
GAZETA MATEMATICĂ
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Abstract. We show that if A is an n × n-matrix, then the diagonal en-
tries of each power Am are uniquely determined by the principal minors
of A, and can be written as universal (integral) polynomials in the latter.
Furthermore, if the latter all equal 1, then so do the former. These results
are inspired by Problem B5 on the Putnam contest 2021, and shed a new
light on the behavior of minors under matrix multiplication.
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1. Introduction

Let R be a commutative ring. Let A be an n× n-matrix over R, where
n is a nonnegative integer.

A principal submatrix of A means a matrix obtained from A by remov-
ing some rows and the corresponding columns (i.e., removing the i1-th, i2-th,
. . ., ik-th rows and the i1-th, i2-th, . . ., ik-th columns for some choice of k
integers i1, i2, . . . , ik satisfying 1 ≤ i1 < i2 < · · · < ik ≤ n). In particular, A
itself is a principal submatrix of A (obtained for k = 0).

A principal minor of A means the determinant of a principal submatrix
of A. In particular, each diagonal entry of A is a principal minor of A (being
the determinant of a principal submatrix of size 1 × 1). In total, A has 2n

principal minors, including its own determinant detA as well as the trivial
principal minor 1 (obtained as the determinant of a 0 × 0 matrix, which is
what remains when all rows and columns are removed).

Problem B5 on the Putnam contest 2021 (see [1] or [3]) asked for a
proof of the following:

1)Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA,
darijgrinberg@gmail.com
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Theorem 1. Assume that R = Z. Assume that each principal minor of A is
odd. Then, each principal minor of Am is odd whenever m is a nonnegative
integer.

Without giving the solution away, it shall be noticed that essentially
only one proof is known (see [1] or [3] for it), and it is not as algebraic as
the statement of Theorem 1 might suggest. In particular, it is unclear if the
theorem remains valid if “odd” is replaced by “congruent to 1 modulo 4”, or
if R is replaced by another ring; the official solution (most of which originates
in a result by Dobrinskaya [2, Lemma 3.3]) certainly does not apply to such
extensions. An approach that is definitely doomed is to try expressing the
principal minors of a power Am in terms of those of A. The following example
shows that the latter do not uniquely determine the former:

Example 2. Set

C :=

Ü
a b 1 1
c d 1 1
1 1 p q
1 1 r s

ê
and D :=

Ü
a b 1 1
c d 1 1
1 1 p r
1 1 q s

ê
for some a, b, c, d, p, q, r, s ∈ R. Then, the matrices C and D have the same
principal minors, but their squares C2 and D2 differ in their {2, 3}-principal
minor (i.e., their principal minor obtained by removing the 1-st and 4-th rows
and columns) unless (q − r) (b− c) = 0. Thus, the principal minors of the
square of a matrix are not uniquely determined by the principal minors of
the matrix itself.

This example is inspired by [4, Example 3], where further related dis-
cussion of matrices with equal principal minors can be found.

2. Nevertheless...

However, not all is lost. Among the principal minors of Am, the simplest
ones (besides 1) are those of size 1 × 1, that is, the diagonal entries of Am.
It turns out that these diagonal entries are indeed uniquely determined by
the principal minors of A, and even better, they can be written as universal
polynomials1 in the latter. That is, we have the following:2

Theorem 3. Let n and m be nonnegative integers, and let i ∈ {1, 2, . . . , n}.
Then, there exists an integer polynomial Pn,i,m in 2n indeterminates that is
independent of R and A, and that has the following property: If A is any
n × n-matrix over any commutative ring R, then the i-th diagonal entry of

1A “universal polynomial” means a polynomial with integer coefficients that depends
neither on A nor on R (but can depend on m as well as on the location of the diagonal
entry).

2An integer polynomial means a polynomial with integer coefficients.
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Am can be obtained by substituting the principal minors of A into Pn,i,m. In
particular, the principal minors of A uniquely determine this entry.

Let us verify this for m = 2: If we denote the (i, j)-th entry of a matrix
B by Bi,j , then each diagonal entry of A2 has the formÄ

A2
ä
i,i

=
n∑
j=1

Ai,jAj,i = A2
i,i +

∑
j 6=i

Ai,jAj,i︸ ︷︷ ︸
=Ai,iAj,j−det

Ç
Ai,i Ai,j
Aj,i Aj,j

å
= A2

i,i +
∑
j 6=i

Ç
Ai,iAj,j − det

Ç
Ai,i Ai,j
Aj,i Aj,j

åå
,

which is visibly an integer polynomial in the principal minors of A (since all

the Ai,i and Aj,j and det

Ç
Ai,i Ai,j
Aj,i Aj,j

å
are principal minors of A). This

verifies Theorem 3 for m = 2. Such explicit computations remain technically
possible for higher values of m, but become longer and more cumbersome as
m increases.

The goal of this note is to prove Theorem 3. We will first show the
following theorem, which looks weaker but is essentially equivalent:

Theorem 4. Let n and m be nonnegative integers. Let R be a commutative
ring. Let A be an n× n-matrix over R. Let P be the subring of R generated
by all principal minors of A. Then, all diagonal entries of Am belong to P.

Before we prove this, let us explain how Theorem 3 can be easily derived
from Theorem 4:
Proof. [Proof of Theorem 3 using Theorem 4.] The notation Bi,j shall denote
the (i, j)-th entry of any matrix B.

Let R be the polynomial ring Z [xi,j | 1 ≤ i ≤ n and 1 ≤ j ≤ n] in n2

independent indeterminates xi,j over Z. (For instance, if n = 2, then R =
Z [x1,1, x1,2, x2,1, x2,2].) Let A be the n × n-matrix over R whose (i, j)-th

entry is xi,j for each (i, j) ∈ {1, 2, . . . , n}2. This matrix A is known as “the
general n × n-matrix”, since any matrix A over any commutative ring can
be obtained from it by substituting appropriate elements (viz., the entries of
A) for the variables xi,j . This very property will be crucial to the argument
that follows.

Let p1,p2, . . . ,p2n be the 2n principal minors of A (numbered in some
order). Let P denote the subring of R generated by all these principal minors
of A. Theorem 4 (applied to R and A instead of R and A) shows that all
diagonal entries of Am belong to P. In other words, for each i ∈ {1, 2, . . . , n},
we have (Am)i,i ∈ P.

Fix i ∈ {1, 2, . . . , n}. As we just showed, we have (Am)i,i ∈ P. In
other words, there exists an integer polynomial Pn,i,m in 2n indeterminates
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such that (Am)i,i = Pn,i,m (p1,p2, . . . ,p2n) (since P is the subring of R

generated by p1,p2, . . . ,p2n). Consider this polynomial Pn,i,m; note that it
is independent of R and A (by its very construction).

Now, consider a commutative ring R and an n×n-matrix A over R. Let
p1, p2, . . . , p2n be the 2n principal minors of A (numbered in the same order as
p1,p2, . . . ,p2n). Let f : R→ R be the Z-algebra homomorphism that sends
each indeterminate xi,j to the (i, j)-th entry Ai,j of A. This homomorphism
f therefore sends each entry of the matrix A to the corresponding entry of A,
and thus also sends each principal minor of A to the corresponding principal
minor of A (since a principal minor is a certain signed sum of products of
entries of the matrix). In other words,

f (pi) = pi for each i ∈ {1, 2, . . . , 2n} . (1)

However, Pn,i,m is an integer polynomial, and thus “commutes” with
any Z-algebra homomorphism – i.e., if a1, a2, . . . , a2n are any 2n elements of
a commutative ring, and if g is any Z-algebra homomorphism out of that
ring, then

g (Pn,i,m (a1, a2, . . . , a2n)) = Pn,i,m (g (a1) , g (a2) , . . . , g (a2n)) .

Applying this to ai = pi and g = f , we obtain

f (Pn,i,m (p1,p2, . . . ,p2n)) = Pn,i,m (f (p1) , f (p2) , . . . , f (p2n))

= Pn,i,m (p1, p2, . . . , p2n) (by (1)) .

In view of (Am)i,i = Pn,i,m (p1,p2, . . . ,p2n), we can rewrite this as

f
Ä
(Am)i,i

ä
= Pn,i,m (p1, p2, . . . , p2n) . (2)

However, the Z-algebra homomorphism f sends each entry of the matrix
A to the corresponding entry of A, and therefore also sends each entry of the
matrix Am to the corresponding entry of Am (since the entries of Am are cer-
tain sums of products of entries of A, whereas the entries of Am are the same
sums of products of entries of A). In other words, f

Ä
(Am)u,v

ä
= (Am)u,v for

any u, v ∈ {1, 2, . . . , n}. Thus, in particular, f
Ä
(Am)i,i

ä
= (Am)i,i. Compar-

ing this with (2), we obtain (Am)i,i = Pn,i,m (p1, p2, . . . , p2n). In other words,
the i-th diagonal entry of Am can be obtained by substituting the principal
minors of A into Pn,i,m (since p1, p2, . . . , p2n are these principal minors of A).
This proves Theorem 3. 2

3. Notations

In order to prove Theorem 4, we will need some more notations regard-
ing matrices and their minors:

• If m ∈ Z, then [m] shall denote the set {1, 2, . . . ,m}.
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• If B is a u× v-matrix and if i ∈ [u] and j ∈ [v], then Bi,j shall denote
the (i, j)-th entry of B.
• If u and v are two nonnegative integers, and if ai,j is an element of a

ring for each i ∈ [u] and j ∈ [v], then the notation (ai,j)1≤i≤u, 1≤j≤v
means the u× v-matrix whose (i, j)-th entry is ai,j for all i ∈ [u] and
j ∈ [v].
• If B is a u×v-matrix, and if (i1, i2, . . . , ip) ∈ [u]p and (j1, j2, . . . , jq) ∈

[v]q are two sequences of integers, then sub
j1,j2,...,jq
i1,i2,...,ip

B shall denote

the p × q-matrix
Ä
Bix,jy

ä
1≤x≤p, 1≤y≤q. If i1 < i2 < · · · < ip and

j1 < j2 < · · · < jq, then this matrix is a submatrix of B.
• If B is a u × v-matrix, and if I is a subset of [u], and if J is a

subset of [v], then subJI B shall denote the submatrix sub
j1,j2,...,jq
i1,i2,...,ip

B

of B, where i1, i2, . . . , ip are the elements of I in increasing order, and
where j1, j2, . . . , jq are the elements of J in increasing order.

Thus, in particular, if B is an n× n-matrix, and if I is a subset of
[n], then subII B is a principal submatrix of B, so that det

Ä
subII B

ä
is a principal minor of B.
• If B is an n×n-matrix, and if i, j ∈ [n], then B∼i,∼j shall denote the

submatrix of B obtained by removing the i-th row and the j-th col-

umn from B. In other words, B∼i,∼j denotes the matrix sub
[n]\{j}
[n]\{i} B.

• If B is an n × n-matrix, then adjB shall mean the adjugate matrix
of B. This is defined as the n× n-matrixÄ

(−1)i+j det (B∼j,∼i)
ä

1≤i≤n, 1≤j≤n .

• If m is a nonnegative integer, then Im denotes the m × m identity
matrix.

We will need the following properties of determinants:

• For any n× n-matrix B, we have

B · (adjB) = (adjB) ·B = (detB) · In. (3)

(This is the main property of adjugates; see, e.g., [5, Theorem 6.100]
for a proof.)
• For any commutative ring S, any m×m-matrix B and any element
x ∈ S, we have

det (B + xIm) =
∑
P⊆[m]

det
Ä
subPP B

ä
· xm−|P |. (4)

(This is a folklore result – essentially the explicit formula for the
characteristic polynomial of a matrix in terms of its principal minors.
The proof is straightforward: Expand the left hand side into a sum
of products, and combine products according to “which factors come
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from B and which factors come from xIm”. See [7, Proposition 6.4.29]
or [5, Corollary 6.164] for detailed proofs.)

For any ring S, we consider the univariate polynomial ring S [t] as well
as the ring S [[t]] of formal power series. Of course, S [t] is a subring of S [[t]].
Note that the ring S needs not be commutative for S [t] and S [[t]] to be
defined.

4. Proof of Theorem 4

We now finally step to the proof of Theorem 4.
Proof. [Proof of Theorem 4.] We must prove that all diagonal entries of Am

belong to P. In other words, we must prove that (Am)i,i ∈ P for each i ∈ [n].
It is well-known that a polynomial over a matrix ring is “essentially

the same as” a matrix with polynomial entries. In other words, we can
identify the ring Rn×n [t] with the ring (R [t])n×n using a straightforward
ring isomorphism (which sends each

∑
i≥0Cit

i ∈ Rn×n [t] to
∑
i≥0Cit

i ∈
(R [t])n×n). In the same way, we identify the ring Rn×n [[t]] with the ring
(R [[t]])n×n.

Let B be the matrix In − tA in the power series ring Rn×n [[t]]. This
matrix B = In − tA is invertible, and its inverse is

B−1 = In + tA+ t2A2 + t3A3 + · · · . (5)

(This can be proved by directly verifying that In + tA + t2A2 + t3A3 + · · ·
is inverse to In − tA. Indeed, both products

(
In + tA+ t2A2 + t3A3 + · · ·

)
·

(In − tA) and (In − tA) ·
(
In + tA+ t2A2 + t3A3 + · · ·

)
turn, upon expand-

ing, into sums that telescope to In.)
Since the matrix B is invertible, its determinant detB is invertible as

well (since (detB) ·
(
det

(
B−1

))
= det

Ñ
BB−1︸ ︷︷ ︸

=In

é
= det (In) = 1).

Now, recall that we must prove that (Am)i,i ∈ P for each i ∈ [n]. So let

us fix i ∈ [n]. Then, (5) yieldsÄ
B−1

ä
i,i

=
Ä
In + tA+ t2A2 + t3A3 + · · ·

ä
i,i

= (In)i,i + tAi,i + t2
Ä
A2
ä
i,i

+ t3
Ä
A3
ä
i,i

+ · · · .

Hence, the tm-coefficient of the power series
(
B−1

)
i,i ∈ R [[t]] is (Am)i,i.

Thus, in order to prove that (Am)i,i ∈ P (which is our goal), it suffices to

show that all coefficients of the power series
(
B−1

)
i,i belong to P. In other

words, it suffices to show that
(
B−1

)
i,i ∈ P [[t]]. This is what we shall now

show.
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From (3), we obtain B · (adjB) = (adjB) ·B = (detB) · In, so that

B−1 =
1

detB
· adjB.

Hence, Ä
B−1

ä
i,i

=
1

detB
· (adjB)i,i . (6)

Our next goal is to show that both factors
1

detB
and (adjB)i,i on the

right hand side of this equality belong to P [[t]]. This will then entail that(
B−1

)
i,i ∈ P [[t]] as well, and we will be done.

From B = In − tA = −tA+ 1In, we obtain

detB = det (−tA+ 1In) =
∑
P⊆[n]

det

Ü
subPP (−tA)︸ ︷︷ ︸

=−t subP
P A

ê
· 1n−|P |︸ ︷︷ ︸

=1Ç
by (4), applied to n, R [[t]] , − tA and 1

instead of m, S, B and x

å
=

∑
P⊆[n]

det
Ä
−t subPP A

ä
︸ ︷︷ ︸

=(−t)|P | det(subP
P A)

=
∑
P⊆[n]

(−t)|P | det
Ä
subPP A

ä
︸ ︷︷ ︸

∈P
(since det(subP

P A) is

a principal minor of A)

(7)

∈ P [t] ⊆ P [[t]] .

Thus, detB is a formal power series over P. Moreover, (7) shows that this
power series has constant term 1 (since the only addend in the sum in (7)
that contributes to the constant term is the addend for P = ∅, but this

addend is (−t)|∅|︸ ︷︷ ︸
=1

det
(
sub∅

∅A
)︸ ︷︷ ︸

=1
(since the 0×0-matrix

has determinant 1)

= 1). Thus, this power series is invertible

in P [[t]]. Therefore,

1

detB
∈ P [[t]] . (8)

Now, recall the definition of an adjugate matrix. This definition yields
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(adjB)i,i = (−1)i+i︸ ︷︷ ︸
=1

det (B∼i,∼i) = det (B∼i,∼i)

= det
Ä
(−tA+ 1In)∼i,∼i

ä
(

since B = −tA+ 1In
)

= det (−tA∼i,∼i + In−1)Ä
since (−tA+ In)∼i,∼i = −tA∼i,∼i + In−1

ä
=

∑
P⊆[n−1]

det

Ü
subPP (−tA∼i,∼i)︸ ︷︷ ︸
=−t subP

P (A∼i,∼i)

ê
· 1n−1−|P |︸ ︷︷ ︸

=1Ç
by (4), applied to n− 1, R [[t]] , − tA∼i,∼i and 1

instead of m, S, B and x

å
=

∑
P⊆[n−1]

det
Ä
−t subPP (A∼i,∼i)

ä
︸ ︷︷ ︸
=(−t)|P | det(subP

P (A∼i,∼i))

=
∑

P⊆[n−1]

(−t)|P | det
Ä
subPP (A∼i,∼i)

ä
. (9)

Now, let P be an arbitrary subset of [n− 1]. Write this subset P in
the form P = {p1, p2, . . . , pr}, where p1 < p2 < · · · < pr. Furthermore, let
g ∈ {0, 1, . . . , r} be the element that satisfies

p1 < p2 < · · · < pg < i ≤ pg+1 < pg+2 < · · · < pr.

(Here, g will be 0 if all elements of P are ≥ i, and g will be r if all elements
of P are < i.) Then, due to the combinatorial nature of removing rows and
columns, we have

subPP (A∼i,∼i) = subP
′

P ′ A,

where P ′ is the subset {p1, p2, . . . , pg} ∪ {pg+1 + 1, pg+2 + 1, . . . , pr + 1} of

[n]. Hence, subPP (A∼i,∼i) is a principal submatrix of A. Therefore, its deter-

minant det
Ä
subPP (A∼i,∼i)

ä
is a principal minor of A, thus belongs to P.

