′

is odd, so f ′′′ (0) = 0. Since f is of class C4, we can use the Taylor formula
of order 4 for F, hence

F

Å
1√
n

ã
=
f ′′ (0)

6n
√
n

+
f (4) (0)

120n2
√
n

+ o

Å
1

n2
√
n

ã
, (8)

so

n (an − `) = n

Å
an −

f ′′ (0)

6

ã
≥ n
Å∫ n

0
f

Å
x

n
√
n

ã
dx− f ′′ (0)

6

ã
= n

Å
n
√
nF

Å
1√
n

ã
− f ′′ (0)

6

ã
→ f (4) (0)

120
> 0. (9)

We deduce, by the comparison test, that the series
∞∑
n=1

(an − `) diverges.
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From (6) and (8), we have

n (an − `) ≤ n
Å∫ n

0
f

Å
x

n
√
n

ã
dx− f ′′ (0)

6

ã
+ n

Å
f

Å
1√
n

ã
− f (0)

ã
.

But, using again the Taylor formula,

lim
n→∞

n

Å
f

Å
1√
n

ã
− f (0)

ã
= lim

n→∞
n

Å
f ′′ (0)

2n
+ o

Å
1

n

ãã
=
f ′′ (0)

2
.

Hence, we have that

f (4) (0)

120
≤ lim

n→∞
n (an − `) ≤

f (4) (0)

120
+
f ′′ (0)

2
. (10)

Moreover, for any x in the neighborhood of 0, we will have

f (x) = f (0) + f ′ (0) · x+
f ′′ (0)

2
x2 + o

(
x2
)

=
f ′′ (0)

2
x2 + o

(
x2
)
.

Therefore

lim
n→∞

f (an − `)
(an − `)2

=
f ′′ (0)

2
∈ (0,∞) ,

so, by the comparison limit test, we get
∞∑
n=1

f (an − `) ∼
∞∑
n=1

(an − `)2 .

By relation (10), we obtain that
∞∑
n=1

(an − `)2 ∼
∞∑
n=1

1

n2
, so it converges.
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MATHEMATICAL NOTES

All in: the ultimate strategy

Mircea Martin1)

Abstract. Motivated by a problem from V. I. Arnol’d, A Mathematical
Trivium, the article elaborates on the proof of a general result concerned
with limits of difference quotients involving two functions and their in-
verses, under a minimal set of requirements. Properly implemented, the
transition from a particular problem to a natural generalization provides
a reliable problem solving strategy, illustrated as part of the article. The
requisites include differential calculus techniques related to higher order
chain rules.

Keywords: Limits, derivatives, l’Hôpital rule, higher order chain rules,
inverse function differentiation rules.

MSC: 00A99, 97I40

1. Introduction

The following excerpt from V. I. Arnol’d [1], an essay addressed to
mathematics teachers, emphasizes the importance of a teaching method and
recommends its use in unambiguous terms:

The only way to actually determine what our students have been taught is
to list some problems that they should be able to solve as a result of their
instruction.

In full agreement with this statement, my students enrolled in the Prob-
lem Solving Seminar at Baker University were tested by offering them a set
of five problems at the beginning of the semester. On one occasion, that list
included the second problem from Mathematical Trivium,

Problem 1. Find the limit

lim
x→0

sin (tan x )− tan (sin x )

arcsin (arctan x )− arctan (arcsin x )
. (1)

Though the problem looks like a standard exercise from a Differential
Calculus textbook, a caveat consisting of comments and four specific tasks
was issued. Basically, the students have been asked to

(1) outline a feasible approach,
(2) identify special features,
(3) describe techniques that might help in solving the problem,
(4) state a generalization and prove it.

1)Baker University, Baldwin City, KS 66006, USA, mircea.martin@bakeru.edu
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As expected, all students suggested a repeated use of L’Hôpital Rule,
and noticed that along the way they will need to rely on Chain Rules for
higher order derivatives of composite functions. Such rules make it possible
to derive formulas for higher order derivatives of inverse functions, which for
obvious reasons would help, too. The last task, to generalize the setting and
eventually prove the generalization, turned out to be hard and my students
were not able to carry it out on their own. However, after a little bit of
coaching focussed on examples, heuristic geometric arguments, numerical and
graphical explorations of the limit in the original problem using a graphing
calculator, and proofs of the subsequent plausible result when n = 2 or n = 3,
the students accepted the next generalization as true.

Theorem 1. Suppose f and g are smooth functions defined on open intervals
of real numbers that include 0 ∈ R, with f(0) = g(0) = 0. Let n ≥ 2 be an
integer such that

(i) Dif(0) = Dig(0), 1 ≤ i ≤ n− 1,

(ii) Dnf(0) 6= Dng(0).

In addition, assume that f and g have inverse functions denoted by f−1 and
g−1, respectively. Then,

lim
x→0

f(x)− g(x)

g−1(x)− f−1(x)
= [Df(0) ·Dg(0)](n+1)/2. (2)

For convenience, we recall that a function f : I → R with I ⊆ R
an open set is smooth provided f has continuous derivatives on the entire
domain, denoted by Dif, for all integers i ≥ 0. By convention, D0f = f.

Corollary 2. The answer to the second problem from Mathematical Trivium
is

lim
x→0

sin (tan x )− tan (sin x )

arcsin (arctan x )− arctan (arcsin x )
= 1 .

The All In Problem Solving Strategy, based on transitions from intri-
cate particular problems to natural generalizations, proves useful in many
instances. To make the point, generalizations single out the relevant set-
ting and assumptions, by discarding immaterial features and streamlining a
course of action.

2. Requisites and Proof

Proofs rely on requisites, which sometimes are extensions of results the
students are familiar with. A brief discussion about chain rules for higher
order derivatives of composite functions would be appropriate with regard to
our goal. Specifically, let f and u be two smooth functions with the range of
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u included in the domain of f . The derivative of f ◦ u is given by the well
known rule

D(f ◦ u) = Df ◦ u ·Du. (3)

Successive applications of rule (3) in conjunction with the product rule
yield the second and third order derivatives of f ◦ u,

D2(f ◦ u) = D2f ◦ u · (Du)2 +Df ◦ u ·D2u, (4)

D3(f ◦ u) = D3f ◦ u · (Du)3 + 3D2f ◦ u ·Du ·D2u+Df ◦ u ·D3u. (5)

Equations (3), (4), (5) are specific forms, when i = 1, 2, 3, of the following
explicit general formula discovered by C. F. Faà di Bruno [2],

Di(f ◦ u) =
∑

K∈Ki,k

i!

k1! k2! · · · ki!
Dkf ◦ u ·

i∏
j=1

[ Dju

j !

]kj
, (6)

where the sum is over all i-tuples K = (k1, k2, . . . , ki) ∈ Ki,k of non-negative
integers such that k1 + 2 k2 + · · · + i ki = i and k1 + k2 + · · · + ki = k. For
details on this discovery my students were required to read the articles by
W. P. Johnson [3] and S. Roman [4].

It should be noted that the only term in (6) that includes Dif corre-
sponds to the i-tuple (i, 0, . . . , 0), hence that initial term is Dif ◦ u · (Du)i.
At the same time, there is a unique term involving Diu, corresponding to
the i-tuple (0, 0, . . . , 1), hence the last term in (6) equals Df ◦ u ·Diu. For
a later use, we denote by Si(f, u) the sum of all the other terms, if any, in
which the derivatives of f and u have orders less than i, and record formula
(6) as

Di(f ◦ u) = Dif ◦ u · (Du)i + Si(f, u) +Df ◦ u ·Diu, i ≥ 2. (7)

When i = 1, (7) reduces to (3), and for i = 2, i = 3 we get (4), (5).

We are now in a position to proceed with the proof of the theorem. We
start with a few preliminary steps.

Suppose first that f is a smooth function defined on an open interval
I ⊆ R, and assume that f has an inverse function, f−1. Using equation (7)
when u = f−1, and based on a proof by induction, we conclude that f−1 is
smooth, too. Moreover, we observe that each derivative Dif−1, i ≥ 1, only
depends on derivatives of f up to order i, and derivatives of f−1 of orders
less than i. The next technical result is a straightforward consequence of the
previous remarks, combined with a second elementary proof by induction on
i ≥ 1.

Lemma 3. Suppose functions f and g satisfy the assumptions in our Theo-
rem 1. Then f−1(0) = g−1(0) = 0, and

(iii) Dif−1(0) = Dig−1(0), 1 ≤ i ≤ n− 1,

(iv) Dnf−1(0) 6= Dng−1(0).
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Consequently, as my students anticipated, a repeated use of L’Hôpital
Rule is now fully justified, with the following consequence.

Lemma 4. Under the previous assumptions, we get that

lim
x→0

f(x)− g(x)

g−1(x)− f−1(x)
=

Dnf(0)−Dng(0)

Dng−1(0)−Dnf−1(0)
, n ≥ 2. (8)

The proof of the Theorem 1 is not yet complete. We next rely on
equation (7) at x = 0 when u = f−1, note that Dn(f ◦ f−1) = 0 because
n ≥ 2, and get

0 = Dnf(0) · (Df−1(0))n + Sn(f, f−1)(0) +Df(0) ·Dnf−1(0).

Since Df(0) = 1/Df−1(0), the above equation implies

Dnf−1(0) = −Dnf(0) · (Df−1(0))n+1 − Sn(f, f−1)(0) ·Df−1(0). (9)

For g and g−1, the similar equation at x = 0 is

Dng−1(0) = −Dng(0) · (Dg−1(0))n+1 − Sn(g, g−1)(0) ·Dg−1(0). (10)

From statement (iii) in Lemma 3 we have Df−1(0) = Dg−1(0) and, at the
same time, Sn(f, f−1)(0) = Sn(g, g−1)(0). For convenience, set Df(0) =
Dg(0) = δ, whence Df−1(0) = Dg−1(0) = δ−1, subtract (9) from (10),
cancel the equal parts, and record the resulting equation,

Dng−1(0)−Dnf−1(0) = [Dnf(0)−Dng(0)] · δ−(n+1). (11)

Finally, we substitute (11) into (8) and get

lim
x→0

f(x)− g(x)

g−1(x)− f−1(x)
= δn+1 = [Df(0) ·Dg(0)](n+1)/2.

The proof of the Theorem 1 is complete. �
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Two-fold extension of a set function

George Stoica1)

Abstract. We give a general condition under which a finitely additive set
function defined on the finite subsets of a countable set X has a countably
additive extension defined on all subsets of X.

Keywords: Finitely/countably additive set function, finite/countable
subsets of a countable set.

MSC: 97I20, 97K50

We are given a countable set X and a set function P defined on the
finite subsets of X, with values in [0, 1] for simplicity, and which is finitely
additive, i.e.,

P (A1 ∪A2) = P (A1) + P (A2)

for any A1, A2 ⊂ X finite, such that A1 ∩ A2 = ∅. We are looking for a
simultaneous two-fold extension of P , namely to a countably additive set
function defined on all subsets of X. As the latter can be regarded as the
hereditary σ-ring generated by the class of finite subsets of X (cf. [2], p. 24),
we shall see below that the right candidate for such an extension is the inner
measure induced by P (cf. [2], p. 58). Specifically, we have the following
result.

Theorem. Let X be a countable set and P a finitely additive set function
defined on the finite subsets of X, taking values in [0, 1]. In addition, we
assume the following condition:

For any ε ∈ (0, 1), there is a finite subset Bε of X such that P (Bε) > 1− ε.
(∗)

Then the formula

Q(A) := sup{P (A ∩ F ) | F ⊂ X,F finite}

defines an extension of P to all subsets A ⊆ X, which takes values in [0, 1],
and is not only finitely additive, but also countably additive, i.e., for every
disjoint sequence of sets (An)n≥1 in X whose union is also in X, we have

Q

Å ∞⋃
n=1

An

ã
=

∞∑
n=1

Q(An).

Examples. (i) Typical set functions defined on the subsets of N that satisfy
the above theorem are as follows: to each n ∈ N associate a real number

1)5 Deveber Terrace, Saint John, New Brunswick, E2K 2B5, Canada,
gstoica2015@gmail.com
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εn > 0 such that
∑

n∈N εn <∞ and, for A ⊂ N, define

P (A) =
∑
n∈A

εn

/∑
n∈N

εn .

To show that condition (∗) is satisfied in this case, let ε ∈ (0, 1). We need to
exhibit a set Bε ⊂ N such that∑

n∈Bε

εn > (1− ε)
∑
n∈N

εn.

As the sequence of partial sums converges increasingly to the sum of a positive
series, it suffices to take Bε = {1, 2, . . . , nε} with nε sufficiently large such
that the corresponding partial sum exceeds a fraction (i.e., 1−ε) of the whole
sum.

(ii) Classes of set functions with no atoms1 introduced in [1] and [4]
satisfy condition (∗) when X = N or Z. They include set functions with the
intermediate value (or Darboux) property2 (cf. [5]).

Remarks. (i) The countably additive extension in the above theorem is the
most one can expect in our context, in the sense that any collection {Ai}i∈I
of mutually disjoint subsets of X, with P (Ai) > 0 for any i ∈ I, is at most
countable. Indeed, for any natural n ≥ 1, let In := {i ∈ I | P (Ai) > 1/n}.
As the events {Ai}i∈I are mutually disjoint, each In has at most n elements,
so the set I =

⋃
n≥1 In is at most countable.

(ii) Under condition (∗), Q is the unique extension of P with the required
properties (see [3] p. 148, ex. 10.57 and 10.58(a)). Also note that condition
(∗) is equivalent to sup{P (F ) | F ⊂ X,F finite} = 1 (in general, one only
has ≤ 1 in the above statement).

(iii) If hypothesis (∗) is excluded, the above theorem is false, as proved in [7]
when X = N, and in [6] in more general situations. For instance, an atomic
finitely additive set function that does not satisfy the theorem (and indeed
does not have a countably additive extension) is defined on the subsets of N
by: P (A) = 0 if A ⊆ N is finite, and P (A) = 1 if N \A is finite.

Proof of the Theorem. We easily obtain from the definitions that both P , Q
are monotonically increasing with respect to inclusion: if A ⊆ B are finite
subsets of X, then

P (B) = P
(
A ∪ (B \A)

)
= P (A) + P (B \A) ≥ P (A).

In particular, if A ⊆ B are any subsets of X and F is a finite subset of
X, then P (A ∩ F ) ≤ P (B ∩ F ). By definition, P (B ∩ F ) ≤ Q(B), hence

1A ⊂ X is called an atom if P (A) > 0 and there is no B ⊂ A such that 0 < P (B) < P (A).
2If P (A) > 0 and 0 < b < P (A) are given, then there is B ⊂ A such that P (B) = b.
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P (A∩F ) ≤ Q(B). Finally, we pass to sup along all finite subsets F of X, to
obtain that Q(A) ≤ Q(B).

To prove that Q is finitely additive on the subsets of X, we shall prove
that Q is, at the same time, super- and sub-additive. Indeed, let A1, A2 ⊆ X
with A1 ∩A2 = ∅. On the one hand. we have

Q(A1 ∪A2) = sup{P
(
(A1 ∪A2) ∩ F

)
| F ⊂ X,F finite}

= sup{P
(
(A1 ∩ F ) ∪ (A2 ∩ F )

)
| F ⊂ X,F finite}

= sup{P (A1 ∩ F ) + P (A2 ∩ F ) | F ⊂ X,F finite}
≤ sup{P (A1 ∩ F ) | F ⊂ X,F finite}

+ sup{P (A2 ∩ F ) | F ⊂ X,F finite}
= Q(A1) +Q(A2).

On the other hand, if F,G ⊂ X are finite, we have

P (A1 ∩ F ) + P (A2 ∩G) ≤ P (A1) + P (A2) = P (A1 ∪A2) ≤ Q(A1 ∪A2).

We keep G fixed and pass to sup along all finite subsets F of X, to obtain
that Q(A1) + P (A2 ∩G) ≤ Q(B); and finally we pass to sup along all finite
subsets G of X, to obtain that Q(A1) +Q(A2) ≤ Q(A1 ∪A2).

Let us show that, in fact, Q is countably additive on all subsets of X.

Let (An)n≥1 be a collection of mutually disjoint subsets of X and A =

∞⋃
n=1

An.

We have that
k⋃

n=1

An ⊆ A for any k ≥ 1, so

Q(A) ≥ Q
( k⋃
n=1

An
)

=

k∑
n=1

Q(An) for any k ≥ 1.

Let ε > 0. We need to find a rank N = Nε ≥ 1 such that

Q(A)−
k∑

n=1

Q(An) < ε for all k ≥ N.