Forget that we fixed P . We thus have shown that det
Ä
subPP (A∼i,∼i)

ä
∈

P for each P ⊆ [n− 1]. Therefore, (9) becomes

(adjB)i,i =
∑

P⊆[n−1]

(−t)|P | det
Ä
subPP (A∼i,∼i)

ä
︸ ︷︷ ︸

∈P

∈ P [t] ⊆ P [[t]] . (10)
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Now, (6) becomesÄ
B−1

ä
i,i

=
1

detB︸ ︷︷ ︸
∈P[[t]]
(by (8))

· (adjB)i,i︸ ︷︷ ︸
∈P[[t]]

(by (10))

∈ P [[t]] · P [[t]] ⊆ P [[t]] .

As explained above, this completes our proof of Theorem 4. 2

Somewhat regrettably, the above proof is the slickest I am aware of. A
more-or-less equivalent proof can be given avoiding the use of power series
(using [6, Proposition 3.9 and Lemma 3.11] instead). A more pedestrian (but
harder to formalize) proof uses the Cayley–Hamilton theorem and a variant
of the inclusion/exclusion principle.

5. Variants

A counterpart of Theorem 4 for the off-diagonal entries of Am exists as
well:

Theorem 5. Let n, m, R, A and P be as in Theorem 4.
Let i and j be two distinct elements of [n]. An (i, j)-quasiprincipal

minor of A shall mean a determinant of the form det
Ä
subJI A

ä
, where I and

J are two subsets of [n] satisfying

i ∈ I and j ∈ J and |I| = |J | and J = (I \ {i}) ∪ {j} .

(For instance, if n ≥ 7, then det
(
sub
{2,5,7}
{1,2,7}A

)
is a (1, 5)-quasiprincipal mi-

nor of A.)
Let Ki,j be the Z-submodule of R spanned by all (i, j)-quasiprincipal

minors of A. Then,
(Am)i,j ∈ P · Ki,j .

Proof. [Proof outline.] This is similar to our above proof of Theorem 4,
but some changes are needed. Most importantly, instead of proving that
(adjB)i,i ∈ P [[t]], we now need to show that (adjB)i,j ∈ Ki,j [[t]] (that is,

that all coefficients of the power series (adjB)j,i belong to Ki,j). To do so,
we apply the definition of the adjugate matrix to see that

(adjB)i,j = (−1)j+i det (B∼j,∼i) . (11)

We can simplify B∼j,∼i further to −tA∼j,∼i + (In)∼j,∼i (since B = In− tA =

−tA+ In), but unfortunately this is not the same as −tA∼j,∼i + 1In−1, and
thus we can no longer apply (4). Instead, we use a trick:

• We define A′ to be the matrix obtained from −tA by replacing the
j-th row by (0, 0, . . . , 0, 1, 0, 0, . . . , 0), where the only entry equal to 1
is in the i-th position.
• We define I ′n to be the matrix obtained from In by replacing the 1 in

the j-th row by a 0.
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• We define B′ to be the matrix obtained from B by replacing the j-th
row by (0, 0, . . . , 0, 1, 0, 0, . . . , 0), where the only entry equal to 1 is in
the i-th position.

Laplace expansion along the j-th row shows that

det
(
B′
)

= (−1)j+i det
Ä(
B′
)
∼j,∼i

ä
= (−1)j+i det (B∼j,∼i)

(since the matrix B′ differs from B only in the j-th row, and thus we have
(B′)∼j,∼i = B∼j,∼i). Comparing this with (11), we find

(adjB)i,j = det
(
B′
)
. (12)

Furthermore, recall that B = In − tA = −tA+ In. Thus, B′ = A′ + I ′n
(based on how A′, I ′n and B′ were constructed).

On the other hand, the definition of I ′n shows that I ′n is a diagonal n×n-
matrix with diagonal entries 1, 1, . . . , 1, 0, 1, 1, . . . , 1, where the only diagonal
entry equal to 0 is in the j-th position. However, another classical fact about
determinants ([7, Theorem 6.4.26], [5, Corollary 6.162]) shows that if C is
any n× n-matrix, and if D is a diagonal n× n-matrix with diagonal entries
d1, d2, . . . , dn, then

det (C +D) =
∑
P⊆[n]

det
Ä
subPP C

ä
·
∏

k∈[n]\P
dk.

We can apply this to C = A′, (d1, d2, . . . , dn) = (1, 1, . . . , 1, 0, 1, 1, . . . , 1)︸ ︷︷ ︸
the 0 is in the j-th position

, and

D = I ′n, and thus obtain

det
(
A′ + I ′n

)
=

∑
P⊆[n]

det
Ä
subPP

(
A′
)ä
·
∏

k∈[n]\P

{
1, if k 6= j;

0, if k = j(
since the k-th diagonal entry of I ′n is

{
1, if k 6= j;

0, if k = j

)

=
∑
P⊆[n]

det
Ä
subPP

(
A′
)ä
·
{

1, if j /∈ [n] \ P ;

0, if j ∈ [n] \ P

=
∑
P⊆[n];
j /∈[n]\P

det
Ä
subPP

(
A′
)ä

=
∑
P⊆[n];
j∈P

det
Ä
subPP

(
A′
)ä

=
∑
P⊆[n];

j∈P and i∈P

det
Ä
subPP

(
A′
)ä

+
∑
P⊆[n];

j∈P and i/∈P

det
Ä
subPP

(
A′
)ä︸ ︷︷ ︸

=0
(since all entries in the j-th row of A′

are 0 except for the i-th entry, and thus
the matrix subP

P (A′) has a zero row)
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=
∑
P⊆[n];

j∈P and i∈P

det
Ä
subPP

(
A′
)ä︸ ︷︷ ︸

=± det
Ä

sub
P\{i}
P\{j}(−tA)

ä
(by Laplace expansion along the row

that was the j-th row of A′)

=
∑
P⊆[n];

j∈P and i∈P

± det
(
sub

P\{i}
P\{j} (−tA)

)
︸ ︷︷ ︸
=±t|P |−1 det

Ä
sub

P\{i}
P\{j} A

ä
=

∑
P⊆[n];

j∈P and i∈P

±t|P |−1 det
(
sub

P\{i}
P\{j}A

)
︸ ︷︷ ︸

∈Ki,j

(since det
Ä

sub
P\{i}
P\{j} A

ä
is

an (i,j)-quasiprincipal minor of A)

∈
∑
P⊆[n];

j∈P and i∈P

±t|P |−1Ki,j ⊆ Ki,j [[t]] .

In view of B′ = A′ + I ′n, this rewrites as det (B′) ∈ Ki,j [[t]]. Hence, (12)
becomes (adjB)i,j = det (B′) ∈ Ki,j [[t]]. Having showed this, we can finish
the proof as we did for Theorem 4. 2

Another variant of Theorem 4 is the following:

Theorem 6. Let n and m be nonnegative integers. Let R be a commutative
ring. Let A be an n× n-matrix over R. Assume that all principal minors of
A equal 1. Then, all diagonal entries of Am equal 1.

Proof. Follow the above proof of Theorem 4. From (7), we obtain

detB =
∑
P⊆[n]

(−t)|P | det
Ä
subPP A

ä
︸ ︷︷ ︸

=1
(by assumption, since subP

P A
is a principal minor of A)

=
∑
P⊆[n]

(−t)|P | = (1− t)n

(since the binomial formula yields (1− t)n =
∑n
k=0

Ç
n

k

å
(−t)k =

∑
P⊆[n] (−t)|P |).

Let i ∈ {1, 2, . . . , n}. From (9), we obtain

(adjB)i,i =
∑

P⊆[n−1]

(−t)|P | det
Ä
subPP (A∼i,∼i)

ä
︸ ︷︷ ︸

=1
(by assumption,

since subP
P (A∼i,∼i)

is a principal minor of A)

=
∑

P⊆[n−1]

(−t)|P | = (1− t)n−1
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(again by the binomial formula). Now, (6) becomesÄ
B−1

ä
i,i

=
1

detB
· (adjB)i,i = (adjB)i,i︸ ︷︷ ︸

=(1−t)n−1

/ (detB)︸ ︷︷ ︸
=(1−t)n

= (1− t)n−1 / (1− t)n

=
1

1− t
= 1 + t+ t2 + t3 + · · · .

Thus, the tm-coefficient of the power series
(
B−1

)
i,i ∈ R [[t]] is 1. However,

we have already seen that this coefficient is (Am)i,i. Thus, we conclude that

(Am)i,i = 1. This shows that all diagonal entries of Am equal 1, so that
Theorem 6 is proved. 2

6. Back to Putnam 2021

As already mentioned, we do not know whether Theorem 1 can be
generalized by replacing “odd” by “congruent to 1 modulo 4”. More generally,
we are tempted to ask the following:

Question 1. Fix a commutative ring R. Let A be an n× n-matrix over R.
Let m be a nonnegative integer. Assume that each principal minor of A is 1.
Is it true that each principal minor of Am is 1 as well?

For R = Z/2, this would yield Theorem 1; the “congruent to 1 modulo
4” variant would follow for R = Z/4. Theorem 6 corresponds to the case
when the principal minor of Am is a diagonal entry. The argument from [2,
Lemma 3.3] shows that Question 1 has a positive answer whenever R is an
integral domain; thus, the answer is also positive when R is a product of
integral domains. On the other hand, if R can be arbitrary, then the answer
to Question 1 is negative, but the only counterexample we know is when R
is a certain quotient ring of a polynomial ring (and n = 4 and m = 2). Here
are the details: Let R be the quotient ring

Q [x, y] /
Ä
x3 + y3, xy, x4, x3y, x2y2, xy3, y4

ä
,

and let A :=

Ü
1 1 0 0
0 1 y x
x 0 1 y
y 0 x 1

ê
∈ R4×4. Then, all principal minors of A are

1, but the principal minor det
(
sub
{2,3}
{2,3}

(
A2
))

= 1 − x3 − xy is not 1 since

x3 6= 0 in R. Actually, we can replace Q by any field here (even by Z/2);
then, R becomes a finite ring. (But we cannot turn R into Z/n without
changing the construction of A.) The smallest ring R for which the question
remains open is Z/4.
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Exotic series with Bernoulli, Harmonic, Catalan, and Stirling
numbers

Khristo N. Boyadzhiev1)

Abstract. In this paper, we present a formula for generating various
“exotic” series in the spirit of Ovidiu Furdui and Alina Ŝıntămărian [5].
Our new series (evaluated in closed form) involve Bernoulli, harmonic, and
Catalan numbers. Also Stirling numbers of the second kind, other special
numbers, and exponential polynomials. The results include series identi-
ties with Laguerre polynomials and derangement polynomials.

Keywords: Bernoulli numbers, Catalan numbers, harmonic numbers,
Stirling numbers, derangement numbers, central binomial coefficients, ex-
ponential polynomials, Laguerre polynomials.

MSC: 11B68, 11B73, 11C08, 40D05.

1. Introduction

In a recent paper Ovidiu Furdui and Alina Ŝıntămărian [5] evaluated
several interesting exotic series. For example, they proved that

∞∑
n=1

Å
ex − 1− 1

1!
− 1

2!
− · · · − 1

n!

ã
xn =

ex − ex
x− 1

+ 1 (1)

for every x 6= 1 with a limit case for x = 1

∞∑
n=1

Å
ex − 1− 1

1!
− 1

2!
− · · · − 1

n!

ã
= 1.

1)Department of Mathematics, Ohio Northern University, Ada, OH 45810, USA,
k-boyadzhiev@onu.edu
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They also proved the evaluation
∞∑
n=k

Ç
n
k

åÅ
e− 1− 1

1!
− · · · − 1

n!

ã
xn =

xke

(1− x)k+1

1− e−(1−x)
k∑
j=0

(1− x)j

j!


(2)

for x 6= 1 with the limit case for x = 1
∞∑
n=k

Ç
n
k

åÅ
e− 1− 1

1!
− · · · − 1

n!

ã
=

e

(k + 1)!
.

The series (2) appeared as Monthly Problem 12012 (Amer. Math. Monthly,
vol. 124, December 2017) proposed by the same authors.

Furdui, in another publication [6], evaluated the series

∞∑
n=1

np
Ç
ey − 1− y

1!
− y2

2!
− · · · − yn

n!

å
(p ≥ 1) (3)

which was discussed later by the present author in [2].
In this paper we develop a unified approach for the construction and

evaluation of such series. Our general result includes the cases (1), (2),
and (3) and produces further interesting exotic series. The main theorem is
given in the next section and in Section 3 we present the applications. For
illustration, three exotic series proved in Section 3 are
∞∑
n=0

Bn

Å
ey − 1− y

1!
− · · · − yn

n!

ã
(−1)n = ey

Ç
y ln(1− e−y)− Li2(e−y) +

π2

6

å
,

∞∑
n=0

Hn

Å
ey − 1− y

1!
− · · · − yn

n!

ã
= ey(yEin(y)− y + 1)− 1,

∞∑
n=0

ϕn(λ)

Å
ey − 1− y

1!
− · · · − yn

n!

ã
=
ey

λ
(1− eλ(e−y−1)),

where Bn are the Bernoulli numbers, Hn are the harmonic numbers, Ein(z) is
the exponential integral function (see below equation (24)), and ϕn(λ) are the
exponential polynomials. At the end we also prove series identities involving
derangement polynomials and Laguerre polynomials (examples 8 and 10).

2. Generating exotic series

Suppose we have a function F (z) analytic in a neighborhood of the
origin and written in the form

F (z) =
∞∑
n=0

an
zn

n!
. (4)
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We construct a function of two variables using the coefficients of F (z)

u(x, y) =
∞∑
n=0

an

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn

= a0(ey − 1) + a1

Å
ey − 1− y

1!

ã
x+ · · · .

(5)

To better understand the convergence of the above series we show a rough es-
timate for its terms. Let a > 0 be arbitrary. For |y| < a we have the following
estimate from Taylor’s formula with reminder in the form of Lagrange∣∣∣∣ey − 1− y

1!
− · · · − yn

n!

∣∣∣∣ ≤ ea|y|n+1

(n+ 1)!

(here a does not depend on n). From this∣∣∣∣an Åey − 1− y

1!
− · · · − yn

n!

ã
xn
∣∣∣∣ ≤ ea|an||y|n+1|x|n

(n+ 1)!
=
|an||x|n

n!

|y|n+1ea

n+ 1
.

We will keep this estimate in mind when we consider the applications.

Theorem 1. Let F (z) and u(x, y) be as in (4) and (5). Then for all appro-
priate values of x, y we have the integral representation

u(x, y) = ey
∫ y

0
e−tF (xt) dt. (6)

Proof. We compute the partial derivative of u(x, y) with respect to y

u′y(x, y) = a0e
y +

∞∑
n=1

an

Ç
ey − 1− y

1!
− · · · − yn−1

(n− 1)!

å
xn.

Then clearly

uy − u =
∞∑
n=0

an
n!
ynxn = F (xy).

For x fixed this is a linear differential equation (with respect to the variable
y) with integrating factor e−y. That is,

d

dy
(ue−y) = e−yF (xy).

From here

ue−y =

∫ y

0
e−tF (xt) dt+ C(x),

where C(x) is the constant of integration with respect to y. With y = 0 we
find C(x) = u(x, 0) = 0. This way

u(x, y) = ey
∫ y

0
e−tF (xt) dt

and the theorem is proved. 2
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The theorem can also be proved by using Taylor’s formula with integral
remainder. That is,

1

n!

∫ y

0
(y − t)netdt = ey − 1− y

1!
− · · · − yn

n!
(n ≥ 0).

Example 1. Taking the function

F (z) = ez =
∞∑
n=0

zn

n!
, an = 1,

we find

u(x, y) =
∞∑
n=0

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn = ey

∫ y

0
e−text dt.

Then for x = 1 we have
∞∑
n=0

Å
ey − 1− y

1!
− · · · − yn

n!

ã
= yey

and for x 6= 1
∞∑
n=0

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn =

exy − ey

x− 1
(7)

which confirms (1). (Note that in (1) the summation starts from n = 1.)

Example 2. Now let p ≥ 0 be an integer. Taking the exponential generating
function for the binomial coefficients

F (z) =
zpez

p!
=
∞∑
n=0

Ç
n
p

å
zn

n!
,

we find from (6)

E2 :=
∞∑
n=0

Ç
n
p

å Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn = ey

∫ y

0
e−t
®

(xtp)ext

p!

´
dt

=
eyxp

p!

∫ y

0
tpe(x−1)t dt.

For x = 1
∞∑
n=0

Ç
n
p

å Å
ey − 1− y

1!
− · · · − yn

n!

ã
=

eyyp+1

(p+ 1)!

and for x 6= 1 integration by parts gives

E2 =
xpey

(1− x)p+1

1− e−(1−x)y
p∑
j=0

(1− x)jyj

j!


which confirms Furdui and Ŝıntămărian’s result (2) by setting y = 1.
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Example 3. For the series in (3) we consider the function

F (z) =
∞∑
n=0

np
xn

n!
= ϕp(x)ex,

where p ≥ 0 is an integer, ϕp(x) is the exponential polynomial of order p

ϕp(x) =
p∑

k=0

S(p, k)xk, (8)

and S(p, k) are the Stirling numbers of the second kind [1, 3, 7]. Applying the
theorem we find the representation (with the notational agreement 00 = 1)

∞∑
n=0

np
Ç
ey − 1− y

1!
− y2

2!
− · · · − yn

n!

å
xn = ey

∫ y

0
e− textϕp(xt) dt.

When x = 1 this becomes
∞∑
n=0

np
Ç
ey − 1− y

1!
− y2

2!
− · · · − yn

n!

å
= ey

∫ y

0
ϕp(t) dt

= ey
p∑

k=0

S(p, k)
yk+1

k + 1
,

which is Furdui’s result [5]. For x 6= 0, 1 we have
∞∑
n=0

np
Ç
ey − 1− y

1!
− y2

2!
− · · · − yn

n!

å
xn

=
p∑

k=0

S(p, k)
k!xk

(1− x)k+1

Ñ
ey − exy

k∑
j=0

yj(1− x)j

j!

é
(see also [2]).

3. Further exotic series

In this section we use our theorem to evaluate various exotic series with
special numbers.

Example 4. Consider the generating function for the Bernoulli numbers

F (z) =
z

ez − 1
=
∞∑
n=0

Bn
zn

n!
(|z| < 2π).

The theorem implies the representation
∞∑
n=0

Bn

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn = ey

∫ y

0

e−txt

ext − 1
dt

= xey
∫ y

0

te−t

ext − 1
dt.