According to condition (∗), there exists Bε ⊂ X, Bε finite, such that P (Bε) >
1 − ε. Only a finite number of An intersects Bε, so there exists N ≥ 1 such
that An ∩Bε = ∅ for any n > N . Thus, for k ≥ N we have

k∑
n=1

Q(An) ≥
k∑

n=1

Q(An ∩Bε) = Q

Å N⋃
n=1

(An ∩Bε)
ã

= Q

Å ∞⋃
n=1

(An ∩Bε)
ã

= Q(A ∩Bε).
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Finally, we deduce that

Q(A)−
k∑

n=1

Q(An) ≤ Q(A)−Q(A ∩Bε) = Q(A \Bε)

≤ Q(X \Bε) ≤ 1−Q(Bε) = 1− P (Bε) < ε,

exactly what we wanted. �

Open problem. The set functions listed in Examples (i) and those with
the intermediate value (or Darboux) property in Examples (ii) satisfy, besides
condition (∗), the much nicer condition

P ({x}) 6= 0 for any x ∈ X.
It would be interesting to see if the extension result presented here is valid
under this new condition.

Acknowledgments. The author is grateful to the Referee for her/his con-
structive comments that improved the quality of this paper.
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PROBLEMS

Authors should submit proposed problems to gmaproblems@rms.unibuc.ro.

Files should be in PDF or DVI format. Once a problem is accepted and considered

for publication, the author will be asked to submit the TeX file also. The referee

process will usually take between several weeks and two months. Solutions may also

be submitted to the same e-mail address. For this issue, solutions should arrive

before 15th of May 2025.

PROPOSED PROBLEMS

563. Let f : [0, 1]→ R be a differentiable function with continuous derivative

such that f(0) = f(1) and

∫ 1

0
xf(x) dx = 0. Prove that

∫ 1

0
(f ′(x))2 dx ≥ 180

Ç∫ 1

0
f(x) dx

å2

.

Proposed by Cezar Lupu, Beijing Institute of Mathematical Sciences

and Applications (BIMSA), Tsinghua University, Beijing, P. R. China,

and Tudorel Lupu, Decebal High school, Constanţa, Romania.

564. Let a1, . . . , a7 be nonnegative real numbers such that a1a2 + a2a3 +
· · ·+ a7a1 = 7. Prove that

(a)
1

5a1 + 3
+

1

5a2 + 3
+ · · ·+ 1

5a7 + 3
≥ 7

8
.

(b)∗ 1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

a7 + 1
≥ 7

2
.

Proposed by Vasile Cı̂rtoaje, Petroleum-Gas University of Ploies,ti,

Romania.

565. Let f ∈ C2n+1([0, 1],R) for some n ≥ 0 such that f(1/2) = f ′(1/2) =

f ′′(1/2) = · · · = f (2n)(1/2) = 0. Prove that∫ 1

0

Ä
f (2n+1)(x)

ä2
dx−

Ç∫ 1

0
f (2n+1)(x) dx

å2

≥ 24n+2(4n+ 3)((2n+ 1)!)2
Ç∫ 1

0
f(x) dx

å2

.

Proposed by Florin Stănescu, S,erban Cioculescu School, Găes,ti,

Romania.
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566. Prove that for all natural numbers n ≥ 4 the equation
n∑
k=1

1

k2 + 2k + x
=

3

4
has a unique solution in the interval (−1, 0), denoted by xn, and find the

value of the limit lim
n→∞

nxn.

Proposed by Dumitru Popa, Department of Mathematics, Ovidius

University of Constant,a, Romania.

567. Let n ≥ 4 and let a1, . . . , an ≥ 0 such that

a21 + · · ·+ a2n + (n2 − 3n+ 1) a1 · · · an ≥ (n− 1)2.

Prove that

a1 + · · ·+ an +
1

n− 1

√
1

n− 1

∑
1≤i≤j≤n

(ai − aj)2 ≥ n.

Proposed by Leonard Giugiuc, Greci School, Mehedint,i, Romania.

568. Let f : [0, 1]→ R be a twice differentiable function, with f ′′ continuous,
such that f(0) = f(1). Prove that there exists ξ ∈ (0, 1) such that

ξ2f(ξ) = 2

∫ ξ

0
xf(x) dx.

Proposed by Cezar Lupu, Beijing Institute of Mathematical Sciences

and Applications (BIMSA) and Tsinghua University, Beijing, P.R. China.

569. For an odd positive integer x put x!! = x(x − 2) · · · 3 · 1. Let a and b
be positive real numbers. Calculate

lim
n→∞

(
n
»
a · (2n+ 1)!!− n−1

»
b · (2n− 1)!!

)
.

2) Let f, g ∈ R[x] be polynomials of the same degree with the coefficient
of the leading term positive. Calculate

lim
n→∞

(
n
»

(2n+ 1)!!f(n)− n−1
»

(2n− 1)!!g(n− 1)
)
.

Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical

University of Cluj-Napoca, Romania.
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SOLUTIONS

544. Let f : [0, 1]→ R be a differentiable function with continuous derivative
on [0, 1] such that f(0) = f(1/2) = f(1) = 0. Show that∫ 1

0
(f ′(x))2 dx ≥ 48

Ç∫ 1

0
f(x) dx

å2

.

Proposed by Robert Dragomirescu, Stanford University, USA, and

Cezar Lupu, Yanqi Lake Beijing Institute of Mathematical Sciences

and Applications (BIMSA) and Tsinghua University, P. R. China

Solution by the authors. By applying Cauchy-Schwarz’s inequality, we
have ∫ 1

2

0
(f ′(x))2 dx

∫ 1
2

0

Å
x− 1

4

ã2
dx ≥

Ç∫ 1
2

0

Å
x− 1

4

ã
f ′(x) dx

å2

,

∫ 1

1
2

(f ′(x))2 dx

∫ 1

1
2

Å
x− 3

4

ã2
dx ≥

Ç∫ 1

1
2

Å
x− 3

4

ã
f ′(x) dx

å2

.

As ∫ 1
2

0

Å
x− 1

4

ã2
dx =

1

3

Å
x− 1

4

ã3 ò 1
2

0

=
1

96

and ∫ 1

1
2

Å
x− 3

4

ã2
dx =

1

3

Å
x− 3

4

ã3 ò1
1
2

=
1

96
,

by using integration by parts and the condition f(0) = f(1/2) = f(1) = 0,
we get∫ 1

2

0

Å
x− 1

4

ã
f ′(x) dx =

Å
x− 1

4

ã
f(x)

ò 1
2

0

−
∫ 1

2

0
f(x) dx = −

∫ 1
2

0
f(x) dx,

∫ 1

1
2

Å
x− 3

4

ã
f ′(x) dx =

Å
x− 3

4

ã
f(x)

ò1
1
2

−
∫ 1

1
2

f(x) dx = −
∫ 1

1
2

f(x) dx.

Then the two inequalities above write as∫ 1
2

0
(f ′(x))2 dx ≥ 96

Ç∫ 1
2

0
f(x) dx

å2

and ∫ 1

1
2

(f ′(x))2 dx ≥ 96

Ç∫ 1

1
2

f(x) dx

å2

.
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By adding these inequalities and using the elementary inequality α2 +

β2 ≥ (α+ β)2

2
, we obtain

∫ 1

0
(f ′(x))2 dx ≥ 96

Å∫ 1
2
0 f(x) dx+

∫ 1
1
2
f(x) dx

ã2
2

= 48

Ç∫ 1

0
f(x) dx

å2

.

Solution by Moubinool Omarjee, Paris, France. For a, b ∈ R arbitrary
we integrate by parts and we get∫ 1/2

0
f(x) dx = [(x+ a)f(x)]

1/2
0 −

∫ 1/2

0
(x+ a)f ′(x) dx

= −
∫ 1/2

0
(x+ a)f ′(x) dx,∫ 1

1/2
f(x) dx = [(x+ b)f(x)]11/2−

∫ 1

1/2
(x+ b)f ′(x) dx = −

∫ 1

1/2
(x+ b)f ′(x) dx.

It follows that∫ 1

0
f(x) dx =

∫ 1

0
ka,b(x)f ′(x) dx , where ka,b(x) =

®
−x− a 0 ≤ x ≤ 1/2.

−x− b 1/2 < x ≤ 1.

Then, by the Cauchy-Schwarz inequality,Ç∫ 1

0
f(x) dx

å2

=

Ç∫ 1

0
ka,b(x)f ′(x) dx

å2

≤
∫ 1

0
k2a,b(x) dx

∫ 1

0
f ′2(x) dx. (1)

But ∫ 1

0
k2a,b(x) dx =

∫ 1/2

0
(x+ a)2 dx+

∫ 1

1/2
(x+ b)2 dx

=
1

2
a2 +

1

4
a+

1

2
b2 +

3

4
b+

1

3

=
1

2
(a+ 1/4)2 +

1

2
(b+ 3/4)2 +

1

48
.

We note that the smallest value of
1∫
0

k2a,b(x) dx, which produces the best

inequality in (1), is
1∫
0

k2−1/4,−3/4(x) dx =
1

48
. So when we take (a, b) =

(−1/4,−3/4) in (1), we get

Ç
1∫
0

f(x) dx

å2

≤ 1

48

1∫
0

f ′2(x) dx, which concludes

the proof.

545. Let A,B ∈ Mn(R) such that A2 = −In, detB 6= 0, and AB = −BA.

Prove that n is even and the sign of detB is (−1)n/2.
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Proposed by Mihai Opincariu, Brad, and Vasile Pop, Cluj-Napoca,

Romania.

Solution by the authors. We note that if X,Y ∈Mn(R) and X2 = Y 2 =
−In, then X and Y are similar. Indeed, since f(X) = 0, where f(x) = x2 +1
has the simple roots ±i, the matrix X is diagonalizable and its eigenvalues
are ±i. Since X is real, the conjugate eigenvalues i and −i have the same
multiplicity. Hence n is even and if n = 2k, then X ∼ iIk ⊕−iIk. Similarly
for Y , so we have X ∼ Y .

In our case, we consider the matrix P ∈ Mn(R), P =

Å
Ok Ik
−Ik Ok

ã
.

Then P 2 = A2 = −In, so P ∼ A. Since P and A are similar real matrices,
they are similar over R. Thus there is an invertible matrix U ∈Mn(R) such
that P = U−1AU .

If C := U−1BU , then PC := U−1ABU and CP := U−1BAU , so from

AB = −BA we deduce that PC = −CP . If C =

Å
X Y
Z T

ã
, then PC = −CP

is equivalent to −X = T and Z = T . Thus C =

Å
X Y
Y −X

ã
. It follows that

detB = detC =

∣∣∣∣X Y
Y −X

∣∣∣∣ = (−1)k
∣∣∣∣ X Y
−Y X

∣∣∣∣ = (−1)k|det(X + iY )|2.

Since detB 6= 0, we must have | det(X + iY )|2 > 0 and so sgn (detB) =

(−1)k = (−1)n/2, as claimed.

Note. The formula

∣∣∣∣ X Y
−Y X

∣∣∣∣ = | det(X + iY )|2 follows by taking determi-

nants in the relationÅ
Ik Ok
−iIk Ik

ãÅ
X Y
−Y X

ãÅ
Ik Ok
iIk Ik

ã
=

Å
X + iY Y
Ok X − iY

ã
.

The determinant of the last matrix is det(X + iY ) det(X − iY ) = det(X +

iY )det(X + iY ) = | det(X + iY )|2.

546. Let X,Y ∈ Mn(C) such that Y 2 = Y X −XY and the rank of X + Y
is 1. Prove that Y 3 = Y XY = On.

Proposed by Stănescu Florin, S,erban Cioculescu School, Găes,ti,

Romania.

Solution by the author. The relation Y 2 = Y X −XY from the hypoth-
esis can also be written as Y 2 = Y (X+Y )−(X+Y )Y . If we put A = X+Y
and B = Y , this writes as B2 = BA − AB. Also, by hypothesis, we have
rankA = 1.

We start by noting the following result.
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Remark. If M,N,P ∈Mn(C) such that MNP = 0 and rank (N) = 1, then,
by Frobenius inequality, we have

rank (MN) + rank (NP ) ≤ rank (MNP ) + rankN = 1,

so MN or NP has rank 0, i.e. MN = 0 or NP = 0.

We prove by induction that BtA−ABt = tBt+1 for t ≥ 1. When t = 1
this is just the relation BA−AB = B2 we noticed above. For the induction
step t 7→ t+ 1, we multiply the relation BtA− ABt = tBt+1 to the right by
B and we get BtAB − ABt+1 = tBt+2. We also mutiply BA− AB = B2 to
the left by Bt and we get Bt+1A−BtAB = Bt+2. We add the two relations
and we get Bt+1A−ABt+1 = (t+ 1)Bt+2, so we have the induction step.

Since TrBtA = TrABt, when we take traces in the formula tBt+1 =
BtA − ABt, we get tTrBt+1 = 0. Thus TrBk = 0 ∀k ≥ 2. If λ1, . . . , λn
are the eigenvalues of B, we get λk1 + · · · + λkn = 0 ∀k ≥ 2. In particular, if
βi = λ2i , then βk1 + · · ·+ βkn = 0 ∀k ≥ 1. By using Newton’s relations, we get
that λ2i = βi = 0, so λi = 0 ∀i. Hence the characteristic polynomial of B is
Xn. By the Cayley-Hamilton theorem, we get Bn = 0.

We assume that AB 6= 0 and BA 6= 0. We prove, by backwards induc-
tion on t, that BtA = ABt = Bt+1 = 0 for 1 ≤ t ≤ n − 1. If t = n − 1,
then Bn = 0, so Bn−1A − ABn−1 = (n − 1)Bn = 0. We multiply to the
right by B and we get that 0 = Bn−1AB − ABn = Bn−1AB. Since also
rankA = 1, by the Remark, we get that either Bn−1A = 0 or AB = 0. But
AB 6= 0, by our assumption. Thus Bn−1A = 0. Since Bn−1A− ABn−1 = 0,
we also have ABn−1 = 0. For the induction step t+ 1 7→ t, we have, by the
induction hypothesis, that Bt+1A = ABt+1 = Bt+2 = 0. Then, when we
multiply the relation tBt+1 = BtA−ABt, to the left and to the right, by B,
we get 0 = −BABt = BtAB. Since rankA = 1, by the Remark, the relation
BABt = 0 implies that BA = 0 or ABt = 0 and the relation BtAB = 0
implies that BtA = 0 or AB = 0. Since we assumed that AB,BA 6= 0, we
must have BtA = ABt = 0. Together with tBt+1 = BtA−ABt, this implies
that also Bt+1 = 0. This concludes the proof of the induction. In particular,
when t = 1 we get BA = AB = B2 = 0, which contradicts the assumption
that AB 6= 0 and BA 6= 0. Hence we must have AB = 0 or BA = 0,

If AB = 0, we multiply the relation B2 = BA − AB to the right
by B and we get B3 = BAB − AB2 = 0. If BA = 0, we multiply it
to the left by B and we get B3 = B2A − BAB = 0. So, in both cases,
Y 3 = B3 = 0. But if AB = 0 or BA = 0, we also have 0 = BAB, i.e.
0 = Y (X + Y )Y = Y XY + Y 3 = Y XY . This concludes the proof.

Solution by Moubinool Omarjee, Paris, France. The matrix Z := X+Y
has rank 1, so Z = vwT , where v, w ∈ Cn = Mn,1(C) are column vectors,
v, w 6= 0.
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We have X = Z−Y , so Y X−XY = Y (Z−Y )−(Z−Y )Y = Y Z−ZY ,
so the hypothesis Y 2 = Y X −XY writes as Y 2 = Y Z − ZY .

Also Y XY = Y (Z − Y )Y = Y ZY − Y 3, so the relations we want to
prove, Y 3 = Y XY = On, are equivalent to Y 3 = Y ZY = On.

Let λ1, . . . , λn be the eigenvalues of Y . For every k ≥ 0 we have Y k+2 =
Y k(Y Z − ZY ) = Y (Y kZ) − (Y kZ)Y . But Y (Y kZ) and (Y kZ)Y have the

same trace, so
∑n

j=1 λ
k+2
j = Tr(Y k+2) = 0 for every k ≥ 0. Then, by a

standard argument, λ1 = · · · = λn = 0. Hence Y is nilpotent.
We consider two cases.
(I) v is an eigenvector of Y . Since all eigenvalues of Y are 0, we have

Y v = 0, which implies Y Z = Y vwT = On. This in turn implies Y ZY = On
and Y 3 = Y (Y Z − ZY ) = Y 2Z − Y ZY = On.