(9)
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For x, y > 0 the integral can be evaluated in terms of series∫ y

0

te−t

ext − 1
dt =

∫ y

0

te−te−xt

1− e−xt
dt

=

∫ y

0
t

{ ∞∑
n=1

e−(nx+1)t

}
dt

=
∞∑
n=1

∫ y

0
te−(nx+1)t dt

= −ye−y
∞∑
n=1

e−nxy

nx+ 1
− e−y

∞∑
n=1

e−nxy

(nx+ 1)2
+
∞∑
n=1

1

(nx+ 1)2
.

These series can be expressed through the Lerch transcendent Φ(z, s, a) (see
[4]) and the dilogarithm Li2(z)

Φ(z, s, a) =
∞∑
n=0

zn

(n+ a)s
; Li2(z) =

∞∑
n=1

zn

n2
.

Namely, we have
∞∑
n=0

Bn

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn =

ey

x
Φ(1, 2, x−1)− y Φ(e−xy, 1, x−1)

− 1

x
Φ(e−xy, 2, x−1) + x(y + 1− ey).

For x = 1 this representation takes the form
∞∑
n=0

Bn

Å
ey − 1− y

1!
− · · · − yn

n!

ã
= ey

Ç
y ln(1− e−y)− Li2(e−y) +

π2

6
− 1

å
+ 1 + y.

For x = −1 the integral in (9) becomes simpler

−
∫ y

0

te−t

e−t − 1
dt =

∫ y

0
td(ln(1− e−t)) = y ln(1− e−y)−

∫ y

0
ln(1− e−t) dt

= y ln(1− e−y) +
π2

6
− Li2(e−y)

and we come to the remarkable evaluation
∞∑
n=0

Bn

Å
ey − 1− y

1!
− · · · − yn

n!

ã
(−1)n = ey

Ç
y ln(1− e−y)− Li2(e−y) +

π2

6

å
.

Example 5. In this example we use the exponential generating function for
the Stirling numbers S(n, k) of the second kind [3, 7]

F (z) =
1

k!
(ez − 1)k =

∞∑
n=0

S(n, k)
zn

n!
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where k ≥ 0 is an integer (the summation actually starts from n = k, as
S(n, k) = 0 for n < k). From the theorem

∞∑
n=0

S(n, k)

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn =

ey

k!

∫ y

0
e−t(ext − 1)k dt.

The integral can be evaluated in terms of binomial expressions.∫ y

0
e−t(ext − 1)k dt =

∫ y

0


k∑
j=0

Ç
k
j

å
(−1)je(j x−1)t

 dt

=
k∑
j=0

Ç
k
j

å
(−1)j

∫ y

0
e(j x−1)t dt

=
k∑
j=0

Ç
k
j

å
(−1)j

∫ y

0
e(j x−1)t dt

=
k∑
j=0

Ç
k
j

å
(−1)j

e(j x−1)y − 1

jx− 1
.

Thus we have the closed form evaluation
∞∑
n=0

S(n, k)

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn =

1

k!

k∑
j=0

Ç
k
j

å
(−1)j

ej xy − ey

jx− 1
.

Example 6. Now we construct an exotic series containing the exponential
polynomials ϕn(x) defined in (8). Their generating function is given by

F (z) = ex(ez−1) =
∞∑
n=0

ϕn(x)
zn

n!

(see [1]). The theorem implies the representation
∞∑
n=0

ϕn(λ)

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn = ey

∫ y

0
e−teλ(ext−1) dt

= ey−λ
∫ y

0
e−teλe

xt
dt.

We can easily evaluate this integral when x = −1∫ y

0
e−teλe

−t
dt = − 1

λ

∫ y

0
eλe

−t
dλe−t = − 1

λ
eλe

−t
∣∣∣y
0

= − 1

λ
(eλe

−y − eλ).

From this

ey−λ
∫ y

0
e−teλe

xt
dt = −e

y

λ
(eλ(e−y−1) − 1)

and we come to the elegant formula
∞∑
n=0

ϕn(λ)

Å
ey − 1− y

1!
− · · · − yn

n!

ã
=
ey

λ
(1− eλ(e−y−1)).
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Unexpectedly, we can spot the generating function for the exponential poly-
nomials in the expression on the right hand side. This gives the identity

∞∑
n=0

ϕn(λ)

Å
ey − 1− y

1!
− · · · − yn

n!

ã
=
ey

λ

(
1−

∞∑
n=0

ϕn(λ)
(−1)nyn

n!

)
.

Example 7. In this application we present an exotic series with harmonic
number. The harmonic numbers are defined by

Hn = 1 +
1

2
+ · · ·+ 1

n
(n ≥ 1); H0 = 0

with exponential generating function

F (z) =
∞∑
n=0

Hn
zn

n!
= ez Ein(z).

Here Ein(z) is the exponential integral

Ein(z) =

∫ z

0

1− e−u

u
du =

∞∑
n=1

(−1)n−1zn

n!n

(as the series representation shows, Ein(z) is an entire function).
From the theorem we obtain
∞∑
n=0

Hn

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn = ey

∫ y

0
e−text Ein(xt) dt.

The integral can easily be evaluated in explicit form when x = 1∫ y

0
e−te t Ein(t) dt =

∫ y

0

®∫ t

0

1− e−u

u
du

´
dt

=

∫ y

0

ß∫ y

u
dt

™
1− e−u

u
du

=

∫ y

0
(y − u)

1− e−u

u
du

= yEin(y)−
∫ y

0
(1− e−u) du = yEin(y)− y − e−y + 1.

Using the series representation of Ein (t) we find also∫ y

0
Ein(t) dt =

∞∑
n=1

(−1)n−1yn+1

n!n(n+ 1)
.

Finally, for all y we have the beautiful equation
∞∑
n=0

Hn

Å
ey − 1− y

1!
− · · · − yn

n!

ã
= ey(yEin(y)− y + 1)− 1

=
∞∑
n=1

(−1)n−1yn+1

n!n(n+ 1)
.
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Example 8. The representation (6) leads to some interesting identities in-
volving derangement numbers and polynomials. We come to these identities
by using the simple exponential generating function for the numbers n!

F (z) =
∞∑
n=0

n!
zn

n!
=
∞∑
n=0

zn =
1

1− z
(|z| < 1).

Our theorem gives the representation
∞∑
n=0

n!

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn = ey

∫ y

0

e−t

1− xt
dt. (10)

This result can be related to the derangement numbers

Dn =
n∑
k=0

Ç
n
k

å
(−1)n−kk! = (−1)n

n∑
k=0

Ç
n
k

å
(−1)kk!

= n!
n∑
k=0

(−1)k

k!
= n!

Ç
1− 1

1!
+

1

2!
+ · · ·+ (−1)n

n!

å
which are popular in combinatorics [3, p. 180], [7, pp. 194–196], [8, 9]. We
have from their definition

e−1n! −Dn = n!

Ç
e−1 − 1 +

1

1!
− 1

2!
+ · · ·+ (−1)n

n!

å
and (10) with y = −1 gives the representation

∞∑
n=0

(e−1n! −Dn)xn = e−1
∫ −1

0

e−t

1− xt
dt. (11)

Now consider also the derangement polynomials [9]

dn(x) = (−1)n
n∑
k=0

Ç
n
k

å
(−1)kk!xk = n!

n∑
j=0

(−1)j

j!
xn−j

where dn(1) = Dn. The exponential generating function for these polynomi-
als can be computed easily

∞∑
n=0

dn(x)
zn

n!
=
∞∑
n=0

zn

n!

{
(−1)n

n∑
k=0

Ç
n
k

å
k!(−1)kxk

}

=
∞∑
k=0

(−1)kk!xk
{ ∞∑
n=k

Ç
n
k

å
(−1)nzn

n!

}

=
∞∑
k=0

(−x)k(−t)k
{ ∞∑
n=k

(−z)n−k

(n− k)!

}

=
∞∑
k=0

(xz)k
{ ∞∑
m=0

(−z)m

m!

}
=

e−z

1− xz
,
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that is,

e−z

1− xz
=
∞∑
n=0

dn(x)
zn

n!
. (12)

This function appears in (10) and (11). We have by integrating in (12) the
representation ∫ y

0
e−t

1

1− xt
dt =

∞∑
n=0

dn(x)
yn+1

(n+ 1)!

which in view of (10) gives the curious series identity

∞∑
n=0

n!

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn = ey

∞∑
n=0

dn(x)
yn+1

(n+ 1)!
.

For x = 1, y = −1 this identity becomes

∞∑
n=0

n!

Ç
e−1 − 1 +

1

1!
− · · · − (−1)n

n!

å
= e−1

∞∑
n=0

Dn
(−1)n+1

(n+ 1)!

=
∞∑
n=0

(e−1n! −Dn)

= e−1
∫ −1

0

e−t

1− t
dt.

Example 9. In this example we construct exotic series with central binomial

coefficients

Ç
2n

n

å
and Catalan numbers Cn =

Ç
2n

n

å
1

n+ 1
. The Catalan

numbers especially are very popular in combinatorics ([3, p. 53] and [7, pp.
203 and 358]).

The exponential generating functions for these numbers are

∞∑
n=0

Ç
2n

n

å
zn

n!
= e2z

∞∑
n=0

z2n

(n!)2
= e2zI0(2z)

∞∑
n=0

Cn
zn

n!
=
∞∑
n=0

Ç
2n

n

å
zn

(n+ 1)!
= e2z (I0(2z)− I1(2z))

where I0(x) and I1(x) = I
′
0(x) are the modified Bessel functions of the first

kind [11, pp. 77-84]

I0(z) =
∞∑
n=0

z2n

4n(n!)2
, I1(z) =

z

2

∞∑
n=0

z2n

4n(n!)2(n+ 1)
.

The theorem implies

∞∑
n=0

Ç
2n

n

å Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn = ey

∫ y

0
e(2x−1)tI0(2xt) dt
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∞∑
n=0

Cn

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn = ey

∫ y

0
e(2x−1)t(I0(2xt)− I ′0(2xt)) dt.

For x = 1
2 the integrals become simpler and can be evaluated explicitly. Thus∫ y

0
I0(t) dt = yI0(y) +

πy

2
[I0(y)L1(y)− I1(y)L0(y)]

where L0(y), L1(y) are the modified Struve functions [10, entry 1.11.1(4)].
We come to the identities

∞∑
n=0

Ç
2n

n

å
1

2n

Å
ey − 1− y

1!
− · · · − yn

n!

ã
= ey

∞∑
n=0

y2n+1

4n(n!)2(2n+ 1)

= ey
Å
yI0(y) +

πy

2
[I0(y)L1(y)− I1(y)L0(y)]

ã
∞∑
n=0

Cn
2n

Å
ey − 1− y

1!
− · · · − yn

n!

ã
= ey

(
1− I0(y) +

∞∑
n=0

y2n+1

4n(n!)2(2n+ 1)

)

= ey
Å

1 + (y − 1)I0(y) +
πy

2
[I0(y)L1(y)− I1(y)L0(y)]

ã
.

Example 10. Equation (7) can be viewed as the ordinary generating func-
tion for the functions

ey − 1− y

1!
− · · · − yn

n!

We will show now that the exponential generating function for these expres-
sions is very close to the exponential generating function for the Laguerre
polynomials Ln(x). Namely, the following series identity holds

∞∑
n=0

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn

n!
= ey

∞∑
n=0

(−1)nLn(x)
yn+1

(n+ 1)!
. (13)

Here is the proof of this identity. In order to compute the left hand side in
(13) we consider the exponential generating function for the numbers 1

n!

F (z) =
∞∑
n=0

1

n!

zn

n!
=
∞∑
n=0

zn

(n!)
= I0(2

√
z)

where I0(x) is the modified Bessel function of zero order (see (33)). According
to (6)

∞∑
n=0

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn

n!
= ey

∫ y

0
e−tI0(2

√
xt) dt. (14)
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At the same time, by using the Cauchy rule for multiplication of power series
we compute

e−tI0(2
√
xt) = e−t

∞∑
n=0

ß
xn

n!

™
tn

n!
=

( ∞∑
n=0

(−1)n
tn

n!

) ∞∑
n=0

ß
xn

n!

™
tn

n!

=
∞∑
n=0

{
n∑
k=0

Ç
n

k

å
(−1)n−kxk

k!

}
tn

n!
.

(15)

The Laguerre polynomials Ln(x) have the binomial representation

Ln(x) =
n∑
k=0

Ç
n

k

å
(−1)kxk

k!

and from (14) and (15) we obtain the identity
∞∑
n=0

Å
ey − 1− y

1!
− · · · − yn

n!

ã
xn

n!
= ey

∫ y

0

{ ∞∑
n=0

Ln(x)
(−1)ntn

n!

}
dt.

Now term by term integration leads to (13).
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15th South Eastern European Mathematical Olympiad for
University Students, SEEMOUS 2021

Cornel Băeţica1)

Abstract. The 15th South Eastern European Mathematical Olympiad for
University Students took place on July 19–24, 2021, in Agros, Cyprus. We
present the problems from the contest and their solutions as given by the
corresponding authors, together with alternative solutions provided by the
members of problem solving committee (PSC).

Keywords: Similar matrices, Hermitian matrices, minimal polynomial,
diagonalizable matrix, normal matrix, eigenvalues, eigenvectors, Riemann
integral, continuous functions, sequences of real numbers, series of real
numbers.

MSC: 15A03, 15A15, 15A21, 26A15, 26D15.

The COVID-19 pandemic affected SEEMOUS 2021 twice: the competi-
tion had to be postponed until July 2021 and reduced drastically the number
of participants to 41, representing 10 universities: 6 from Romania, 3 from
Greece, and one from Cyprus. The jury awarded 5 gold medals, 10 silver
medals and 14 bronze medals. The student Sergiu-Ionuţ Novac from Univer-
sity of Bucharest was the winner of the competition with 37 points out of
40.

We present the problems from the contest and their solutions as given
by the corresponding authors, together with alternative solutions provided
by the members of problem solving committee (PSC).

Problem 1. Let f : [0, 1] −→ R be a continuous increasing function such
that

lim
x→0+

f(x)

x
= 1.

(a) Prove that the sequence (xn)n≥1 defined by

xn = f

Å
1

1

ã
+ f

Å
1

2

ã
+ · · ·+ f

Å
1

n

ã
−
∫ n

1
f

Å
1

x

ã
dx

is convergent.
(b) Find the limit of the sequence (yn)n≥1 defined by

yn = f

Å
1

n+ 1

ã
+ f

Å
1

n+ 2

ã
+ · · ·+ f

Å
1

2021n

ã
.

Marian Panţiruc, Gheorghe Asachi Technical University of Iaşi, Romania

Author’s solution. (a) We write

xn =
n−1∑
k=1

Ç
f

Å
1

k

ã
−
∫ k+1

k
f

Å
1

x

ã
dx

å
+ f

Å
1

n

ã
.

1)Universitatea din Bucureşti, Bucureşti, România, cornel.baetica@fmi.unibuc.ro
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Because f is increasing, for all k > 1 and x ∈ [k, k + 1] we have

f

Å
1

k + 1

ã
6 f
Å

1

x

ã
6 f
Å

1

k

ã
and therefore

f

Å
1

k + 1

ã
6
∫ k+1

k
f

Å
1

x

ã
dx 6 f

Å
1

k

ã
. (1)

Summing up for k = 1 up to n− 1 we obtain

f

Å
1

n

ã
6 xn 6 f(1).

Since f is increasing, (xn) is bounded below by f(0).
It is easy to see that (xn) is decreasing since using (1) we have

xn+1 − xn = f

Å
1

n+ 1

ã
−
∫ n+1

n
f

Å
1

x

ã
dx 6 0 .

We conclude that (xn) is convergent.
(b) Since

yn = x2021n − xn +

∫ 2021n

n
f

Å
1

x

ã
dx ,

from part (a), it is enough to find

lim
n→∞

∫ 2021n

n
f

Å
1

x

ã
dx.

With the change of variable x =
1

t
we obtain∫ 2021n

n
f

Å
1

x

ã
dx =

∫ 1
n

1
2021n

f(t)

t2
dt.

Since limx→0+
f(x)
x = 1, given ε > 0, there is δ > 0 such that 1 − ε <

f(x)
x < 1 + ε for every 0 < x < δ. In particular, for every n > 1

δ , we have

0 < 1
2021n <

1
n < δ and therefore

(1− ε)
∫ 1

n

1
2021n

1

t
dt ≤

∫ 1
n

1
2021n

f(t)

t2
dt ≤ (1 + ε)

∫ 1
n

1
2021n

1

t
dt.

Since ε is arbitrary and since∫ 1
n

1
2021n

1

t
dt = ln 2021,

we conclude that
lim
n→∞

yn = ln 2021 .

Alternative solution by PSC. (b) Since limx→0+
f(x)
x = 1, given ε > 0,

there is δ > 0 such that 1 − ε < f(x)
x < 1 + ε for every 0 < x < δ. In
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particular, for every n > 1
δ and every k ≥ 1 , we have 0 < 1

n+k <
1
n < δ and

therefore

(1− ε) 1

n+ k
< f

Å
1

n+ k

ã
< (1 + ε)

1

n+ k
.

Summing up the above inequalities from k = 1 to 2020n we get

(1− ε)
Å

1

n+ 1
+ · · ·+ 1

2021n

ã
< yn < (1 + ε)

Å
1

n+ 1
+ · · ·+ 1

2021n

ã
.

It is well-known that

lim
n→∞

Å
1

n+ 1
+ · · ·+ 1

2021n

ã
= ln 2021 ,

and since ε is arbitrary we get lim
n→∞

yn = ln 2021.

Problem 2. Let n ≥ 2 be a positive integer and let A ∈Mn(R) be a matrix
such that A2 = −In. If B ∈Mn(R) and AB = BA, prove that detB > 0.

Vasile Pop, Technical University of Cluj-Napoca, Romania

Mihai Opincariu, Avram Iancu National College, Brad, Romania

Authors’ solution. Since A2 = −In, the only possible eigenvalues of A are
±i. From A ∈ Mn(R) it follows that n = 2k and A has k eigenvalues equal
to i and k eigenvalues equal to −i. Its minimal polynomial is x2 + 1, which
has distinct roots, therefore A is diagonalizable and is therefore similar to

X =

ñ
iIk 0k
0k −iIk

ô
.