(II) v is not an eigenvector of Y . Since v 6= 0, we have that v and Y v
are linearly independent. Let F be the two-dimensional space spanned by v
and Y v. Then Y 2v = Y Zv−ZY v = Y v(wT v)− v(wTY v) = αY v− βv ∈ F ,
where α = wT v = 〈w, v〉 and β = wTY v = 〈Y Tw, v〉. (We have α, β ∈
M1,1(C) ∼= C.) Since Y v ∈ F and Y (Y v) = Y 2v ∈ F , we have Y F ⊆ F .
Since Y is nilpotent, it is also nilpotent on F . But dimC F = 2, so we have
Y 2
|F = 0. In particular, αY v − βv = Y 2v = 0. Since v, Y v is a basis of F , we

have α = β = 0. Since 0 = α = wT v, we have Z2 = vwT vwT = On. We also
have Y 2Z = (Y 2v)wT = On

Since Z2 = Y 2Z = On, when we multiply the relation Y 2 = Y Z − ZY
to the left and right by Z, we get ZY 2 = ZY Z and On = −ZY Z, which
imply ZY 2 = On. Since Y 2Z = ZY 2 = On, when we multiply the relation
Y 2 = Y Z − ZY to the left and right by Y , we get Y 3 = −Y ZY and Y 3 =
Y ZY , from which we conclude that Y 3 = Y ZY = On.

547. Prove that ∫ ∞
0

| sinx|
1 + x2

dx =
e2 − 1

2e
ln

Å
e+ 1

e− 1

ã
.

Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu,

Romania.

Solution by the author. Let us denote

I =

∫ ∞
0

| sinx|
1 + x2

dx. (1)

The function f : R → R, f(x) = | sinx |, is periodic with period π and
satisfies Dirichlet’s conditions. Also, the function is even.

We expand the function into a Fourier series

f(x) = a0 +

∞∑
n=1

an cos(2nx),
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where

a0 =
1

π

∫ π

0
| sinx| dx; an =

2

π

∫ π

0
| sinx| cos(2nx) dx.

Calculating these integrals, we obtain

a0 =
2

π
; an = − 4

π
· 1

4n2 − 1
.

We therefore have

f(x) =
2

π
− 4

π

∞∑
n=1

cos(2nx)

4n2 − 1
.

Substituting this formula for f(x) in (1) gives

I =
2

π

∫ ∞
0

1

1 + x2
dx− 4

π

∫ ∞
0

∞∑
n=1

cos(2nx)

(4n2 − 1)(1 + x2)
dx

= 1− 4

π

∞∑
n=1

1

4n2 − 1

∫ ∞
0

cos(2nx)

1 + x2
dx.

We now use the following identity:∫ ∞
0

cos(mx)

1 + x2
dx =

π

2
e−m, m > 0.

This identity is Laplace’s integral and is well known. It is easily proved,
for example by using the properties of the Laplace transform.

We obtained the value of the integral I, namely

I = 1− 2

∞∑
n=1

1

(4n2 − 1)e2n
. (2)

If

S =

∞∑
n=0

1

(4n2 − 1)e2n
= −1 +

∞∑
n=1

1

(4n2 − 1)e2n
,

then I = 1− 2(S + 1) = −1− 2S.
We have

1

(4n2 − 1)e2n
=

1

2

ï
1

(2n− 1)e2n
− 1

(2n+ 1)e2n

ò
.

Therefore,

S =
1

2

[ ∞∑
n=0

1

(2n− 1)e2n
−
∞∑
n=0

1

(2n+ 1)e2n

]
=

1

2
(A−B).
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We calculate B:

B =
∞∑
n=0

1

(2n+ 1)e2n
=
∞∑
n=0

∫ 1

0

x2n

e2n
dx =

∫ 1

0

∞∑
n=0

Å
x2

e2

ãn
dx

=

∫ 1

0

1

1− x2

e2

dx (we have 0 < x < 1 and 0 <
x2

e2
< 1)

We obtain immediately

B =
e

2
ln

Å
e+ 1

e− 1

ã
.

For A we note that, after a change of indices,

A = −1 +
∞∑
n=1

1

(2n− 1)e2n
= −1 +

∞∑
n=0

1

(2n+ 1)e2n+2
= −1 +

1

e2
B.

This gives

I = −1− 2S = −1 +B −A = −1 +B −
Å
−1 +

1

e2
B

ã
=
e2 − 1

e2
B

=
e2 − 1

2e
ln

Å
e+ 1

e− 1

ã
.

Thus, the problem is solved.

We received a very similar, but rather sketchy, proof from G. C. Greubel,
Newport News, VA.

548. Let A ∈ Mn(C) such that (In − AA∗)2 = In − A∗A. Prove that
A2A∗ = A.

Here A∗ denotes the conjugate transpose of A, A∗ = Āt.

Proposed by Mihai Opincariu, Brad, and Vasile Pop, Cluj-Napoca,

Romania.

Solution by the authors. If X = AA∗ and Y = A∗A, then the relation
from the hypothesis writes as Y = 2X −X2. In particular, this implies that
XY = Y X. Since X and Y are hermitian and commute, they are simultane-
ously diagonalizable. Let DX and DY be their corresponding diagonal forms.
Since Y = 2X −X2, we have DY = 2DX −D2

X .
Now X = AA∗ and Y = A∗A have the same characteristic polynomial,

so they have the same eigenvalues (counting multiplicities). So if DX =
diag(λ1, . . . , λn), then DY = diag(λσ(1), . . . , λσ(n)) for some σ ∈ Sn. But

DY = 2DX − D2
X , so λσ(k) = 2λk − λ2k. By summing, we get

∑n
k=1 λk =

2
∑n

k=1 λk −
∑n

k=1 λ
2
k, i.e.

∑n
k=1 λ

2
k =

∑n
k=1 λk.

Now X = AA∗ is semipositive definite, so λk ≥ 0 for every k. Also since
2λ− λ2 ≤ 1 for every λ ∈ R, we have λσ(k) = 2λk − λ2k ≤ 1 ∀k, so λk ≤ 1 ∀k.
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Since 0 ≤ λk ≤ 1, we have λ2k ≤ λk, so
∑n

k=1 λ
2
k =

∑n
k=1 λk implies λ2k = λk

∀k. It follows that λσ(k) = 2λk−λ2k = λk ∀k, so DY = DX , so Y = X. Then

Y = 2X−X2 implies X = X2 = XY , i.e. A∗A(AA∗−In) = X(Y −In) = On.
If B := A(AA∗ − In), then B∗B = (AA∗ − In)A∗A(AA∗ − In) = On, which
implies B = On, i.e. A2A∗ = A.

549. Let n ≥ 3 and let a1, . . . , an ∈ Z≥0 be pairwise distinct. We denote by
s1, s2, s3 the first symmetric sums in the variables a1, . . . , an, i.e. s1 =

∑
i ai,

s2 =
∑

i<j aiaj and s3 =
∑

i<j<k aiajak. Prove that

(n− 2)s1

Å
s2 −

n(n− 1)(n+ 1)

12

ã
≥ 3ns3.

When do we have equality?

Proposed by Leonard Giugiuc, Traian National College, Drobeta-

Turnu Severin, Romania.

Solution by the author. First we prove the following result.

Lemma 1. For every n ≥ 3 we have

(i)
∑

1≤i<j≤n−1
ij =

n(n− 1)(n− 2)(3n− 1)

24
,

(ii)
∑

1≤i<j<k≤n−1
ijk =

n2(n− 1)2(n− 2)(n− 3)

48
.

Proof. By Newton’s identities, we have∑
1≤i<j≤n−1

ij =
1

2

Ñ(
n−1∑
i=1

i

)2

−
n−1∑
i=1

i2

é
=

1

2

Å
n2(n− 1)2

4
− n(n− 1)(2n− 1)

6

ã
=
n(n− 1)(n− 2)(3n− 1)

24
,

∑
1≤i<j<k≤n−1

ijk =
1

3

Ñ ∑
1≤i<j≤n−1

ij
n−1∑
i=1

i−
n−1∑
i=1

i
n−1∑
i=1

i2 +
n−1∑
i=1

i3

é
=

1

3

Å
n2(n− 1)2(n− 2)(3n− 1)

48
− n2(n− 1)2(2n− 1)

12

+
n2(n− 1)2

4

ã
=
n2(n− 1)2(n− 2)(n− 3)

48
.
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2

For convenience, given m ≥ 1, let e0, e1, e3, . . . ∈ Z[X1, . . . , Xm] be the
elementary symmetric polynomials in the variables X1, . . . , Xm. (In partic-
ular, e0 = 1 and ei = 0 for i > m.) Then si = ei(a1, . . . , an) and the lemma
above gives the values of ei(1, . . . , n− 1) for i = 1, 2.