Similarly, if P =

ñ
0k Ik
−Ik 0k

ô
, then P is also a real matrix with P 2 = −In and

so P is also similar to X. Therefore A and P are similar and so there is an
invertible matrix U ∈ Mn(R) such that P = U−1AU . For C = U−1BU ∈
Mn(R) we get

CP = U−1BAU and PC = U−1ABU . (2)

Since AB = BA, by (2) it follows that CP = PC.

Writing C into block form C =

ñ
X Y
Z T

ô
, where X,Y, Z, T ∈ Mk(R), and

using CP = PC, it follows that X = T and Z = −Y . Hence C =

ñ
X Y
−Y X

ô
.

We now see that∣∣∣∣∣ X Y
−Y X

∣∣∣∣∣ =

∣∣∣∣∣X + iY Y − iX
−Y X

∣∣∣∣∣ =

∣∣∣∣∣X + iY (Y − iX) + i(X + iY )
−Y X − iY

∣∣∣∣∣
=

∣∣∣∣∣X + iY 0
−Y X − iY

∣∣∣∣∣ .
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Therefore

detB = detC =

∣∣∣∣∣ X Y
−Y X

∣∣∣∣∣ = det(X+ iY ) det(X− iY ) = |det(X+ iY )|2 > 0.

Alternative solution by PSC. Let λ be a real eigenvalue of B and let Gλ
be its generalized eigenspace considered as a real vector space, i.e.,

Gλ = {v ∈ Rn : (B − λIn)nv = 0} .

We have AB2 = (AB)B = (BA)B = B(AB) = B(BA) = B2A. Inductively
we get ABk = BkA for every natural number k and from this we deduce that
Ap(B) = p(B)A for every polynomial p(x). In particular, A(B − λIn)n =
(B − λIn)nA.

Now if v ∈ Gλ, then (B−λIn)n(Av) = A(B−λIn)nv = 0, so Av ∈ Gλ.
Therefore we can define a linear map α : Gλ → Gλ by α(v) = Av.

Pick a basis of Gλ and let A′ be the matrix of α with respect to this
basis. Then A′ ∈ Mn(R) and (A′)2 = −In′ , where n′ = dim(Gλ). As in the
previous solution, we get that n′ is even.

Since dim(Gλ) is even for every real eigenvalue of B and since its com-
plex eigenvalues come in conjugate pairs, it results then det(B) > 0.

Remark. The contestant Sergiu-Ionuţ Novac has found a similar solu-
tion using generalized eigenspaces.

Problem 3. Let A ∈ Mn(C) be a matrix such that (AA∗)2 = A∗A, where

A∗ = A
t

denotes the Hermitian transpose (i.e., the conjugate transpose) of
A.

(a) Prove that AA∗ = A∗A.
(b) Show that the non-zero eigenvalues of A have modulus one.

Vasile Pop, Technical University of Cluj-Napoca, Romania

Mihai Opincariu, Avram Iancu National College, Brad, Romania

Authors’ solution. (a) The matrix AA∗ is Hermitian and all its eigenvalues
are non-negative real numbers.

If λ ∈ σ(AA∗), then λ2 ∈ σ
(
(AA∗)2

)
= σ (A∗A) = σ(AA∗), hence

λ2 ∈ σ(AA∗). It follows by induction that λ2k ∈ σ(AA∗), for all k ∈ N.
Since λ > 0, the last relation assures us that λ ∈ {0, 1}, so AA∗ will have
eigenvalues 0 or 1. On the other hand, since AA∗ is Hermitian, it is also
diagonalizable, thus

AA∗ = U−1

ñ
Ik Ok,n−k

On−k,k On−k

ô
U .

Using the above statement, we conclude that

A∗A = (AA∗)2 = AA∗ .
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(b) Using (a), the equality of our hypothesis can be transformed into
A∗A · (AA∗ − In) = On. Letting B = A · (AA∗ − In) we obtain

B∗B = (AA∗ − In)A∗A(AA∗ − In) = On,

which gives B = On. Thus

A2A∗ = A . (3)

Since A∗A = AA∗, it follows that the matrix A is normal, hence it is a
unitary diagonalizable matrix. It follows that there is a unitary matrix U ∈
Mn(C) such that A = U∗DU, where D = diag(λ1, . . . , λn). Then A2A∗ =
U∗D2UU∗DU = U∗D2DU and using (3) we get

A2A∗ = A ⇐⇒ D2D = D ⇐⇒ λ2
i · λi = λi for all i ∈ {1, 2, . . . , n}

⇐⇒ λi(|λi|2 − 1) = 0 for all i ∈ {1, 2, . . . , n} .
Hence the conclusion.

Alternative solution by PSC. (a) Let X = AA∗ and Y = A∗A. Since
X is Hermitian, it is diagonalizable, so P−1XP = D for some matrices P,D
with D diagonal. Let Z = P−1Y P . The initial condition gives Z = D2.
Since X and Y have the same characteristic polynomial, so do Z = D2 and
D. As in the original proof we deduce that every entry of D must be 0 or 1.
Then Z = D and so X = Y as required.

(b) Writing A = U∗DU as in the original proof and using (AA∗)2 = A∗A
(rather than A2A∗ = A) we get (DD)2 = DD. From this we get that
|λ|4 = |λ|2 for each eigenvalue λ of A and the conclusion follows.

Problem 4. Let p ∈ R and let (an)n≥1 be the sequence defined by

an =
1

np

∫ n

0

∣∣∣ sin(πx)
∣∣∣x dx .

Determine all possible values of p for which the series
∞∑
n=1

an converges.

Tiberiu Trif, Babeş-Bolyai University, Cluj-Napoca, Romania

Author’s solution. For every positive integer n, let

In =

∫ n

0

∣∣∣ sin(πx)
∣∣∣x dx =

n−1∑
k=0

∫ k+1

k

∣∣∣ sin(πx)
∣∣∣x dx.

Then we have
n−1∑
k=0

∫ k+1

k

∣∣∣ sin(πx)
∣∣∣k+1

dx < In <
n−1∑
k=0

∫ k+1

k

∣∣∣ sin(πx)
∣∣∣k dx .

Substituting t = πx− kπ, we deduce that∫ k+1

k

∣∣∣ sin(πx)
∣∣∣m dx =

1

π

∫ π

0
sinm t dt
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for every nonnegative integer m. Therefore

1

π

n∑
k=1

Jk < In <
1

π

n−1∑
k=0

Jk , (4)

where Jk =

∫ π

0
sink t dt. For k > 2, integration by parts yields

Jk =

∫ π

0
(− cos t)′ sink−1 t dt

=
î
− cos t sink−1 t

óπ
0

+ (k − 1)

∫ π

0
sink−2 t cos2 tdt

= 0 + (k − 1)

∫ π

0
sink−2 t(1− sin2 t) dt

= (k − 1)Jk−2 − (k − 1)Jk ,

whence

Jk =
k − 1

k
Jk−2 .

Since J0 = π and J1 = 2, we obtain

J2k = π
(2k − 1)!!

(2k)!!
and J2k+1 = 2

(2k)!!

(2k + 1)!!
.

We observe that

J2k−1J2k =
2π

2k
and J2kJ2k+1 =

2π

2k + 1
.

Since (Jn) is a decreasing sequence, we deduce that

2π

2k + 1
= J2kJ2k+1 ≤ J2

2k ≤ J2k−1J2k =
2π

2k
.

It follows that
√

2π

 
2k

2k + 1
≤
√

2kJ2k ≤
√

2π

and therefore

lim
k→∞

√
2k J2k =

√
2π . (5)

Similarly
√

2π

 
2k + 1

2k + 2
≤
√

2k + 1J2k+1 ≤
√

2π

and therefore

lim
k→∞

√
2k + 1 J2k+1 =

√
2π . (6)

By (5) and (6) it follows that

lim
n→∞

√
nJn =

√
2π . (7)
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By virtue of (7) and the Cesàro-Stolz theorem we have

lim
n→∞

J1 + · · ·+ Jn√
n

= lim
n→∞

Jn+1√
n+ 1−

√
n

= lim
n→∞

Ä√
n+ 1 +

√
n
ä
Jn+1

= 2
√

2π .

(8)

Now relations (4) and (8) ensure that

lim
n→∞

In√
n

=
1

π
· 2
√

2π = 2

 
2

π
.

Taking into consideration that

an =
In
np

=
In√
n
· 1

np−
1
2

,

we deduce that the series
∞∑
n=1

an has the same nature as
∞∑
n=1

1

np−
1
2

. In con-

clusion, the series
∞∑
n=1

an converges if and only if p >
3

2
.

Comments by PSC. (i) One could use Wallis’ formula or Stirling’s
approximation in order to deduce (7).
(ii) One could avoid the use of Cesàro-Stolz as follows: By (7) we have Jn =
Θ( 1√

n
). Since also (e.g., by considering Riemann sums) 1√

1
+ 1√

2
+ · · ·+ 1√

n
=

Θ(
√
n), one has an = Θ

Ä
1

np−1/2

ä
and the conclusion follows as before.
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MATHEMATICAL NOTES

When must a locally integrable function be integrable?

George Stoica1)

Abstract. We present two conditions on the decay at infinity of locally
integrable functions, and discuss their optimality, assuring that the latter
functions are, in fact, integrable.

Keywords: Locally integrable functions, decay conditions.

MSC: 26A12, 26A42.

A function is called locally integrable on R (cf. [1]) if it is Lebesgue
integrable (so its integral is finite) on every compact subset of R. Unlike
integrable functions, locally integrable functions can grow arbitrarily fast
at infinity, but are still manageable in a way similar to ordinary integrable
functions. They play a prominent role in distribution theory (cf. [2], [3]) and
occur in the definition of various classes of functions and function spaces, like
functions of bounded variation; moreover, every locally integrable function
defines an absolutely continuous measure and, conversely, every absolutely
continuous measure defines a locally integrable function (cf. the celebrated
Radon-Nikodym theorem).

Our purpose is to find out conditions on how fast must locally inte-
grable functions decay at infinity, to become, in fact, integrable. This type of
conditions is relevant in functional analysis, as a locally integrable function
with at most polynomial growth at infinity has a Fourier transform — as a
distribution, in general (cf. [2], [3]). The main difficulty in finding such con-
ditions comes from the fact that not all integrable functions on R decay to 0
at infinity. Nevertheless, by correlating the rate of decay with the size of the
integration domain therein, we were able to find such conditions (Theorem
1) and to prove that they are optimal for integrability (Theorem 2), as will
be described below.

Our main result follows. For simplicity, we denote below by L1
loc(R)

and L1(R) the spaces of locally integrable and of integrable functions on R,
respectively.

Theorem 1. Let f ∈ L1
loc(R). If, for some α > β ≥ 0, there exists c =

c(α, β) > 0 such that∫
{|x|<a}

|xαf(x)| dx ≤ c · aβ for all a > 0 (1)

1)5 Deveber Terrace, Saint John NB, E2K 2B5 Canada, gstoica2015@gmail.com
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then f ∈ L1(R). The same conclusion holds if, for some α > β ≥ 0, we have

lim
a→∞

1

aβ

∫
{|x|<a}

|xαf(x)| dx = 0. (2)

Before the proof, we shall present some illustrative examples.

Example 1. The function f(x) = x−γ for |x| > 1 and 0 if |x| ≤ 1 satisfies
condition (1) in Theorem 1 for any α ≥ γ − 1 and β = α − γ + 1; similarly,
it satisfies condition (2) above for any α ≥ γ − 1 and β > α− γ + 1. In both
cases, the requirements α > β ≥ 0 in conditions (1) and (2) are satisfied
precisely when γ > 1 (which is, by no means, accidental). Indeed, one can
easily check that the above function f is in L1

loc(R) for all γ > 0, but is in
L1(R) if and only if γ > 1.

Example 2. Let f ∈ L1
loc(R) such that g ∈ L1

loc(R), where g(x) := xγf(x)
for some γ > 0. Theorem 1 says that g ∈ L1(R) provided that, for some
α > β ≥ 0, there is c = c(α, β) > 0 such that∫

{|x|<a}
|xα+γf(x)|dx ≤ c · aβ for all a > 0,

or, for some α > β ≥ 0,

lim
a→∞

1

aβ

∫
{|x|<a}

|xα+γf(x)|dx = 0.

This example is a two-way improvement (weaker hypotheses and stronger
conclusion) of the following easy exercise: let f ∈ L1

loc(R) be such that g ∈
L1(R), where g(x) := xγf(x) for some γ > 0; then f ∈ L1(R).

Example 3. The inequality α > β ≥ 0 in conditions (1) and (2) is necessary.
Indeed, the function f(x) = x−1 for |x| > 1 and 0 if |x| ≤ 1 satisfies condition
(1) but not condition (2) with α = β = 2, is in L1

loc(R), but not in L1(R).
Also note that the function f(x) = x−3 for |x| > 1 and 0 if |x| ≤ 1 satisfies
condition (2) but not condition (1) with α = 2 and β = 0, is in L1

loc(R), but
not in L1(R)

Proof of Theorem 1. We need to show that
∫
|x|>a} |f(x)| dx < ∞ for all

a > 0. Actually, we shall prove more, namely that condition (1) implies the
existence of another constant c1 = c1(α, β) > 0 such that∫

{|x|>a}
|f(x)|dx ≤ c1 · aβ−α for all a > 0. (3)

Indeed, let us fix n = 0, 1, 2, . . . and a > 0. We have

(2na)α
∫
{2na<|x|<2n+1a}

|f(x)|dx ≤
∫
{2na<|x|<2n+1a}

|xαf(x)| dx ≤ c·(2n+1a)β,

so ∫
{2na<|x|<2n+1a}

|f(x)|dx ≤ c · 2β · aβ−α · 2(β−α)n.
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From the identity

{|x| > a} =
∞⋃
n=0

{2na < |x| < 2n+1a} ∪
∞⋃
n=0

{|x| = 2n+1a}

and using that the last union of sets is countable, hence Lebesgue negligible,
it follows that∫

{|x|>a}
|f(x)| dx =

∞∑
n=0

∫
{2na<|x|<2n+1a}

|f(x)|dx.

Using the above estimates, we obtain∫
{|x|>a}

|f(x)| dx ≤ c · 2β · aβ−α
∞∑
n=0

2(β−α)n =
c · 2α

2α−β − 1
aβ−α

(we used that α > β for the convergence of the latter series), so we can take
c1 := c · 2α/(2α−β − 1) in formula (3).

Similarly, we can prove that condition (2) implies

lim
a→∞

aα−β
∫
{|x|>a}

|f(x)|dx = 0, (4)

and the latter clearly implies that f ∈ L1(R). Indeed, by (2), for any ε > 0
there exists a0 := a0(ε) such that∫

{|x|<a}
|xαf(x)| dx < ε · aβ for a > a0.

The arguments and computations from the first part of the proof show that∫
{|x|>a}

|f(x)| dx < c1 · ε · aβ−α for a > a0,

with the same constant c1 as above, and condition (4) now follows. 2

Remark. As the proof of Theorem 1 shows, in conditions (1) and (2) we
may replace xα by any other function h : R → R satisfying h · f ∈ L1

loc(R)
and |h(x)| ≥ const · |x|α.

In the proof of Theorem 1 we showed that (1) ⇒ (3), (2) ⇒ (4), and
used that conditions (3) and (4) obviously imply the required integrability.
As we shall see below, the interesting part with conditions (1) and (2) is that
they are optimal for integrability, in the sense that (1)⇔ (3) and (2)⇔ (4),
provided that α > β > 0. Specifically, we shall prove the following

Theorem 2. Let f ∈ L1
loc(R). With the same notations as above, and if

α ≥ β > 0, we have that (3)⇒ (1) and (4)⇒ (2).
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Proof. The trick is to perform majorizations involving negative integers, in-
stead of positive ones. Namely, assume (3) and fix a > 0, n = 0,−1,−2, . . .
We have

1

(2na)α

∫
{2n−1a<|x|<2na}

|xαf(x)|dx ≤
∫
{2n−1a<|x|<2na}

|f(x)|dx

≤ c1 · (2n−1a)β−α,

so ∫
{2n−1a<|x|<2na}

|xαf(x)| dx ≤ c1 · 2α−β · aβ · 2βn.

From the identity

{|x| < a} =
0⋃

n=−∞
{2n−1a < |x| < 2na} ∪

0⋃
n=−∞

{|x| = 2n+1a}

and using that the last union of sets is countable, hence Lebesgue negligible,
it follows that∫

{|x|<a}
|xαf(x)|dx =

0∑
n=−∞

∫
{2n−1a<|x|<2na}

|xαf(x)| dx.

Using the above estimates, we obtain:∫
{|x|<a}

|xαf(x)| dx ≤ c1 · 2α−β · aβ
0∑

n=−∞
2βn =

c1 · 2α

2β − 1
aβ

(we used that β > 0 for the convergence of the latter series), so we can take
c := c1 ·2α/(2β−1) in formula (1). A similar argument shows that (4) implies
(2). 2
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PROPOSED PROBLEMS

521. Prove that

lim
p→∞

p∑
i,j=0

(−4a2)i+j

2i+ 2j + 1

Ç
p+ i

p− i

åÇ
p+ j

p− j

å
=

1

4a
ln

Å
1 + a

1− a

ã
∀a ∈ (0, 1).

Proposed by Florin Stănescu, Şerban Cioculescu School, Găeşti,

Dâmboviţa, Romania.

522. Evaluate the integral ∫ ∞
0

log
(
1 + x10

)
1 + x2

dx.

Proposed by Seán M. Stewart, King Abdullah University of

Science and Technology (KAUST), Saudi Arabia.

523. Prove that

rank(A−ABA)− rank(B −BAB) = rank(A)− rank(B)

for all A,B ∈Mn(C).

Proposed by Vasile Pop, Technical University of Cluj-Napoca,

Romania and Mihai Opincariu, Avram Iancu National College, Brad,

Romania.

524. Determine all bijective and differentiable functions f : R → R, with
f ′(x) 6= 0 ∀x ∈ R, satisfying

f(x) + f

Ç
1

f ′(x)
− x
å

= 1, for every x ∈ R.

Proposed by Mircea Rus, Technical University of Cluj-Napoca,

Romania.

525. Let n ≥ 4 and let a1, . . . , an > 0.
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(i) Prove that if
1

a1
+ · · ·+ 1

an
≤ 1, then

2
∑

1≤i<j≤n
aiaj − n3(n− 1) ≥ 2(n− 1)2(a1 + · · ·+ an − n2).

(ii) Prove that if
1

a1
+ · · ·+ 1

an
≥ 1 and k =

n2 − n+ 1

(n− 1)3
, then

a2
1 + · · ·+ a2

n − n3 ≥ k

Ñ
2

∑
1≤i<j≤n

aiaj − n3(n− 1)

é
.

Proposed by Vasile Cı̂rtoaje, Petroleum-Gas University of

Ploieşti, Romania and Leonard Giugiuc, Traian National College,

Drobeta-Turnu Severin, Romania.

526. If a, b ∈ C and k ≥ 2, then we define

Fka,b = {f : C→ C | f (k)(z) = az + b},

where f (k) = f ◦ · · · ◦ f , with k copies of f .
For given a, b ∈ C and k ≥ 2 find necessary and sufficient condition

such that a set A ⊆ C can be written as A = Fix(f) for some f ∈ Fka,b.
Proposed by Vasile Pop, Technical University of Cluj-Napoca,

Romania and Constantin-Nicolae Beli, IMAR, Bucharest, Romania.

527. For every non-negative integer n, evaluate the integral

In =

∫ ∞
0

logn(x) sin(x)

x
dx.

The answer may be given either in a closed form or recursively. Also it
may include values of the zeta function at integers ≥ 2.

Proposed by Seán M. Stewart, King Abdullah University of

Science and Technology (KAUST), Saudi Arabia.

528. If a1, a2, a3, a4, a5, a6 are non-negative real numbers such that

a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a1 = 6,

a1 ≥ a2 ≥ a3 ≥ a4 ≥ a5 ≥ a6,

then
1

a1 + 3
+

1

a2 + 3
+

1

a3 + 3
+

1

a4 + 3
+

1

a5 + 3
+

1

a6 + 3
≥ 3

2
.

Proposed by Vasile Cı̂rtoaje, Petroleum-Gas University of

Ploieşti, Romania.
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SOLUTIONS

504. Let f : [0, 1] → R be a differentiable function with f ′ continuous on

[0, 1], such that |f ′(x)| ≤ 1 ∀x ∈ [0, 1]. Prove that if 2
∣∣∣∫ 1

0 f(x) dx
∣∣∣ ≤ 1 then

(n+ 2)
∣∣∣∫ 1

0 x
nf(x) dx

∣∣∣ ≤ 1 ∀n ≥ 1.

Proposed by Florin Stănescu, Şerban Cioculescu School, Găeşti,

Dâmboviţa, Romania.

Solution by the author. For n ≥ 0 we denote In =
∫ 1

0 x
nf(x) dx. We

obviously have |I0| ≤ 1
2 and we prove by induction on n that |In| ≤ 1

n+2 .
For n = 1 we use integration by parts and we get

I1 =
1

2

Ç
I0 +

∫ 1

0
(2x− 1)f(x) dx

å
=

1

2

Ç
I0 + (x2 − x)f(x)

∣∣∣1
0
−
∫ 1

0
(x2 − x)f ′(x) dx

å
=

1

2

Ç
I0 +

∫ 1

0
(x− x2)f ′(x) dx

å
Since |I0| ≤ 1

2 and x− x2 ≥ 0 and |f ′(x)| ≤ 1 ∀x ∈ [0, 1], we get

|I1| ≤
1

2

Ç
|I0|+

∫ 1

0
(x− x2)|f ′(x)|dx

å
≤ 1

2

Ç
1

2
+

∫ 1

0
(x− x2) dx

å
=

1

3
.

Suppose now that n ≥ 2 and |Ik| ≤ 1
k+2 for k = 0, 1, . . . , n − 1. We

prove that |In| ≤ 1
n+2 . For every k ≥ 0 we have

Ik =
xk+1

k + 1
f(x)

∣∣∣∣1
0
−
∫ 1

0

xk+1

k + 1
f ′(x) dx =

f(1)

k + 1
− 1

k + 1

∫ 1

0
xk+1f ′(x) dx.

It follows that f(1) = (k+ 1)Ik +
∫ 1

0 x
k+1f ′(x) dx. We add these relations for

k = 0, . . . , n− 1 and we divide by n(n+ 1). We get

nf(1) =
n−1∑
k=0

Ç
(k + 1)Ik +

∫ 1

0
xk+1f ′(x) dx

å
.

We multiply the formula for In by n(n+ 1) and we get

n(n+ 1)In = nf(1)− n
∫ 1

0
xn+1f ′(x) dx

=
n−1∑
k=0

Ç
(k + 1)Ik +

∫ 1

0
xk+1f ′(x) dx

å
− n

∫ 1

0
xn+1f ′(x) dx

=
n−1∑
k=0

(k + 1)Ik +

∫ 1

0

(
n−1∑
k=0

xk+1 − nxn+1

)
f ′(x) dx.
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If x ∈ [0, 1] then for k = 0, . . . , n − 1 we have xk+1 ≥ xn+1 so
∑n−1
k=0 x

k+1 −
nxn+1 ≥ 0. We also have Ik ≤ 1

k+2 for k = 0, . . . , n − 1 and |f ′(x)| ≤ 1 for

x ∈ [0, 1]. It follows that

n(n+ 1)In ≤
n−1∑
k=0

(k + 1)|Ik|+
∫ 1

0

(
n−1∑
k=0

xk+1 − nxn+1

)
|f ′(x)| dx

≤
n−1∑
k=0

k + 1

k + 2
+

∫ 1

0

(
n−1∑
k=0

xk+1 − nxn+1

)
dx

=
n−1∑
k=0

k + 1

k + 2
+
n−1∑
k=0

1

k + 2
− n

n+ 2
=

n−1∑
k=0

1− n

n+ 2
= n− n

n+ 2

=
n(n+ 1)

n+ 2
.

From this we conclude that |In| ≤ 1
n+2 . �

We have received the same proof from Daniel Văcaru.

Editor’s note. The problem can be solved without resorting to math-
ematical induction, by adapting the same idea from the n = 1 step. Namely,
we have

In =
1

n+ 1

Ç
I0 +

∫ 1

0
((n+ 1)xn − 1)f(x) dx

å
=

1

n+ 1

Ç
I0 + (xn+1 − x)f(x)

∣∣∣1
0
−
∫ 1

0
(xn+1 − x)f ′(x) dx

å
=

1

n+ 1

Ç
I0 +

∫ 1

0
(x− xn+1)f ′(x) dx

å
.

But |I0| ≤ 1
2 and on [0, 1] we have x− xn+1 ≥ 0 and |f ′(x)| ≤ 1. Hence,

|In| ≤
1

n+ 1

Ç
|I1|+

∫ 1

0
(x− xn+1)|f ′(x)|dx

å
=

1

n+ 1

Ç
1

2
+

∫ 1

0
(x− xn+1) dx

å
=

1

n+ 2
.

This is, essentially, the solution we received from Moubinool Omarjee.

Solution by Moubinool Omarjee, Paris, France. We have∣∣∣∣∣(n+ 1)

∫ 1

0
xnf(x) dx

∣∣∣∣∣ ≤
∣∣∣∣∣(n+ 1)

∫ 1

0
xnf(x) dx−

∫ 1

0
f(x) dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1

0
f(x)(x)

∣∣∣∣∣ dx−
∫ 1

0
f(x) dx

=

∫ 1

0
m′(x)f(x) dx = −

∫ 1

0
m(x)f ′(x) dx.
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Since |f ′(x)| ≤ 1 and −m(x) = x− xn+1 ≥ 0 ∀x ∈ [0, 1], we get∣∣∣∣∣(n+ 1)

∫ 1

0
xnf(x) dx−

∫ 1

0
f(x) dx

∣∣∣∣∣ ≤
∫ 1

0
|m(x)f ′(x)|dx ≤

∫ 1

0
(x− xn+1) dx

=
1

2
− 1

n+ 2
.

Together with
∣∣∣∫ 1

0 f(x) dx
∣∣∣ ≤ 1

2 , this implies∣∣∣∣∣(n+ 1)

∫ 1

0
xnf(x) dx

∣∣∣∣∣ ≤ 1

2
− 1

n+ 2
+

1

2
=
n+ 1

n+ 2
< 1.

505. Let n, p, q ∈ N such that 1 ≤ q < p < n. If there exists A ∈Mn ({0, 1})
such that A · At has all the elements on the diagonal equal to p and all the
other elements equal to q, prove that:

a) p(p− 1) = q(n− 1);
b) A ·At = At ·A;
c) if n is even, then p− q is a perfect square.

Proposed by Vasile Pop and Mircea Rus, Technical University of

Cluj-Napoca, Romania.

Solution by the authors. Let A = (aij) and B = A ·At = (bij). We have

p = bii =
n∑
j=1

a2
ij =

n∑
j=1

aij for all i ∈ {1, 2, . . . , n} ,

hence AU = pU , where U is the column vector of order n with all elements
equal to 1. Denoting by Jn the n× n matrix with all elements equal to 1, it
follows that

A · Jn = pJn (1)

and, by hypothesis,

A ·At = (p− q)In + qJn, (2)

where In denotes the n× n identity matrix.
From (1) and (2) it follows

A ·At = (p− q)In +
q

p
A · Jn,

that is
1

p− q
A ·
Å
At − q

p
Jn

ã
= In,

which proves that At − q

p
Jn is the inverse of

1

p− q
A, hence they commute:Å

At − q

p
Jn

ã
· 1

p− q
A = In. (3)
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By multiplying (3) to the right with (p− q)Jn, it follows by (1) thatÅ
At − q

p
Jn

ã
pJn = (p− q)Jn

and, by taking into account that J2
n = nJn, we obtain that

At · Jn =
p− q + qn

p
Jn. (4)

By (4), the sum of elements in any line of At is
p− q + qn

p
. Hence, the

sum
∑
At of all elements of At is

p− q + qn

p
· n. Similarly, from (1) we get

that
∑
A = pn. But

∑
A =

∑
At and so

p− q + qn

p
· n = pn, which finally

leads to

p(p− 1) = q(n− 1), (5)

which concludes the proof of part a).
Now, by (5), we can rewrite (4) as

At · Jn = pJn,

hence

Jn ·A = pJn. (6)

Then, by (3),

At ·A− q

p
Jn ·A = (p− q)In,

hence, by (6) and (2),

At ·A =
q

p
Jn ·A+ (p− q)In = qJn + (p− q)In = A ·At,

which concludes the proof of b).
Finally, computing the circulant determinant detB (e.g., subtract the

first column from each of the other columns, then add to the first row each
of the other rows), it follows that

(detA)2 = det
Ä
A ·At

ä
= detB = (p− q)n−1 (p+ (n− 1)q) = (p− q)n−1 p2,

hence p − q is a perfect square (since n is even), which concludes the proof
of c).

Remarks. (i) For every n ≥ 3, there exist p, q and A which sat-
isfy the required conditions. For example, let A be the circulant matrix
C( 1, 1, . . . , 1︸ ︷︷ ︸

n−1 values of 1

, 0); then p = n− 1 and q = n− 2.

In general, given n, p, q, it is not always possible to find such a matrix A,
even when n, p, q satisfy properties a) and c). For example, it is possible to
show that for q = 1, p = 7 and n = 43 (which satisfy the required properties),



42 Problems

there is no such matrix A (this example is related to the non-existence of finite
projective planes of order 6).

(ii) It is possible to interpret A as the adjacency matrix of a directed
graph (or, equivalently, of a binary relation). By letting X = {1, 2, . . . , n},
define a binary relation R on X as follows:

(i, j) ∈ R⇐⇒ aij = 1 (i, j ∈ X).

By hypothesis, for all i ∈ X one has

p = bii =
n∑
j=1

a2
ij =

n∑
j=1

aij = |{j ∈ X : aij = 1}| = |R(i)| ,

while for all i, j ∈ X, i 6= j

q = bij =
n∑
k=1

aikajk = |{k ∈ X : aik = ajk = 1}| = |R(i) ∩R(j)| ,

where, as usual, R(x) := {y ∈ X : (x, y) ∈ R} (x ∈ X).
These ideas are also strongly connected to the theory of symmetric

balanced incomplete block design, where A is the incidence matrix.

506. Let N > 1 be a squarefree integer. For every integer k we denote
qN (k) = gcd(N, k). Prove that there is a finite subset S of the unit circle
such that for every polynomial f =

∑n
k=0 akX

k ∈ C[X] we have

µ(N)
n∑
k=0

µ(qN (k))φ(qN (k))ak =
∑
ζ∈S

f(ζ).

(Here µ and φ denote the Möbius function and Euler’s totient function, re-
spectively.)

Proposed by Marian Tetiva, Gheorghe Roşca Codreanu National

College, Bârlad, Romania.

Solution by the author. Let Ut, and Pt be the set of all roots of unity
of order t and of the primitive roots of unity of order t, respectively. We
actually prove that our result holds with S = PN .

By linearity, it is enough to prove the identity when f belongs to the
basis {Xm | m ≥ 0} of C[X]. That is, we must show that∑

ζ∈PN

ζm = µ(N)µ(qN (m))ϕ(qN (m)) ∀m ≥ 0.

Note first, that, if t ≥ 1 and m are integers, then we have the well-known
relation ∑

ζ∈Ut

ζm =

{
0, if t - m,
t, if t | m.
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In particular, if t = p is a prime, then Up = Pp ∪ {1}, so the above equality
becomes

1 +
∑
ζ∈Pp

ζm =

{
0, if p - m,
p, if p | m.

But if p - m then µ(qp(m))ϕ(qp(m)) = µ(1)ϕ(1) = 1 and if p | m then
µ(qp(m))ϕ(qp(m)) = µ(p)ϕ(p) = −(p− 1). Hence,∑

ζ∈Pp

ζm = −µ(qp(m))ϕ(qp(m)).

This proves the desired identity in this (simplest) case.
Let now N = p1 · · · ps, where p1, . . . , ps are distinct primes, so that

µ(N) = (−1)s. Now it is well known that any ζ ∈ UN writes uniquely as
ζ = ζ1 · · · ζs, where ζl ∈ Upl for each 1 ≤ l ≤ s. Moreover, ζ is a primitive in
UN iff each ζl is primitive in Upl . Therefore∑

ζ∈PN

ζm =
∑

ζ1∈Pp1 ,...ζs∈Pps

(ζ1 · · · ζs)m =
( ∑
ζ1∈Pp1

ζm1

)
· · ·
( ∑
ζs∈Pps

ζms

)
=
Ä
−µ(qp1(m))ϕ(qp1(m))

ä
· · ·
Ä
−µ(qps(m))ϕ(qps(m))

ä
= (−1)sµ(qN (m))ϕ(qN (m)),

as desired. The last equality follows from the multiplicativity of the arith-
metic functions µ and ϕ, the fact that qp1 , . . . , qps are mutually prime and
the obvious equality

qp1(m) · · · qps(m) = qN (m).

Remark. The Ramanujan sum cq(m) is the sum of the m-powers of
the qth primitive roots of unity. The formula

cq(m) =
ϕ(q)

ϕ

Ç
q

(m, q)

åµÇ q

(m, q)

å
is well-known and if N is squarefree it immediately implies the identity

cN (m) =
∑
ζ∈PN

ζm = µ(N)µ(qN (m))ϕ(qN (m)).

So, basically, we proved a particular case of the formula for the Ramanujan
sum. (Nevertheless, the formula is not the starting point for the problem!)
The solver who is familiar with this formula will probably find the problem
to be rather easy.

507. Calculate the integral∫ ∞
1

lnx

x3 + x
√
x+ 1

dx.
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Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu,

Romania.

Solution by the author. Let us denote I =

∫ ∞
1

lnx

x3 + x
√
x+ 1

dx.

In this integral we substitute x = 1
y , which gives

I =

∫ ∞
1

lnx

x3 + x
√
x+ 1

dx = −
∫ 1

0

y ln y

y3 + y
√
y + 1

dy.

Let us also denote J =

∫ 1

0

y ln y

y3 + y
√
y + 1

dy.

In this integral we substitute y = z
2
3 , which gives

J =
4

9

∫ 1

0

z
1
3 ln z

z2 + z + 1
dz.

We have successively:

9

4
J =

∫ 1

0

(1− z)z
1
3 ln z

1− z3
dz =

∫ 1

0

z
1
3 ln z

1− z3
dz −

∫ 1

0

z
4
3 ln z

1− z3
dz

=

∫ 1

0

∞∑
n=0

z3n+ 1
3 ln z dz −

∫ 1

0

∞∑
n=0

z3n+ 4
3 ln z dz

=
∞∑
n=0

∫ 1

0
z3n+ 1

3 ln z dz −
∞∑
n=0

∫ 1

0
z3n+ 4

3 ln z dz.

Now we will use the following relationship∫ 1

0
xa lnx dx = − 1

(a+ 1)2
∀a ∈ R, a ≥ −1.

We obtain

J =
4

9

∞∑
n=0

Ñ
1Ä

3n+ 7
3

ä2 − 1Ä
3n+ 4

3

ä2é =
4

9

∞∑
n=0

Ñ
1
9Ä

n+ 7
9

ä2 − 1
9Ä

n+ 4
9

ä2é .

We will now use the following relationship

ψ1(x) =
∞∑
n=0

1

(x+ n)2
,

where ψ1(x) is the trigamma function. This gives

J =
4

81

Å
ψ1

Å
7

9

ã
− ψ1

Å
4

9

ãã
.

We obtained the value of the integral required in the problem statement

I = −J =
4

81

Å
ψ1

Å
4

9

ã
− ψ1

Å
7

9

ãã
.
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Solution by Brian Bradie, Christopher Newport University, Newport
News, VA, USA. We use the substitution u = 1/x and we get∫ ∞

1

lnx

x3 + x3/2 + 1
dx = −

∫ 0

1

ln(1/u)

u−3 + u−3/2 + 1
· du
u2

= −
∫ 1

0

u lnu

1 + u3/2 + u3
du.