We use induction on n. For n = 3 we denote (a1, a2, a3) = (a, b, c) and
we assume that a > b > c ≥ 0. We denote x = a − c, y = b − c and t = c.
Hence (a, b, c) = (t+x, t+ y, t). We have t ≥ 0 and x > y ≥ 1. Let s = x+ y
and p = xy. Then s1 = a+ b+ c = 3t+ s, s2 = ab+ ac+ bc = 3t2 + 2ts+ p,
and s3 = abc = t3 + t2s + tp. Hence the inequality we want to prove,
s1(s2 − 2) ≥ 9s3, writes as

(3t+ s)(3t2 + 2ts+ p− 2) ≥ 9(t3 + t2s+ tp),

which, after reductions, is equivalent to

2t(s2 − 3p− 3) + s(p− 2) ≥ 0.

But s(p − 2) ≥ 0, with equality iff x = 2, y = 1. And by the AM–GM
inequality applied to x 6= y we have s2 > 4p, so s2 ≥ 4p + 1 ≥ 3p + 3. (We
have p ≥ 2.) Thus s2 − 3p − 3 ≥ 0 and so we have the desired inequality,
2z(s2 − 3p− 3) + s(p− 2) ≥ 0.

The equality holds iff x = 2, y = 1, i.e. when (a, b, c) = (t+ 2, t+ 1, t),
for some t ≥ 0, and permutations thereof.

We now prove the induction step n − 1 7→ n. We may assume that
a1 > · · · > an ≥ 0. Let xi = ai − an and t = an. We have ai = t + xi
for i ≤ n − 1 and an = t, x1 > · · · > xn−1 ≥ 1 and t ≥ 0. We denote
s′i = ei(x1, . . . , xn−1). For convenience, we put S = s′1, q = s′2, and r = s′3.

Now s1 =
∑n−1

i=1 (t+ xi) + t = nt+ S, while

2s2 = 2
∑

1≤<i<j≤n−1
(t+ xi)(t+ xj) + 2

n−1∑
i=1

t(t+ xi)

= (n− 1)(n− 2)t2 + 2(n− 2)St+ 2q + 2(n− 1)t2 + 2St

= n(n− 1)t2 + 2(n− 1)St+ 2q,

and

6s3 = 6
∑

1≤<i<j<k≤n−1
(t+ xi)(t+ xj)(t+ xk) + 6

∑
1≤i<≤n−1

t(t+ xi)(t+ xj)

= (n− 1)(n− 2)(n− 3)t3 + 3(n− 2)(n− 3)St2 + 6(n− 3)qt+ 6r

+ 3(n− 1)(n− 2)t3 + 6(n− 2)St2 + 6qt

= n(n− 1)(n− 2)t3 + 3(n− 1)(n− 2)St2 + 6(n− 2)rt+ 6r.

The relation we want to prove writes as (n−2)s1(12s2−n(n−1)(n+1)) ≥
36s3. When we plug in the above formulas for s1, s2, s3 in terms of S, q, r, it
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writes as

(n− 2)(nt+ S)(6n(n− 1)t2 + 12(n− 1)St+ 12q − n(n− 1)(n+ 1))

≥ 6n2(n− 1)(n− 2)t3 + 18n(n− 1)(n− 2)St2 + 36n(n− 2)qt+ 36nr,

which, after reductions, becomes

(n− 2)t(12(n− 1)S2 − 24nq − n2(n− 1)(n+ 1))

+ 12(n− 2)Sq − 36nr − n(n− 1)(n− 2)(n+ 1)S ≥ 0

Thus it suffices to prove the two inequalities

12(n− 1)S2 − 24nq − n2(n− 1)(n+ 1) ≥ 0,

12(n− 2)Sq − 36nr − n(n− 1)(n− 2)(n+ 1)S ≥ 0.

The first inequality is equivalent to

(n− 1)S2 − 2nq ≥ n2(n− 1)(n+ 1)

12
.

But we have

(n− 1)S2 − 2nq = (n− 1)
n−1∑
i=1

x2i − 2q =
n−1∑
i=1

x2i +
∑

1≤i<j≤n−1
(xi − xj)2.

(Recall
∑

1≤i<j≤n−1(xi − xj)2 = (n− 2)
∑n−1

i=1 x
2
i − 2q.)

As x1 > · · · > xn−1 ≥ 1, it follows that xi ≥ n− i for 1 ≤ i ≤ n− 1 and
xi − xj ≥ j − i for 1 ≤ i < j ≤ n − 1, with equality iff (x1, x2 . . . , xn−1) =
(n−1, n−2, . . . , 1). Thus (n−1)S2−2nq is minimum when (x1, x2 . . . , xn−1) =

(n − 1, n − 2, . . . , 1). But in this case S = n(n−1)
2 and, by Lemma (i), q =

n(n−1)(n−2)(3n−1)
24 . Hence the minimum of (n− 1)S2 − 2nq is

(n− 1)

Å
n(n− 1)

2

ã2
− 2n · n(n− 1)(n− 2)(3n− 1)

24
=
n2(n− 1)(n+ 1)

12
.

The second inequality writes as

12(n− 2)Sq ≥ 36nr + n(n− 1)(n− 2)(n+ 1)S.

By the induction hypothesis, we have

(n− 3)S

Å
q − n(n− 1)(n− 2)

12

ã
≥ 3(n− 1)r,

which, after multiplying by 12, can be written as

12(n− 3)Sq ≥ 36(n− 1)r + n(n− 1)(n− 2)(n− 3)S.

It follows that

12(n− 2)Sq ≥ 36(n− 1)(n− 2)r

n− 3
+ n(n− 1)(n− 2)2S.
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Hence it is enough to prove that

36(n− 1)(n− 2)r

n− 3
+ n(n− 1)(n− 2)2S ≥ 36nr + n(n− 1)(n− 2)(n+ 1)S,

i.e.
72r

n− 3
≥ 3n(n− 1)(n− 2)S. This can be written as f(x1, . . . , xn−1) ≥ 0,

where f : [n− 1,∞)× [n− 2,∞)× · · · × [1,∞)→ R is defined by

f(x1, . . . , xn−1) = 24
∑

1≤i<j≤n−1
xixjxj − n(n− 1)(n− 2)(n− 3)

n−1∑
i=1

xi.

(Recall that xi ≥ n− i.)
Note that f is affine in each variable xi and the coefficient of xi is

24e2(x1, . . . , x̂i, . . . , xn−1) − n(n − 1)(n − 2)(n − 3). Note also that each
entry of (x1, . . . , x̂i, . . . , xn−1) is ≥ the corresponding entry of (n− 2, . . . , 1),
with possible equality only if i = 1. It follows that e(x1, . . . , x̂i, . . . , xn−1) ≥
e2(n− 2, . . . , 1) = e2(1, . . . , n− 2). But, by Lemma (ii), 24e2(1, . . . , n− 2)−
n(n−1)(n−2)(n−3) = (n−1)(n−2)(n−3)(3n−4)−n(n−1)(n−2)(n−3) > 0.
Thus f is strictly increasing in each variable. It follows that

f(x1, . . . , xn−1) ≥ f(n− 1, . . . , 1)

= 24e3(n− 1, . . . , 1)− n(n− 1)(n− 2)(n− 3)e1(n− 1, . . . , 1)

=
n2(n− 1)2(n− 1)(n− 3)

2
− n2(n− 1)2(n− 1)(n− 3)

2
= 0.

(We have e1(n− 1, . . . , 1) = e1(1, . . . , n− 1) =
n(n− 1)

2
and, by Lemma (ii),

e3(n− 1, . . . , 1) = e3(1, . . . , n− 1) =
n2(n− 1)2(n− 1)(n− 3)

48
.)