Now, multiply numerator and denominator of the integrand in the last inte-
gral by 1− u3/2 to obtain∫ ∞

1

lnx

x3 + x3/2 + 1
dx = −

∫ 1

0

(u− u5/2) lnu

1− u9/2
du.

With the series representation

1

1− u9/2
=
∞∑
k=0

u9k/2,

this becomes∫ ∞
1

lnx

x3 + x3/2 + 1
dx = −

∫ 1

0

∞∑
k=0

(u1+9k/2 − u5/2+9k/2) lnudu

= −
∞∑
k=0

∫ 1

0
(u1+9k/2 − u5/2+9k/2) lnudu

=
∞∑
k=0

Ç
1

(2 + 9k/2)2
− 1

(7/2 + 9k/2)2

å
=

4

81

∞∑
k=0

Ç
1

(k + 4/9)2
− 1

(k + 7/9)2

å
=

4

81

Å
ψ1

Å
4

9

ã
− ψ1

Å
7

9

ãã
,

where ψ1(x) is the trigamma function.

(Here we used the formula
∫∞

0 ua lnudu = − 1
(a+1)2

, which holds for

a > −1.)

508. Let K be a field and let A,B ∈ Mn(K), with n ≥ 1, such that AB −
BA = c(A−B) for some c ∈ K \ {0}.

(i) Prove that if charK = 0 or charK > n, then A and B have the
same eigenvalues.

(ii) Prove that if 0 < charK ≤ n, then (i) is no longer true.

Remark. The statement (i) is an extension of the statement b) of
problem 495, whose solution was published in GMA 38 (117) 3–4/2020,
61–64.

Proposed by Constantin-Nicolae Beli, IMAR, Bucureşti, Romania.
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Solution by the author. (i) We denote by fX the characteristic polyno-
mial of a square matrix X. We prove that fA = fB, which implies that A
and B have the same eigenvalues.

By the same reasoning as in the solution of problem 495 b), we get
fA(x)fB(x+c) = fB(x)fA(x+c), so it is enough to prove that if P,Q ∈ K[X]
are monic of degree n with P (x)Q(x + c) = Q(x)P (x + c) and charK = 0
or charK > n, then P = Q. Let R = gcd(P,Q), with R monic, and let
P = P ′R, Q = Q′R. Then gcd(P ′, Q′) = 1 and P ′, Q′ are monic with
degP ′ = degQ′ =: n′ ≤ n. After dividing the relation P (x)Q(x + c) =
Q(x)P (x + c) by R(x)R(x + c), we get P ′(x)Q′(x + c) = Q′(x)P ′(x + c).
If degR = n, then P = Q = R, so we are done. So, we may assume that
degR < n and n′ > 0. Hence, P ′ has a root x0. Since gcd(P ′, Q′) = 1, we
have Q′(x0) 6= 0. Hence, 0 = P ′(x0)Q′(x0+c) = Q′(x0)P ′(x0+c) implies that
P ′(x0+c) = 0, so x0+c is another root of P . Inductively, x0, x0+c, x0+2c, . . .
are all roots of P . If charK = 0, then x0, x0 + c, x0 + 2c, . . . are mutually
distinct, so P has an infinity of roots. Contradiction. If charK = p > n, then
x0, x0+c, . . . , x0+(p−1)c are p distinct roots of P ′, with degP ′ = n′ ≤ n < p.
Again, contradiction.

(ii) We consider first the case when n = p. Before finding a coun-
terexample, we give some hints about how this counterexample should look
like.

Same as for (i), we put P = fB, Q = fA. Then P,Q are monic of
degree n = p and P (x)Q(x + 1) = Q(x)P (x + 1). We search for some
P,Q of this kind such that P 6= Q. Again, we write P = P ′R and Q =
Q′R, where R = gcd(P,Q) is monic. If degR = p, then P = Q = R, so
we may assume that degR < p. Then, as seen from the proof of (i), we
have degP ′ = degQ′ =: n′ ≤ p and P ′ has p distinct roots of the form
x0, x0 + c, . . . , x0 + (p − 1)c. It follows that n′ = p, i.e., gcd(P,Q) = R = 1
and P = P ′, Q = Q′, and x0, x0 + c, . . . , x0 + (p − 1)c are all roots of P .
Thus, P (x) = (x− x0)(x− x0− c) · · · (x− x0− (p− 1)c) = cpT (x−x0c ), where
T (y) = y(y − 1) · · · (y − (p − 1)) = yp − y. (By Fermat’s little theorem,
in characteristic p we have that 0, 1 . . . , p − 1 are roots of yp − y.) Thus
P (x) = (x− x0)p − cp−1(x− x0) = xp − cp−1x− (xp0 − cp−1x0).

First we consider the case when c = 1. In order that P 6= Q, i.e.,
fA 6= fB, the roots of P = fB must be of the form x0, x0 + 1, . . . , x0 + p− 1.
We choose x0 = 0, so we take B ∈Mp(K) whose eigenvalues are 0, 1, . . . , p−1
and we have P (x) = fB(x) = x(x − 1) · · · (x − (p − 1)) = xp − x. Since B
has p mutually distinct eigenvalues, it is diagonalizable. Therefore, we may
assume that B = diag (0, 1, . . . , p− 1) ∈Mp(Fp) ⊆Mp(K).

Before searching for a suitable A, note that if we denote C = A − B,
that is, A = B + C, then the condition AB − BA = A − B writes as (B +
C)B −B(B + C) = C, i.e., as CB −BC = C.
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For convenience, we index the rows and columns of matrices fromMp(K)
not by 1, 2 . . . , p, but by Fp = {0, . . . , p− 1}. We denote by {ei,j | i, j ∈ Fp}
the canonical basis of Mp(K), where ei,j has 1 on the position (i, j) and 0
everywhere else. We have ei,jek,l = δj,kei,l.

Then B = diag (0, 1, . . . , p−1) ∈Mp(Fp) writes as
∑
i∈Fp

iei,i. We write
C =

∑
j,k∈Fp

aj,kej,k. Then

CB −BC =
∑
j,k∈Fp

aj,kej,k
∑
i∈Fp

iei,i −
∑
i∈Fp

iei,i
∑
j,k∈Fp

aj,kej,k

=
∑

i,j,k∈Fp

iaj,kδk,iej,i −
∑

i,j,k∈Fp

iaj,kδi,jei,k

=
∑
j,k∈Fp

kaj,kej,k −
∑
j,k∈Fp

jaj,kej,k =
∑
j,k∈Fp

(k − j)aj,kej,k.

Then the relation CB−BC = C writes as (k−j)aj,k = aj,k ∀j, k ∈ Fp, which
is equivalent to aj,k = 0 when k − j 6= 1. Hence, we have CB − BC = C iff
C has the form C =

∑
j∈Fp

aj,j+1ej,j+1 =
∑
i∈Fp

aiei,i+1. (Here ai := ai,i+1.)
Thus the only nonzero entries of C are above the main diagonal and in the
left bottom corner, in the position (p− 1, 0).

If C ∈Mp(K) is of this type, then CB−BC = C, so A = B+C satisfies
AB −BA = A−B. As seen above, fB = x(x− 1) · · · (x− (p− 1)) = xp − x.
On the other hand, the matrix A has 0, 1, . . . , p − 1 on the main diagonal,
a0, . . . , ap−2 above the main diagonal, and ap−1 in the bottom left corner.
Thus, xI−A has x, x−1, . . . , x−(p−1) on the main diagonal, −a0, . . . ,−ap−2

above the main diagonal, and −ap−1 in the bottom left corner. When we
develop det(xIp −A) along the first column, we get fA(x) = det(xIp −A) =
x(x − 1) · · · (x − (p − 1)) + (−1)p+1(−ap−1)(−a0) · · · (−ap−2) = xp − x − a,
where a = a0 · · · ap−1. If we take a0, . . . , ap−1 6= 0, then a 6= 0, so fA and fB
are mutually prime, so that A and B have no common eigenvalues.

If c ∈ K \ {0} is arbitrary, then we define A′ = cA and B′ = cB, so
the relation AB − BA = A − B implies A′B′ − B′A′ = c(A′ − B′). On the
other hand, PB′(x) = cpPB(x/c) = xp − cp−1x and PA′(x) = cpPA(x/c) =
xp−cp−1x−cpa, so again gcd(PA′ , PB′) = 1 and thus A′ and B′ have different
eigenvalues. Thus we have counterexamples for arbitrary c.

If n > p, then, by the case n = p, there are A′, B′ ∈ Mp(K) with
A′B′−B′A′ = c(A′−B′), fB′(x) = xp−cp−1x and fA′(x) = xp−cp−1x−cpa,
with a 6= 0. Then we define A,B ∈ Mn(K) by A = A′ ⊕ 0n−p, B = B′ ⊕
0n−p, where 0n−p is the zero element of Mn−p(K). As a consequence of
A′B′ − B′A′ = c(A′ − B′), we have AB − BA = c(A − B). We also have
fA(x) = fA′(x)f0n−p = (xp − cp−1x)xn−p and fB(x) = fB′(x)f0n−p = (xp −
cp−1x−cpa)xn−p. Hence, the only common eigenvalue of A and B is 0. Thus,
they don’t have the same eigenvalues.
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509. Let m and n be positive integers and let A1, A2, . . . , Am ∈Mn(R). For
every i ∈ {1, 2, . . . ,m} denote by λi1, λi2, . . . , λin ∈ C the eigenvalues of Ai.

Prove that there exist ε1, ε2, . . . , εm ∈ {−1, 1} such that the eigenvalues
µ1, µ2, . . . , µn ∈ C of the matrix ε1A1 + ε2A2 + · · ·+ εmAm ∈Mn(R) satisfy
the inequality

n∑
j=1

µ2
j ≥

m∑
i=1

n∑
j=1

λ2
ij . (5)

Proposed by Vasile Pop, Technical University of Cluj-Napoca,

Romania.

Solution by the author. Note that if A ∈ Mn(R) has the eigenvalues

λ1, λ2, . . . , λn ∈ C, then
n∑
i=1

λ2
i = Tr(A2), so every sum in (5) is a real number,

hence the inequality makes sense. Also, the problem can be restated as
follows: for any matrices A1, A2, . . . , Am ∈Mn(R) there exist ε1, ε2, . . . , εm ∈
{−1, 1} such that

Tr
Ä
(ε1A1 + ε2A2 + · · ·+ εmAm)2

ä
≥ Tr

Ä
A2

1

ä
+Tr

Ä
A2

2

ä
+· · ·+Tr

Ä
A2
m

ä
. (1′)

First, we claim that the function

f :Mn(R)→ R, f(A) = Tr
Ä
A2
ä
, A ∈Mn(R),

verifies

f(A+B) + f(A−B) = 2(f(A) + f(B)), for all A,B ∈Mn(R). (2)

Indeed,

f(A+B) + f(A−B) = Tr
Ä
(A+B)2 + (A−B)2

ä
= Tr

Ä
2A2 + 2B2

ä
= 2
Ä
Tr(A2) + Tr(B2)

ä
= 2(f(A) + f(B)).

Now, we prove (1′) by induction on m ≥ 1. The statement is obviously
true for m = 1 by letting ε1 = 1. For the inductive step m → m + 1 let
A1, A2, . . . , Am, Am+1 ∈ Mn(R). According to the hypothesis of the induc-
tion, there exist ε1, ε2, . . . , εm ∈ {−1, 1} such that

Tr
Ä
(ε1A1 + ε2A2 + · · ·+ εmAm)2

ä
≥ Tr

Ä
A2

1

ä
+Tr

Ä
A2

2

ä
+ · · ·+Tr

Ä
A2
m

ä
(3)

and denote A := ε1A1 + ε2A2 + · · ·+ εmAm. Based on (2), it follows that

f(A+Am+1) + f(A−Am+1) = 2(f(A) + f(Am+1)),

which means that at least one of the inequalities

f(A+Am+1) ≥ f(A) + f(Am+1),

f(A−Am+1) ≥ f(A) + f(Am+1),

is true. Concluding, there exists εm+1 ∈ {−1, 1} such that

f(A+ εm+1Am+1) ≥ f(A) + f(Am+1),
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which translates to

Tr

Ñ(
m+1∑
k=1

εkAk

)2
é
≥ Tr

Ñ(
m∑
k=1

εkAk

)2
é

+ Tr
Ä
A2
m+1

ä
. (4)

Finally, by combining (3) and (4), we obtain

Tr

Ñ(
m+1∑
k=1

εkAk

)2
é
≥ Tr

Ä
A2

1

ä
+ Tr

Ä
A2

2

ä
+ · · ·+ Tr

Ä
A2
m

ä
+ Tr

Ä
A2
m+1

ä
,

which concludes the argument.

Editor’s note. This problem is a restatement of Problem 2 from SEE-
MOUS 2019; see GMA 37 (116) 1–2/2019, pages 20–22.

510. Prove that

∞∑
n=1

Ç
4n

2n

å
1

16nn2(2n+ 1)
= 4 Li2

Ç
1−
√

2

2

å
+
π2

3
+ 4 log

Ç
1 +
√

2

4

å
− 2 log2

Ç
1 +
√

2

2

å
− log2(4) + 4

Ä√
2− 1

ä
.

Here Li2(x) is the dilogarithm with integral representation given by

Li2(x) = −
∫ x

0

log(1− t)
t

dt.

Proposed by Seán M. Stewart, Bomaderry, NSW, Australia.

Solution by the author. We begin with a classical result for absolutely
convergent series, namely

∞∑
n=1

a2n =
1

2

∞∑
n=1

an +
1

2

∞∑
n=1

(−1)nan.

Applying this result to the given series we see that

∞∑
n=1

Ç
4n

2n

å
1

16nn2(2n+ 1)
= 4

∞∑
n=1

Ç
4n

2n

å
1

42n(2n)2(2n+ 1)

= 2
∞∑
n=1

Ç
2n

n

å
1

4nn2(n+ 1)
+ 2

∞∑
n=1

Ç
2n

n

å
(−1)n

4nn2(n+ 1)

= 2S+ + 2S−. (1)

To find S+ and S− we will first find a generating function for

∞∑
n=1

Ç
2n

n

å
xn

n2(n+ 1)



50 Problems

starting with the well-known generating function for the central binomial
coefficients, namely

∞∑
n=0

Ç
2n

n

å
xn =

1√
1− 4x

, |x| < 1

4
.

After summing out the first term in the series and dividing by x, we have

∞∑
n=1

Ç
2n

n

å
xn−1 =

1

x
·
Ç

1√
1− 4x

− 1

å
=

1−
√

1− 4x

x
√

1− 4x
.

Replacing x with t before integrating with respect to t from 0 to x yields

∞∑
n=1

Ç
2n

n

å
xn

n
=

∫ x

0

1−
√

1− 4t

t
√

1− 4t
dt

= −2 log
Ä√

1− 4t+ 1
ä ∣∣∣x

0

= 2 log(2)− 2 log
Ä
1 +
√

1− 4x
ä
.

Replacing x with t before integrating with respect to t from 0 to x gives

∞∑
n=1

Ç
2n

n

å
xn+1

n(n+ 1)
= 2 log(2)

∫ x

0
dx− 2

∫ x

0
log
Ä
1 +
√

1− 4t
ä

dt

= 2x log(2)− 2t log
Ä
1 +
√

1− 4t
ä ∣∣∣x

0

− 4

∫ x

0

t√
1− 4t(1 +

√
1− 4t)

dt (by parts)

But∫ x

0

−4t√
1− 4t(

√
1− 4t+ 1)

dt =

∫ x

0

√
1− 4t− 1√

1− 4t
dt =

∫ x

0

Ç
1− 1√

1− 4t

å
dt

=

ï
t+

1

2

√
1− 4t

òx
0

= x+
1

2

√
1− 4x− 1

2

Therefore,

∞∑
n=1

Ç
2n

n

å
xn+1

n(n+ 1)
= 2x log(2)− 2x log

Ä
1 +
√

1− 4x
ä

+ x+
1

2

√
1− 4x− 1

2
,

so

∞∑
n=1

Ç
2n

n

å
xn−1

n(n+ 1)
=

2 log(2) + 1

x
− 1

2x2
+

√
1− 4x

2x2
−

2 log
Ä
1 +
√

1− 4x
ä

x
,

after having divided throughout by x2.
A final integration is needed in order to reach our desired generating

function. This is best achieved using indefinite integrals before finding the
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constant of integration afterwards by letting x→ 0. We have

∞∑
n=1

Ç
2n

n

å
xn

n2(n+ 1)
= (2 log(2) + 1) log(x) +

1

2x
+

1

2

∫ √
1− 4x

x2
dx

− 2

∫ log
Ä
1 +
√

1− 4x
ä

x
dx.

(2)

We denote by I1 and I2 the two integrals appearing to the right of the equality

in (2). In both integrals we substitute u =
√

1− 4x, so x = 1−u2
4 . We get

I1 = −8

∫
u2

(1− u2)2
du and I2 = −2

∫
u

1− u2
log(1 + u) du.

Making use of the partial fraction decomposition of

u2

(1− u2)2
= − 1

4(u+ 1)
+

1

4(u+ 1)2
+

1

4(u− 1)
+

1

4(u− 1)2
,

we have

I1 = 2

∫
du

u+ 1
− 2

∫
du

(u+ 1)2
− 2

∫
du

u− 1
− 2

∫
du

(u− 1)2

= 2 log(1 + u)− 2 log |u− 1|+ 2

u+ 1
+

2

u− 1
+ C1

= 2 log
Ä
1 +
√

1− 4x
ä
− 2 log

Ä
1−
√

1− 4x
ä
−
√

1− 4x

x
+ C1.

Here C1 is a constant of integration.
For the second integral we use the partial fraction decomposition

u

1− u2
= − 1

2(u+ 1)
− 1

2(u− 1)
,

and we get

I2 =

∫
log(1 + u)

1 + u
du+

∫
log(1 + u)

u− 1
du

=
1

2
log2(1 + u) +

∫
log(u+ 1)

u− 1
du.
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Making a substitution of u = 2t− 1 in the remaining integral, we get

I2 =
1

2
log2

Ä
1 +
√

1− 4x
ä

+

∫
log(2t)

t− 1
dt

=
1

2
log2

Ä
1 +
√

1− 4x
ä

+ log(2)

∫
dt

t− 1
+

∫
log(t)

t− 1
dt

=
1

2
log2

Ä
1 +
√

1− 4x
ä

+ log(2) log |t− 1| − Li2(1− t) + C2

=
1

2
log2

Ä
1 +
√

1− 4x
ä

+ log(2) log
Ä
1−
√

1− 4x
ä
− log2(2)

− Li2

Ç
1−
√

1− 4x

2

å
+ C2.