This concludes the proof. The equality holds when (x1, . . . , xn−1) =
(n − 1, . . . , 1), i.e. when (a1, a2 . . . , an) = (t + n − 1, t + n − 2, . . . , t) and
permutations thereof. �

550. Let a1, a2, . . . , an be real numbers such that a1 ≥ a2 ≥ · · · ≥ an ≥ 0
and a1a2 + a2a3 + · · ·+ ana1 = n, and let En(k) = ak1 + ak2 + · · ·+ akn.

(a) Prove that E5(k) ≥ 5 for k ≥ 5
4 .

(b)* Prove or disprove that E7(k) ≥ 7 for k ≥ 3
2 . (This is an open

problem. At this time, the author doesn’t have a solution.)

Proposed by Vasile Cı̂rtoaje, Petroleum-Gas University of

Ploies,ti, Romania.

Solution by the author. As is known (and easy to show), the function

f(k) =

Å
En(k)

n

ã1/k
is increasing for k > 0. Consequently, it suffices to prove

the inequalities from (a) and (b) for k = 5
4 and k = 3

2 , respectively.
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(a) We need to show that

a
5/4
1 + a

5/4
2 + a

5/4
3 + a

5/4
4 + a

5/4
5 ≥ 5

for a1 ≥ a2 ≥ a3 ≥ a4 ≥ a5 ≥ 0 and a1a2 + a2a3 + a3a4 + a4a5 + a5a1 = 5.
Denote

x =
a1 + a2

2
, y =

a4 + a5
2

, x ≥ a3 ≥ y.

By Jensen’s inequality for convex functions, we have

a
5/4
1 + a

5/4
2 ≥ 2x5/4, a

5/4
4 + a

5/4
5 ≥ 2y5/4.

Also, by Bernoulli’s inequality, we have

a
5/4
3 = (1 + (a3 − 1))5/4 ≥ 1 +

5

4
(a3 − 1) =

5a3 − 1

4
.

So, it suffices to show that

8(x5/4 + y5/4) + 5a3 ≥ 21.

We will first show that

x2 + y2 + xy + a3(x+ y) ≥ 5, that is a3 ≥
5− x2 − y2 − xy

x+ y
.

Indeed, we have

4
(
x2 + y2 + xy + a3(x+ y)− 5

)
= (a1 + a2)

2 + (a4 + a5)
2 + (a1 + a2)(a4 + a5)

+ 2a3(a1 + a2 + a4 + a5)− 4(a1a2 + a2a3 + a3a4 + a4a5 + a5a1)

= (a1 − a2)2 + (a4 − a5)2 + a1(2a3 + a4 − 3a5) + a2(−2a3 + a4 + a5)

+ 2a3(a5 − a4)
≥ a2(2a3 + a4 − 3a5) + a2(−2a3 + a4 + a5) + 2a2(−a4 + a5) = 0.

(We have 2a3 + a4 − 3a5 ≥ 0 and a1 ≥ a2, so a1(2a3 + a4 − 3a5) ≥ a2(2a3 +
a4 − 3a5). As −a4 + a5 ≤ 0, we also have a3 ≤ a2, so 2a3(−a4 + a5) ≥
2a2(−a4 + a5).)

So, we only need to show that

8(x5/4 + y5/4) +
5(5− x2 − y2 − xy)

x+ y
≥ 21.

Denoting x = s+ t, y = s− t, and

f(t) = (s+ t)5/4 + (s− t)5/4, for t ∈ [0, s],

we need to show that g(t) ≥ 0, where

g(t) = f(t)− 5t2 + 15s2 + 42s− 25

16s
.

For even j (j ≥ 2), we have

f (j)(0) = 2k(k − 1) · · · (k − j + 1)sk−j > 0,
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where k = 5/4. Thus, by the Maclaurin series expansion of the even function
f , we have

f(t) = f(0) +
f (2)(0)t2

2!
+
f (4)(0)t4

4!
+ · · · ≥ f(0) +

f (2)(0)t2

2!
+
f (4)(0)t4

4!

= 2sk + k(k − 1)sk−2t2 +
k(k − 1)(k − 2)(k − 3)

12
sk−4t4

= 2s5/4 +
5

16
s−3/4t2 +

35

1024
s−11/4t4 ≥ 2s5/4 +

5

16
s−3/4t2 +

1

32
s−11/4t4.

Consequently, to prove that g(t) ≥ 0, it suffices to show that

2s5/4 +
5

16
s−3/4t2 +

1

32
s−11/4t4 ≥ 5t2 + 15s2 + 42s− 25

16s
,

which is equivalent to

s−7/4t4 − 10(1− s1/4)t2 + 64s9/4 − 30s2 − 84s+ 50 ≥ 0.

Substituting r = s1/4, the inequality becomes

r−7t4 − 10(1− r)t2 + 64r9 − 30r8 − 84r4 + 50 ≥ 0,

t4 − 10r7(1− r)t2 + r7(64r9 − 30r8 − 84r4 + 50) ≥ 0,

(t2 − 5r7 + 5r8)2 + r7(39r9 + 20r8 − 25r7 − 84r4 + 50) ≥ 0.

Since
39r9 + 20r8 − 25r7 − 84r4 + 50 = (r − 1)2E,

where

E = 39r7 + 98r6 + 132r5 + 166r4 + 200r3 + 150r2 + 100r + 50 > 0,

the proof is completed. The equality occurs for a1 = a2 = a3 = a4 = a5 = 1.

Remark. Note that k = 5/4 is the smallest value of the positive exponent
k such that E5(k) ≥ 5 for all ai satisfying the given requirements. To show
this, suppose

a1 = a2 = 1 + x, a3 = 1− x2/2, a4 = a5 = 1− x.
For x ∈ [0, 1], we have a1 ≥ a2 ≥ a3 ≥ a4 ≥ a5 ≥ 0 and a1a2 + a2a3 + a3a4 +
a4a5 + a5a1 = 5, while the inequality E5(k) ≥ 5 is equivalent to g5(x) ≥ 5,
where

g5(x) = 2(1 + x)k + 2(1− x)k + (1− x2/2)k.

We have g5(0) = 5, g′5(0) = 0, and g′′5(0) = k(4k − 5). From g′′5(0) ≥ 0, we
get the necessary condition k ≥ 5/4. Indeed, if 0 < k < 5/4, then g′′5(0) < 0,
and the point x = 0 is a local maximum of g5. In addition, since g5(0) = 5,
there is a neighbourhood V of 0 such that g5(x) < 5 for x ∈ V ∩ (0, 1].

(b)* We need to show that

a
3/2
1 + a

3/2
2 + · · ·+ a

3/2
7 ≥ 7
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for a1 ≥ a2 ≥ · · · ≥ a7 ≥ 0 and a1a2 + a2a3 + · · ·+ a7a1 = 7. The computer
calculations show that this inequality is true, but the method used in (a)
for n = 5 and k = 5/4 fails. In addition, for 0 < k < 3/2, there exist
a1, a2, . . . , a7 such that E7(k) < 7. To show this, suppose

a1 = a2 = a3 = 1 + x, a4 = 1− 3x2/2, a5 = a6 = a7 = 1− x.

For x ∈ [0, 1], we have a1 ≥ a2 ≥ · · · ≥ a7 ≥ 0 and a1a2+a2a3+· · ·+a7a1 = 7,
while the inequality E7(k) < 7 is equivalent to g7(x) < 7, where

g7(x) = 3(1 + x)k + 3(1− x)k + (1− 3x2/2)k.

We have g7(0) = 7, g′7(0) = 0, and g′′7(0) = 3k(2k − 3). Since g′′7(0) < 0
for 0 < k < 3/2, the point x = 0 is a local maximum of g7. In addition,
since g7(0) = 7, there is a neighbourhood V of 0 such that g7(x) < 7 for
x ∈ V ∩ (0, 1].

551. Solve in M2(R) the equation A2024 = −AT , where AT denotes the
transpose of A.

Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical

University of Cluj-Napoca, Romania.

Solution by the authors. The solutions are the following matrices: O2,

−I2,
Å
a b
b −1− a

ã
, where a, b ∈ R, with a + a2 + b2 = 0, and the rotation

matrices R 1+2l
2025

π, l = 0, . . . , 2024.

If A = αI2 the matrix equation writes as (α2024 + α)I2 = O2 which is
equivalent to α(α2023 + 1) = α2024 + α = 0, so to α = 0 or α = −1. We get
A = O2 or −I2.

Suppose now that A is not of the form αI2. By hypothesis, AAT =
−A2025 = ATA. Since A and AT commute and A 6= αI2 ∀α ∈ R, we have
AT = αA + βI2 for some α, β ∈ R. (See [1, p. 15, Theorem 1.1 (b)]). By
taking the transpose, we get A = αAT + βI2. By subtraction we obtain
(A−AT )(1 + α) = O2. Thus either A = AT or α = −1.

I) We consider the case when A = AT , i.e. A is real symmetric. Let λ
be an eigenvalue of A. The equation A2024 = −A implies that λ2024 + λ = 0,
i.e. λ(λ2023 + 1) = 0 and since real symmetric matrices have real eigenvalues
(see [1, Theorem 2.5, p. 73]) we get that λ = 0 or λ = −1. We distinguish
between the cases (a) λ1 = λ2 = 0, (b) λ1 = λ2 = −1, and (c) λ1 = 0,
λ2 = −1.

(a) λ1 = λ2 = 0. This implies, based on Cayley-Hamilton Theorem,
that A2 = O2, from which we get A = −A2024 = O2.

(b) λ1 = λ2 = −1. This shows, based on Cayley-Hamilton Theorem,
that (A + I2)

2 = O2. Let A + I2 = B. We have that A = B − I2 and
B2 = O2, so Bk = O2 for k ≥ 2. The equation A2024 = −A implies that
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I2−B = −A = A2024 = (B − I2)2024 = I2− 2024B, so A+ I2 = B = O2 and
A = −I2.

Remark. The conclusions in parts (a) and (b) also follow from the fact that
real symmetric matrices, such as A, are diagonalizable, so if λ1 = λ2 = λ,
then A = λI2.

(c) λ1 = 0 and λ2 = −1, i.e. PA(X) = X2 + X, which is equivalent to

Tr(A) = −1 and detA = 0. The symmetric matrix A writes as A =

Å
a b
b c

ã
.

Then Tr(A) = −1 and detA = 0 write as a + c = −1, i.e. c = −1 − a, and
ac − b2 = a(−1 − a) − b2 = 0, i.e. a2 + a + b2 = 0. Thus the symmetric

matrices satisfying PA(X) = X2 + X have the form A =

Å
a b
b −1− a

ã
,

with a, b ∈ R, a + a2 + b2 = 0. Conversely, if A is a symmetric matrix
with PA(X) = X2 + X = X(X + 1), then, by Cayley-Hamilton Theorem,
A(A+In) = O2. Since X(X+1) | X(X2023+1), this implies that A2024+A =
A(A2023 + In) = On, so A2024 = −A = −AT .

II) If α = −1, then A = −AT + βI2, i.e. A+AT = βI2 for some β ∈ R.

Let A =

Å
a b
c d

ã
. The equation A + AT = βI2 implies that a = d = β/2

and c+ b = 0, so A has the form A =

Å
a −c
c a

ã
, with a, c ∈ R.

By taking determinants in A2024 = −AT , we get (detA)2024 = detA,
i.e. (detA)(detA2023 − 1) = 0, so a2 + c2 = detA ∈ {0, 1}. If a2 + c2 = 0,
then a = c = 0, so A = O2. If a2 + c2 = 1, then a = cos θ and b = sin θ

for some unique θ ∈ [0, 2π). Hence A =

Å
cos θ − sin θ
sin θ cos θ

ã
. Then the relation

A2024 = −AT writes asÅ
cos(2024θ) − sin(2024θ)
sin(2024θ) cos(2024θ)

ã
= −

Å
cos θ sin θ
− sin θ cos θ

ã
,

cos(2024θ) = − cos θ = cos(π − θ),
sin(2024θ) = sin θ = sin(π − θ).

But (cosα, sinα) = (cosβ, sinβ) iff α ≡ β (mod 2π), so the relations above

are equivalent to 2024θ = (π− θ) + 2lπ, i.e. θ =
1 + 2l

2025
π for some l ∈ Z. The

restriction θ ∈ [0, 2π) is equivalent to 0 ≤ θ ≤ 2024.
So we get the claimed solutions

A =

Å
cos θ − sin θ
sin θ cos θ

ã
=

Å
cos 1+2l

2025π − sin 1+2l
2025π

sin 1+2l
2025π cos 1+2l

2025π

ã
, l = 0, . . . , 2024.

The problem is solved.
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References

1. V. Pop, O. Furdui, Square Matrices of Order 2, Theory, Applications and Problems,
Springer, Cham 2017.

We also received a solution, which is too long to include here, from
Daniel Văcaru, Pites,ti, Romania.

552. Let f : [0, 1] → [0, 1] be a continuous function which is derivable on
(0, 1], such that f ′(x) < 0 for x ∈ (0, 1], f(1) = 0 and f ′(1) < 0. Prove that
for every integer n ≥ 1 the equation f(x) = xn has a unique solution in the
interval (0, 1), denoted by an, and that lim

n→∞
n

lnn(an − 1) = −1.

Proposed by Dumitru Popa, Department of Mathematics, Ovidius

University of Constant,a, Romania.

Solution by Marian-Daniel Vasile, Timis,oara, Romania. From f ′(x) <
0 for x ∈ (0, 1] we get that f is decreasing on [0, 1].

For n ≥ 1, let fn : [0, 1]→ R, fn(x) = f(x)− xn. We can see that fn is
(strictly) decreasing on [0, 1] as a sum of two decreasing functions. Moreover
fn is continuous on [0, 1] and

fn(1) = f(1)− 1 < 0 = f(1) < f(0) = fn(0),

so, by Darboux, there is an ∈ (0, 1) such that fn(an) = 0 and, since f is
decreasing, this an is unique. But fn(an) = 0 writes as f(an) = ann.

We will first prove that lim
n→∞

an = 1. We notice that

fn+1(x)− fn(x) = xn − xn+1 = xn(1− x) > 0 (∀)x ∈ (0, 1),

and therefore

fn+1(an) > fn(an) = 0 = fn+1(an+1).

By the fact that fn+1 is strictly decreasing we see that an < an+1 for all
n ≥ 1. Then, (an)n≥1 is convergent and we denote its limit by l ∈ [0, 1].

If l < 1, then lim
n→∞

ann = 0. Passing to limit in f(an) = ann, we obtain

f(l) = 0 = f(1). Since f is strictly decreasing, we get l = 1, which is absurd.
We conclude that lim

n→∞
an = 1.

We note that

lim
n→∞

f(an)

an − 1
= lim

n→∞

f(an)− f(1)

an − 1
= f ′(1) (3)

and also

lim
n→∞

ln an
an − 1

= lim
n→∞

ln(1 + (an − 1))

an − 1
= 1. (4)

We have that an ↘ 1, so f(an)↗ f(1) = 0, when $n→∞. Hence

f(an) = ann ⇒ ln f(an) = n ln an ⇒ lim
n→∞

n ln an = lim
n→∞

ln f(an) = −∞. (5)
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Since ln f(an) = n ln an, by (3) and (5), we have that

lim
n→∞

Å
1− ln(1− an)

n ln an

ã
= lim

n→∞

ln f(an)− ln(1− an)

n ln an
= lim

n→∞

ln
Ä
f(an)
1−an

ä
n ln an

=
ln(−f ′(1)

−∞
= 0.

so

lim
n→∞

ln(1− an)

n ln an
= 1.

By multiplying with (4), we get

lim
n→∞

ln(1− an)

n(an − 1)
= 1, i.e. lim

n→∞

1
1−an ln

Ä
1

1−an

ä
n

= 1.

So if we denote bn :=
1

1− an
for n ≥ 1, then lim

n→∞
bn = +∞. The last

equation becomes

lim
n→∞

bn ln bn
n

= 1. (6)

We will prove that lim
n→∞

bn lnn

n
= 1.

From (6) we have

lim
n→∞

bn
n

= lim
n→∞

bn ln bn
n

ln bn
=

1

+∞
= 0. (7)

Then, also from (6),

1 = lim
n→∞

bn ln bn
n

= lim
n→∞

bn
Ä
ln
Ä
bn
n

ä
+ lnn

ä
n

= lim
n→∞

bn
n

ln

Å
bn
n

ã
+
bn lnn

n
(8)

Using (7) and the fact that lim
x→0+

x lnx = 0, we see that

lim
n→∞

bn
n

ln

Å
bn
n

ã
= 0,

so by (8) we conclude that

lim
n→∞

bn lnn

n
= 1.

Then
lim
n→∞

n

lnn
(an − 1) = lim

n→∞
− n

bn lnn
= −1.
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