Here C2 is a constant of integration. We also note the following integral
representation for the dilogarithm has been used:

−
∫ t

1

log(u)

1− u
du = Li2(1− t).

On collecting all the pieces together for the two integrals, the sum in (2)
becomes
∞∑
n=1

Ç
2n

n

å
xn

n2(n+ 1)
= − log2

Ä
1 +
√

1− 4x
ä

+
1−
√

1− 4x

2x

+ log
Ä
1 +
√

1− 4x
ä

+ (2 log(2) + 1) log

Ç
x

1−
√

1− 4x

å
+ 2 Li2

Ç
1−
√

1− 4x

2

å
+ C,

where C = 1
2C1 − 2(−2 log2(2) +C2). In order to find the constant C we let

x→ 0. Noting that

lim
x→0

1−
√

1− 4x

2x
= 1 and lim

x→0
log

Ç
x

1−
√

1− 4x

å
= − log(2),

doing so yields C = 3 log2(2) − 1. Our sought after generating function is
thus
∞∑
n=1

Ç
2n

n

å
xn

n2(n+ 1)
= 3 log2(2)− 1− log2

Ä
1 +
√

1− 4x
ä

+ log
Ä
1 +
√

1− 4x
ä

+
1−
√

1− 4x

2x
+ (2 log(2) + 1) log

Ç
x

1−
√

1− 4x

å
+ 2 Li2

Ç
1−
√

1− 4x

2

å
, |x| 6 1

4
.

(3)
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Setting x = 1
4 in (3) gives S+. Here

S+ = 1 + 3 log2(2)− 2 log(2)(2 log(2) + 1) + 2 Li2

Å
1

2

ã
.

Noting that (see, for example, Eq. (1.16) on page 6 of Polylogarithms and
Associated Functions by L. Lewin (North Holland, New York, 1981))

Li2

Å
1

2

ã
=
π2

12
− 1

2
log2(2),

the sum for S+ reduces to

S+ =
π2

6
+ 1− 2 log(2)− 2 log2(2).

Setting x = −1
4 in (3) gives S−. Here

S− = 2 Li2

Ç
1−
√

2

2

å
+ 2 log

Ç
1 +
√

2

2

å
− log2

Ç
1 +
√

2

2

å
+ 2
√

2− 3.

On combining the two results found for the sums S+ and S− into (1), the
claimed result then follows.

Editor’s note. At the end of the proof he author skipped some steps
in the calculations, so the reader may have some difficulties in understanding

where the term − log2
(

1+
√

2
2

)
from the formula for S− comes from. It is

obtained after setting x = −1
4 in the terms

3 log2(2)− log2
Ä
1 +
√

1− 4x
ä

+ 2 log(2) log

Ç
x

1−
√

1− 4x

å
from (3).

What we get is

3 log2(2)− log2(1 +
√

2) + 2 log(2) log

Ç
1

4(
√

2− 1)

å
= 3 log2(2)− log2(1 +

√
2) + 2 log(2) log

Ç
1 +
√

2

4

å
= 3 log2(2)− log2(1 +

√
2) + 2 log(2)(log(1 +

√
2)− 2 log(2))

= − log2(2)− log2(1 +
√

2) + 2 log(2) log(1 +
√

2)

= −
Ä
log(1 +

√
2)− log(2)

ä2
= − log2

Ç
1 +
√

2

2

å
.

Solution by Narendra Bhandari, Bajura, Nepal, and Daniel Văcaru,
Pites, ti, Romania. We note that

1

n2 (2n+ 1)
= − 2

n
+

1

n2
+

4

2n+ 1
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and, moreover, the generating function for central binomial coefficients is
given by

f (x) =
∑
n≥0

xn

4n

Ç
2n

n

å
=

1√
1− x

, |x| < 1,

and we note that
∞∑
n=0

x2n

16n

Ç
4n

2n

å
=

1

2

∞∑
n=1

xn
Ç

2n

n

å
1 + (−1)n

4n
=
f (x) + f (−x)

2
. (1)

We subtract 1 (the first term) from (1), multiply by 4 and we integrate from
0 to 1 to get
∞∑
n=1

4

2n+ 1

Ç
4n

2n

å
= 2

∫ 1

0

Ç
1√

1− x
+

1√
1 + x

− 1

å
dx = 4

Ä√
2− 1

ä
. (2)

Next we evaluate the generating functions

g(y) =
∞∑
1

yn

4n

Ç
2n

n

å
1

n
and h(z) =

∞∑
1

zn

4n

Ç
2n

n

å
1

n2
.

To evaluate g (y), we subtract the first term, 1, from f (x), we divide
by x and we integrate from 0 to y. We get

g (y) =

∫ y

0

Ç
1√

1− x
− 1

å
dx

x
= 2 log

Ç
2

1 +
√

1− y

å
,

Since g (1) = 2 log 2 and g (−1) = 2 log
(

2
1+
√

2

)
, we get

∞∑
n=1

−2

n

Ç
4n

2n

å
1

16n
= −4

Ç
g (1) + g (−1)

2

å
= 4 log

Ç
1 +
√

2

4

å
. (3)

Next, we divide g (y) by y and we integrate from 0 to z and we get

h(z) = 2

∫ z

0
log

Ç
2

1 +
√

1− y

å
dy

y
.

To calculate the primitive of the last integrand we make the substitution
u2 = 1− y, u ≥ 0, and we get

2 log 2 log y − 2

∫
log

(
1 +
√

1− y
)

y
dy = 2 log 2 log y + 4

∫
u log(1 + u)

1− u2
du.

By partial fraction decomposition, the last integral writes as

−2

∫ Ç
log (1 + u)

1 + u
+

log (1 + u)

u− 1

å
du = − log2(1 + u)− 2

∫
log (1 + u)

u− 1
du.

After making the substitution u = 1− 2v, we get

−2

∫
log (1 + u)

u− 1
du = −2

∫
log (2− 2v)

v
dv = −2 log 2 log v + 2Li2 (v) + C.
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By reversing all substitutions and putting together all parts, we get

2

∫
log

Ç
2

1 +
√

1− y

å
dy

y

= 2 log 2 log y − log2
Ä
1 +

√
1− y

ä
− 2 log 2 log

Ç
1−
√

1− y
2

å
+ 2Li2

Ç
1−
√

1− y
2

å
+ C

= 2Li2

Ç
1−
√

1− y
2

å
− log2

Ä
1 +

√
1− y

ä
+ 2 log 2 log

Ä
1 +

√
1− y

ä
+ C.

Here we used the fact that y
1−
√

1−y = 1+
√

1− y and the extra constant term

2 log2 2 was ignored, as it can be absorbed into the constant of integration C.
The limit as y ↘ 0 of the above antiderivative is 2Li2 (0) + log2 2 =

log2 2. We get

h (z) = 2Li2

Ç
1−
√

1− z
2

å
− log2

Ä
1 +
√

1− z
ä

+ 2 log 2 log
Ä
1 +
√

1− z
ä

− log2 2.

Since Li2
Ä

1
2

ä
= π2

12 −
1
2 log2 2, we have h(1) = π2

6 − 2 log2 2. We also
have

h (−1) = 2Li2

Ç
1−
√

2

2

å
− log2

Ä
1 +
√

2
ä

+ 2 log 2 log
Ä
1 +
√

2
ä
− log2 2

= 2Li2

Ç
1−
√

2

2

å
− log2

Ç
1 +
√

2

2

å2

.

It follows that
∞∑
n=1

1

n2

Ç
4n

2n

å
1

16n
= 4

Ç
h (1) + h (−1)

2

å
= 4Li2

Ç
1−
√

2

2

å
− 2 log2

Ç
1 +
√

2

2

å2

+
π2

3
− 4 log2 2. (4)

By adding the formulas (2), (3) and (4), we get the desired result. (Note
that 4 log2 2 = (2 log 2)2 = log2 4.) �

511. Find the best lower and upper bounds for
∑n
i=1 cos(∠Ai) over all convex

n-gons A1A2 . . . An.

Proposed by Leonard Giugiuc, Traian National College, Drobeta-

Turnu Severin, Romania and Florin Vişescu, Mihai Eminescu National

College, Bucureşti, Romania.
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Solution by C.N. Beli. The necessary and sufficient conditions such that
xi = ∠Ai with 1 ≤ i ≤ n are the angles of a convex n-gon are 0 < xi < π and
x1 + · · ·+ xn = (n− 2)π. So we must determine the lower and upper bounds
of cosx1 + · · · + cosxn where (x1, . . . , xn) ∈ S := {(x1, . . . , xn) ∈ (0, π)n |
x1 + · · ·+ xn = (n− 2)π}. These upper and lower bounds coincide with the
maximum and minimum of cosx1 + · · · + cosxn where (x1, . . . , xn) belongs
to the compact set S̄ := {(x1, . . . , xn) ∈ [0, π]n | x1 + · · ·+ xn = (n− 2)π}.

We use the property that the cosine function is strictly concave on
[0, π/2] and strictly convex on [π/2, π]. We need some preliminary results.

Lemma 1. Let f : [a, b]→ R be a function, let n ≥ 1 be an integer and
let κ ∈ R, na ≤ κ ≤ nb. Put S̄ = {(x1, . . . , xn) ∈ [a, b]n | x1 + · · ·+ xn = κ}.

(i) If f is strictly convex, then the minimum of f on S̄ is reached
only at (κ/n, . . . , κ/n) and the maximum is reached at the only element
(x1, . . . , xn) ∈ S̄ (up to a permutation) where all but one of x1, . . . , xn are a
or b.

(ii) If f is strictly concave, then the maximum of f on S̄ is reached
only at (κ/n, . . . , κ/n) and the minimum is reached at the only element
(x1, . . . , xn) ∈ S̄ (up to a permutation) where all but one of x1, . . . , xn are a
or b.

Proof. (i) The first statement follows from Jensen’s theorem.
For the second statement assume that (x1, . . . , xn) ∈ S̄ and there are

the indices j 6= l such that a < xj ≤ xl < b. By Karamata’s theorem, if
x′j , x

′
l ∈ [a, b] with x′j < xj ≤ xl < x′l and x′j+x

′
l = xj+xl, then f(x′j)+f(x′l) >

f(xj) + f(xl). Hence, if in (x1, . . . , xn) we replace xj , xl by x′j , x
′
l, then we

get a new element (x1, . . . , xn) ∈ S̄ with a larger sum f(x1) + · · · + f(xn).
Note that we can take such a pair x′j , x

′
l where x′j = a or x′l = b. Namely, if

xj +xl ≤ a+ b, then we take (x′j , x
′
l) = (a, xj +xl−a), and if xj +xl > a+ b,

then we take (x′j , x
′
l) = (xj + xl − b, b). Then in the new n-tuple (x1, . . . , xn)

the number of indices i with xi 6= a, b is smaller. We repeat the procedure
until we get an n-tuple (y1, . . . , yn) ∈ S̄ where all but one of the yi’s are a or
b and f(x1) + · · ·+ f(xn) < f(y1) + · · ·+ f(yn).

In conclusion, the maximum of f(x1) + · · · + f(xn) is reached for an
n-tuple (x1, . . . , xn) ∈ S̄ such that all but one of the xi’s are a or b. For the
unicity up to permutations of such (x1, . . . , xn) we denote by s the number

of indices i such that xi = b. We claim that s =
î
κ−na
b−a

ó
. Indeed, if κ = nb,

then S̄ = {(b, . . . , b)}, so s = n follows trivially. If κ < nb, then we have
s < n, so there are n− s− 1 indices i with xi = a and an index m such that
a ≤ xm < b. It follows that κ = (n− s− 1)a+ xm + sb. But a ≤ xm < b, so
(n−s)a+sb ≤ κ < (n−s−1)a+(s+1)b. It follows that s(b−a) ≤ κ−na <
(s + 1)(b − 1), so s ≤ κ−na

b−a < s + 1, which implies s =
î
κ−na
b−a

ó
. Thus the

number s of indices i with xi = b is well defined. The remaining n− s entries
of (x1, . . . , xn) are also well defined. Namely, a appears n− s− 1 times and
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we have an extra index m with xm = κ− (n− s− 1)a− sb. This concludes
the proof.

The proof of (ii) is similar. (We may also apply (i) to the function
−f .) �

Lemma 2. Let f : [a, b] → R, κ and S̄ be the same as in Lemma 1.
Suppose that there exists c ∈ (a, b) such that f is strictly concave on (a, c)
and strictly convex on (c, b).

(i) If (x1, . . . , xn) ∈ S̄ such that f(x1) + · · ·+ f(xn) is maximum, then
there is 0 ≤ s ≤ n such that, up to a permutation of x1, . . . , xn, we have

a ≤ x1 = · · · = xs ≤ c < xs+1 ≤ xs+2 = · · · = xn = b.

(ii) If (x1, . . . , xn) ∈ S̄ such that f(x1) + · · ·+ f(xn) is minimum, then
there is 0 ≤ s ≤ n such that, up to a permutation of x1, . . . , xn, we have

a = x1 = · · · = xs−1 ≤ xs < c ≤ xs+1 = · · · = xn ≤ b.

Proof. We may assume that x1 ≤ · · · ≤ xn.
(i) Let (x1, . . . , xn) ∈ S̄ be such that f(x1) + · · · + f(xn) is maximum.

Let 0 ≤ s ≤ n be such that x1, . . . , xs ∈ [a, c] and xs+1, . . . , xn ∈ (c, b].
We have κ = κ′ + κ′′, where κ′ = x1 + · · · + xs, κ

′′ = xs+1 + · · · + xn.
Then (x1, . . . , xs) ∈ S̄′ := {(y1, . . . , ys) ∈ [a, c] | y1 + · · · + ys = κ′} and
(xs+1, . . . , xn) ∈ S̄′′ := {(ys+1, . . . , yn) ∈ [a, c] | ys+1 + · · ·+ yn = κ′′}.

Since κ = κ′ + κ′′, if (y1, . . . , ys) ∈ S̄′ and (ys+1, . . . , yn) ∈ S̄′′, then
(y1, . . . , yn) ∈ S̄. From the fact that

f(x1) + · · ·+ f(xn) = max{f(y1) + · · ·+ f(yn) | (y1, . . . , yn) ∈ S̄}

we deduce that

f(x1) + · · ·+ f(xs) = max{f(y1) + · · ·+ f(ys) | (y1, . . . , ys) ∈ S̄}

and

f(xs+1) + · · ·+ f(xn) = max{f(ys+1) + · · ·+ f(yn) | (ys+1, . . . , yn) ∈ S̄}.

But f is concave on [a, c] so, by Lemma 1(ii), we have x1 = · · · = xs.
And f is convex on [c, b] so, by Lemma 1(i), we have that all but one of
xs+1, . . . , xn are c or b. Since c < xs+1 ≤ · · · ≤ xn ≤ b, this is equivalent to
xs+2 = · · · = xn = b. This concludes the proof of (i).

Similarly, for (ii) we assume (x1, . . . , xn) ∈ S̄ is such that f(x1) + · · ·+
f(xn) is minimum. This time we take s such that x1, . . . , xs ∈ [a, c) and
xs+1, . . . , xn ∈ [c, b]. Then we define κ′, κ′′, S̄′ and S̄′′ as in the proof of (i).
Since f(x1) + · · · + f(xn) = min{f(y1) + · · · + f(yn) | (y1, . . . , yn) ∈ S̄}, we
deduce that f(x1) + · · ·+ f(xs) = min{f(y1) + · · ·+ f(ys) | (y1, . . . , ys) ∈ S̄}
and f(xs+1) + · · ·+ f(xn) = min{f(ys+1) + · · ·+ f(yn) | (ys+1, . . . , yn) ∈ S̄}.
As f is concave on [a, c], by Lemma 1(ii), we have that all but one of x1, . . . , xs
are a or c. Since a ≤ x1 ≤ · · · ≤ xs < c, this implies that a = x1 = · · · = xs−1.
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As f is convex on [c, b], by Lemma 1(i), we get xs+1 = · · · = xn and we are
done. �

The function f : [0, π]→ R, f(x) = cosx, is strictly concave on [0, π/2]
and strictly convex on [π/2, π], so in Lemma 2 we may take a = 0, b = π and
c = π/2. We also take κ = (n− 2)π.

Let Σ : Rn → R, Σ(x1, . . . , xn) = cosx1 + · · · + cosxn. We want
to determine the maximum and minimum of {Σ(x) | x ∈ S̄}. They exist
because Σ is continuous and S̄ is compact.

We may restrict ourselves to the case when x1 ≤ · · · ≤ xn.
First we assume that x = (x1, . . . , xn) ∈ S̄ is such that

Σ(x) = max{Σ(y) | y ∈ S̄}.
We have x1 + · · · + xn = (n − 2)π and, by Lemma 2(i), there is 0 ≤ s ≤ n
such that

0 ≤ x1 = · · · = xs ≤ π/2 < xs+1 ≤ xs+2 = · · · = xn = π.

Then (n − 2)π = x1 + · · · + xn ≤ sπ2 + (n − s)π = (n − s
2)π, which

implies that s ≤ 4. In particular, if s = 4, then all inequalities must become
equalities, i.e., x1 = x2 = x3 = x4 = π/2 and x5 = · · · = xn = π.

We also note that (n− 2)π = x1 + · · ·+ xn > s · 0 + π
2 + (n− s− 1)π,

which implies that s > 3/2, i.e., s ≥ 2.
We consider the three cases, s = 2, 3, 4 separately.
s = 4. Note that this case occurs only for n ≥ 4. Then we must have

x1 = x2 = x3 = x4 = π/2 and x5 = · · · = xn = π, so that we obtain
Σ = 4 cosπ/2 + (n− 4) cosπ = 4− n.

s = 3. If n = 3, then x1 = x2 = x3 = 2π/3 and Σ = 3 cos 2π/3 = −3/2.
If n ≥ 4, then x1 = x2 = x3 =: t and x5 = · · · = xn = π, so that

x1 + · · ·+xn = (n−2)π implies that x4 = (n−2)π−3x− (n−4)π = 2π−3t.
Hence, the n-tuples y of this type are parametrized by a parameter u, as
y = h(u) := (u, u, u, 2π− u, π, . . . , π). In order that y = h(u) be of this type,
we must have 0 ≤ u ≤ π/2 and π/2 < 2π − 3u ≤ π. Hence, the domain of h
is the interval [π/3, π/2). Let g : [π/3, π/2) → R, g(s) = Σ(h(s)). We have
g(u) = 3 cosu+ cos(2π − 3u) + (n− 4) cosπ = 3 cosu+ cos 3u+ 4− n.

We have x = h(t), so, by the maximality of Σ(x) = Σ(h(t)) = g(t),
we have g(t) = max{g(u) | u ∈ [π/3, π/2)}. We have g′(u) = −3 sinu −
3 sin 3u = −3 sinu + 3 sin(3u − π). But, for every u ∈ [π/3, π/2), we have
0 ≤ 3u− π < u < π/2, which implies that sin(3u− π) < sinu, so g′(u) < 0,
i.e., g is decreasing. Thus, the maximality of g(t) implies that t = π/3.
We have 2π − 3u = π, that is x = h(π/3) = (π/3, π/3, π/3, π, . . . , π), and
therefore Σ(x) = 3 cosπ/3 + (n− 3) cosπ = 3 · 1/2 + (n− 3)(−1) = 9/2− n.

s = 2. We proceed similarly as in the case s = 3. We have x1 = x2 =: t
and x4 = · · · = xn = π. Thus, x3 = (n−2)π−2t− (n−3)π = π−2t. So, the
n-tuples of this type are parameterized by h(u) = (u, u, π− 2u, π · · · , π) and
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g(u) := Σ(h(u)) = 2 cosu+cos(π−2u)+(n−3) cosπ = 2 cosu−cos 2u+3−n.
In order that y = h(u) be of the required type, we must have 0 ≤ u ≤ π and
π/2 < π − 2u ≤ π, so that the domain of h and g is [0, π/4).

Again, from the maximality of Σ(x) = g(t), we get that

g(t) = max{g(u) | u ∈ [0, π/4)}.

We have g′(u) = −2 sinu + 2 sin 2u. But for u ∈ (0, π/4) we clearly have
0 < u < 2u < π/2, so sinu < sin 2u and hence g′(u) > 0. Thus, g is strictly
increasing. Since its interval of definition, [0, π/4), is open to the right, g has
no maximum. Hence, we cannot have a maximum of this type.

In conclusion, if n = 3, then the maximum is 3/2 and is reached at
(π/3, π/3, π/3). If n ≥ 4, then we have two possible maxima, one in the
case s = 4, which is equal to 4 − n, and one in the case s = 3, which
is equal to 9/2 − n. Of the two, the larger is 9/2 − n. It is reached for
(x1, . . . , xn) = (π/3, π/3, π/3, π, . . . , π) and all of its permutations.

We now assume that x = (x1, . . . , xn) ∈ S̄ is such that Σ(x) = cosx1 +
· · ·+ cosxn is minimum. By Lemma 2(ii), there is some 0 ≤ s ≤ n such that

0 = x1 = · · · = xs−1 ≤ xs < π/2 ≤ xs+1 = · · · = xn ≤ π.

We first consider the case n = 3. If 0 < x1, then we must have s ≤ 1. If
s = 1, then π = x1 + x2 + x3 ≥ x1 + π/2 + π/2 > π, contradiction. If s = 0,
then π = x1 + x2 + x3 ≥ π/2 + π/2 + π/2 > π, again contradiction. So, we
must have x1 = 0 and x2 +x3 = π. Then Σ = cos 0+cosx2 +cos(π−x2) = 1,
regardless of the value of x2. Thus, in the case n = 3 the minimum is 1 and
it is reached when one of x1, x2, x3 is 0.

Suppose now that n ≥ 4. We have (n−2)π = x1 + · · ·+xn < (s−1)0+
π/2 + (n − s)π, so s < 5/2, that is, s ≤ 2. We consider the three possible
cases separately.

s = 0. We have x1 = · · · = xn = (n−2)π
n = π − 2π/n. Since n ≥ 4,

we have π/2 ≤ π − 2π/n ≤ π, as required. Then Σ(x) = n cos(π − 2π/n) =
−n cos 2π/n.

For the cases s = 1, 2 we denote π − t = xs+1 = · · · = xn. We have
(n−2)π = x1+· · ·+xn = (s−1)0+xs+(n−s)(π−t), so xs = (s−2)π+(n−s)t.

s = 1. We have x1 = (n − 1)t − π, so the n-tuples of this type are
parametrized by h(u) = ((n − 1)u − π, π − u, . . . , π − u). Hence, g(u) =
Σ(h(u)) = cos((n−1)u−π)+(n−1) cos(π−u) = cos((n−1)u−π)−(n−1) cosu.
In order that h(u) be of the required type, we need that 0 ≤ (n−1)u−π < π/2

and π/2 ≤ π − u ≤ π. Thus, the domain of h and of g is
[

π
n−1 ,

3π
2(n−1)

)
. By

the minimality of Σ(x) = Σ(h(t)) = g(t), we have

g(t) = min

®
g(u) | u ∈

ñ
π

n− 1
,

3π

2(n− 1)

å´
.
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We have g′(u) = −(n− 1) sin((n− 1)u− π) + (n− 1) sinu. But, when

u ∈
[

π
n−1 ,

3π
2(n−1)

)
, both u and (n − 1)u − π belong to the interval [0, π/2],

where the sine function is increasing. Hence, if u < π
n−2 , then u > (n−1)u−π,

so sinu > sin((n− 1)u− π) and therefore g′(u) > 0. When u > π
n−2 we have

the reverse inequalities, so that g′(u) < 0. Thus, g is increasing on
î
π
n−1 ,

π
n−2

ó
and decreasing on

[
π
n−2 ,

3π
2(n−1)

)
. Since t is a point of minimum for g, which

is defined on
[

π
n−1 ,

3π
2(n−1)

)
, we can only have u = π

n−1 . (The interval is open

to de right.) Then (n− 1)u− π = 0 and π − u = (n−2)π
n−1 , so that

x = h(u) =

Ç
0,

(n− 2)π

n− 1
, . . . ,

(n− 2)π

n− 1

å
and

Σ(x) = g(u) = cos 0 + (n− 1) cos
(n− 2)π

n− 1
= 1− (n− 1) cos

π

n− 1
.

s = 2. We have x2 = (n − 2)t, so the n-tuples of this type are pa-
rameterized by h(u) = (0, (n − 2)u, π − u, . . . , π − u) and we have g(u) =
cos 0 + cos(n− 2)u+ (n− 2) cos(π − u) = 1 + cos(n− 2)u− (n− 2) cosu. In
order that h(u) be of the required type, we need that 0 ≤ (n − 2)u < π/2

and π/2 ≤ π − u ≤ π, so the domain of h and of g is
[
0, π

2(n−2)

)
. As in the

previous case, we have

g(t) = min

®
g(u) | u ∈

ñ
0,

π

2(n− 2)

å´
.

Note that g′(u) = −(n − 2) sin(n − 2)u + (n − 2) sinu and for any

u ∈
(
0, π

2(n−2)

)
we have 0 < u < (n− 2)u < π/2, so that sinu < sin(n− 2)u.

Hence, g′(u) < 0 and therefore g is strictly decreasing on the whole domain

of definition. Since g is decreasing and the interval
[
0, π

2(n−2)

)
, where it is

defined, is open to the right, it has no minimum. Hence Σ cannot have a
minimum of this type.

So, for n ≥ 4 the only possible minima for Σ(x) with x ∈ S̄ are
−n cos 2π

n , from the case s = 0, and 1− (n− 1) cos π
n−1 , from the case s = 1.

We have to determine which of the two is smaller.
If 0 < z < π/2, by the reminder formula for Taylor series, there is some

ξ ∈ [0, z] ⊆ (0, π/2) such that cos z = 1 − 1
2z

2 + 1
24z

4 cos ξ > 1 − 1
2z

2. In

particular, it holds cos 2π
n ≥ 1 − 1

2

Ä
2π
n

ä2
= 1 − 2π2

n2 , that is, −n cos 2π
n ≤

−n + 2π2

n . If n ≥ 10 > π2, then −n cos 2π
n < −n + 2π2

π2 = 2 − n < 1 − (n −
1) cos π

n−1 . For 4 ≤ n ≤ 9 we check case by case and we get that one has
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1− (n− 1) cos π
n−1 < −n cos 2π

n precisely when 4 ≤ n ≤ 6. In conclusion,

min
x∈S̄

Σ(x) =

{
1− (n− 1) cos π

n−1 for n ≤ 6.

−n cos 2π
n for n ≥ 7.

(If n = 3 then 1− (n− 1) cos π
n−1 = 1, so the top formula also applies to the

case n = 3.)
When n = 3, the minimum is reached when one of x1, x2, x3 is 0. For

4 ≤ n ≤ 6, it is reached for x =
Ä
1, (n−2)π

n−1 , . . . , (n−2)π
n−1

ä
and all permutations.

And for n ≥ 7 the minimum is reached when x =
Ä

(n−2)π
n , . . . , (n−2)π

n

ä
.

Editor’s note. The authors’ approach for finding the lower bound is
essentially the same. They prove the analogous of Lemma 2(ii), but only for
the given function f : [0, π] → R, f(x) = cosx, where a, b and c are 0, π
and π/2, respectively. From here they get the same two possible minima,
1− (n− 1) cos π

n−1 and −n2π
n . However, for deciding which of the two is the

smaller, they use a different approach, which is somewhat lengthier and more
complicated.

For determining the upper bound the authors use an inductive reasoning
that goes along the following lines.

When n = 3 we have a geometrical approach. In a triangle ABC we
have cosA+cosB+cosC = 1+ r

R . By Euler’s inequality, r
R ≤

1
2 , with equality

iff ABC is equilateral. Thus, cosA+ cosB + cosC ≤ 3
2 , with equality when

and only when A = B = C = π/3.
(Incidentally, this also gives the lower bound. We have cosA+ cosB +

cosC ≥ 1, with equality iff r = 0, which happens in the degenerate case when
(A,B,C) ∈ S̄ \ S, i.e., when A, B or C is 0.)

Next the induction is used to prove that if n ≥ 3, then the maximum
of cosA1 + · · ·+ cosAn, where 0 ≤ A1 ≤ · · · ≤ An ≤ π and A1 + · · ·+An =
(n − 2)π, is 9

2 − n and it is reached only at (π/3, π/3, π/3, π, . . . , π). The
cases n = 3 were treated above, so we assume that n ≥ 4. We have

n∑
k=1

cosAk =
n−2∑
j=1

cosAj + cosX +
Ä
cosY + cosAn−1 + cosAn

ä
,

where X = An−1 +An − π and Y = 2π −An−1 −An. (We have X + Y = π,
so cosX + cosY = 0.)

Since An−1, An are the two largest of the elements in the sequence
A1, . . . , An, their arithmetic mean is larger than the mean of the whole se-

quence, i.e., 1
2(An−1 + An) ≥ 1

n(A1 + · · · + An) = (n−2)π
n . Since n ≥ 4, we

get An−1 + An ≥ 2n−4
n π ≥ π. On the other hand, An−1 + An ≤ π + π = 2π.

From these inequalities we conclude that 0 ≤ X,Y ≤ π.
Since 0 ≤ A1, . . . , An−2, X ≤ π and A1+· · ·+An−2+X = A1+· · ·+An−

π = (n− 3)π, by the induction step, we have that cosA1 + · · ·+ cosAn−2 +
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cosX ≤ 9/2 − (n − 1), with equality iff A1, . . . , An−2, X are, in some order,
π/3, π/3, π/3, π, . . . , π. On the other hand, Y +An−1 +An = 2π, so that

1 + cosY + cosAn−1 + cosAn = −4 cos
Y

2
cos

An−1

2
cos

An
2
.

From 0 ≤ Y/2 ≤ π/2 and 0 ≤ An−1/2 ≤ An/2 ≤ π/2 it follows that
cos(Y/2) cos(An−1/2) cos(An/2) ≥ 0, with equality iff Y/2 or An/2 = π/2,
i.e., iff Y or An = π. Hence, cosY +cosAn−1 +cosAn ≤ −1, with equality iff
Y or An = π. In conclusion, cosA1 + · · ·+ cosAn ≤ (9/2− (n− 1)) + (−1) =
9/2 − n. For (A1, . . . , An) = (π/3, π/3, π/3, π, . . . , π) we have equality be-
cause 3 cosπ/3 + (n− 3) cosπ = 3/2− (n− 3) = 9/2−n. Conversely, assume
that cosA1 + · · · + cosAn = 9/2 − n. Then A1, . . . , An−2, X are, in some
order, π/3, π/3, π/3, π, . . . , π and Y or An = π. As X ∈ {π/3, π}, we have
Y = π − X ∈ {0, 2π/3} and so Y 6= π. Therefore, An = π. It follows that
A1 + · · ·+ An−1 = (n− 2)π − An = (n− 3)π and cosA1 + · · ·+ cosAn−1 =
9/2 − n − cosAn = 9/2 − (n − 1). By the induction hypothesis, this im-
plies that (A1, . . . , An−1) = (π/3, π/3, π/3, π, . . . , π). Thus (A1, . . . , An) =
(π/3, π/3, π/3, π, . . . , π).

512. Evaluate the series

∞∑
n=1

(
n

(
n

(
n
∞∑
k=n

1

k2
− 1

)
− 1

2

)
− 1

6

)
.

Proposed by Marian Tetiva, Gheorghe Roşca Codreanu National

College, Bârlad, Romania.

Solution by the author. Our sum writes as

S =
∞∑
n=1

n3

( ∞∑
k=n

1

k2
− 1

n
− 1

2n2
− 1

6n3

)
.

We prove that S = − 1
24 . To do that we use Abel’s summation formula

N∑
n=1

anbn =
N−1∑
n=1

(a1 + · · ·+ an)(bn − bn+1) + (a1 + · · ·+ aN )bN

for

an = n3 and bn =
∞∑
k=n

1

k2
− 1

n
− 1

2n2
− 1

6n3
.

We have a1 + · · ·+ an = n2(n+1)2

4 and

bn − bn+1 =
1

n2
− 1

n(n+ 1)
− 2n+ 1

2n2(n+ 1)2
− 3n2 + 3n+ 1

6n3(n+ 1)3
= − 1

6n3(n+ 1)3
.



Solutions 63

It follows that the Nth partial sum of the given series is

SN =
N∑
n=1

anbn = − 1

24

N∑
n=1

1

n(n+ 1)
+
N2(N + 1)2

4
bN

= − 1

24

Å
1− 1

N

ã
+

1

4

Å
1 +

1

N

ã2

N4bN .

Now we have (by using the Stolz-Cesàro theorem)

lim
N→∞

N4bN = lim
N→∞

bN
1
N4

= lim
N→∞

bN − bN+1
1
N4 − 1

(N+1)4

= lim
N→∞

−1
6N3(N+1)3

4N3+6N2+4N+1
N4(N+1)4

= lim
N→∞

−N(N + 1)

6(4N3 + 6N2 + 4N + 1)

= 0,

whence we conclude

∞∑
n=1

(
n

(
n

(
n
∞∑
k=n

1

k2
− 1

)
− 1

2

)
− 1

6

)
= lim

N→∞

N∑
n=1

anbn

= lim
N→∞

Ç
− 1

24

Å
1− 1

N

ã
+

1

4

Å
1 +

1

N

ã2

N4bN

å
= − 1

24
,

as claimed at the beginning of the solution.

Remark. The problem is in the same vein as problem 12134 from The
American Mathematical Monthly. One can also prove (similarly) that

∞∑
n=1

( ∞∑
k=n

1

k2
− 1

n

)
= 1,

but this one is, probably, widely known.

Solution by Brian Bradie, Department of Mathematics, Christopher
Newport University, Newport News, VA, USA. As in the author’s solution,
one shows, by Stolz-Cesàro theorem, that

n4

( ∞∑
k=n

1

k2
− 1

n
− 1

2n2
− 1

6n3

)
→ 0

as n→∞, i.e.,
∞∑
k=n

1

k2
=

1

n
+

1

2n2
+

1

6n3
+ o

Å
1

n4

ã
.
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From here one can proceed as follows. For N � 0 we have

N∑
n=1

(
n

(
n

(
n
∞∑
k=n

1

k2
− 1

)
− 1

2

)
− 1

6

)
=

N∑
n=1

(
n3

∞∑
k=n

1

k2
− n2 − n

2
− 1

6

)

=
N∑
n=1

n3
N∑
k=n

1

k

2

+
N∑
n=1

n3
∞∑

k=N+1

1

k2
− N(N + 1)(2N + 1)

6

= −N(N + 1)

4
− N

6

=
N∑
k=1

1

k2

k∑
n=1

n3 +
N2(N + 1)2

4

Å
1

N
+

1

2N2
+

1

6N3
+ o

Å
1

N4

ã
− 1

N2

ã
−N(N + 1)(2N + 1)

6
− N(N + 1)

4
− N

6

=
N∑
k=1

(k + 1)2

4
+
N2(N + 1)2

4

Å
1

N
− 1

2N2
+

1

6N3
+ o

Å
1

N4

ãã
−N(N + 1)(2N + 1)

6
− N(N + 1)

4
− N

6

=
N(N + 1)(2N + 1)

24
+

(N + 1)2

4
− 1

4
+
N(N + 1)2

4
− (N + 1)2

8

+
(N + 1)2

24N
+ o(1)− N(N + 1)(2N + 1)

6
− N(N + 1)

4
− N

6

= − 1

24
+

1

24N
+ o(1) = − 1

24
+ o(1).

It follows that
∞∑
n=1

(
n

(
n

(
n
∞∑
k=n

1

k2
− 1

)
− 1

2

)
− 1

6

)
= − 1

24
.

We also received a solution from Nicuşor Minculete, from Braşov, and
Daniel Văcaru, from Piteşti, Romania, which uses the Abel summation, too.


