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A new characterization of injective and surjective functions
and group homomorphisms
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Abstract. A model of a morphism f between two objects is defined to be
a factorization f = i, where 7 is a surjective morphism and ¢ is an injec-
tive morphism. In this note we shall prove that a morphism f is surjective
(respectively injective) if and only if it has an initial (respectively final)
model in some classes of objects and morphisms.
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1. INTRODUCTION AND PRELIMINARY REMARKS

In what follows we denote by C either

(i) the class of sets with morphisms between them being maps, or
(7i) the class of groups with morphisms between them being group homo-
morphisms.

The purpose of this paper is to study the link between injectivity and
surjectivity of morphisms in C and the notion of a model defined below.

Definition 1. For a morphism f: A — B in C we define a model of f to
be a triple (X,i,m) such that X € C, i: A — X s an injective morphism,
m: X — B is a surjective morphism, and f = mi, i.e., the following diagram
commutes
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A ! B

A

X

A model (X,i,m) of a morphism f is called an initial model if for any
other model (Y, j,p) of f there is a unique morphism g: X — Y such that
gi =7 and pg = 7.

A model (X,i,7) of a morphism f is called a final model if for any
other model (Y, j,p) of f there is a unique morphism g: Y — X such that
gj =1 and 7g = p.

We now introduce a couple of definitions necessary for the proof.

Definition 2. A product of A and B in C is a triple (A x B,ma,7p), where
A X B is an object inC andma: Ax B — A, mp: AX B — B are morphisms
such that the following universal property is satisfied: for any object H in C
and any morphisms f: H — A, g: H — B, there exists a unique morphism
p: H— AX B such that tap = f and m1pp = g.

In both cases studied in this paper (sets and groups) the morphisms
ma: AX B — Aand mg: A X B — B are surjective and it is easy to see that
there is at least one product for any two objects in C: in (i) a product is the
cartesian product of sets along with the canonical projections and in (i) a
product is the direct product of groups along with the canonical projections
[1], p. 41.

Definition 3. A coproduct of A and B in C is a triple (AILB,ia,ip), where
ATl B is an object in C andis: A — ANl B, ig: B— AIl B are morphisms
such that the following universal property is satisfied: for any object H in C
and any morphisms f: A — H, g: B — H, there exists a unique morphism
p: AL B — H such that is = f and pip = g.

In both cases studied in this paper (sets and groups) the morphisms
ia: A— AL B and ig: B — A1l B are injective and it is easy to see that
there is at least one coproduct for any two objects in C: in (i) a coproduct is
the disjoint union along with the canonical injections and in (77) a coproduct
is the free product of groups along with the canonical injections [1, p. 59-60].

Here are a couple of remarks before we dive into the main result of this

paper.
Remark 4. There is at least one model of f: A — B, for any morphism f
in C. For example, apply the universal property of the coproduct to (A II
B,ia,ip) and the object B with morphisms f: A — B, idg: B — B. We
obtain a morphism ¢: AIl B — B which satisfies the relations f = iy and
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idp = pip. From the second relation it is obvious that ¢ is surjective hence
(ATl B,i4,¢) is a model for f.

Remark 5. In C, a morphism is injective if and only if it is a monomorphism
and it is surjective if and only if it is an epimorphism. For definitions and
proofs of these results see [2], p. 24-25 and 27-30.

2. INITIAL AND FINAL MODELS OF A MORPHISM IN C

The next theorem gives a new characterization of injective and surjec-
tive morphisms in C.

Theorem 6. Let f: A — B be a morphism in C. Then:

a) there is an initial model of f if and only if f is surjective;
b) there is a final model of f if and only if f is injective.

Proof. a) “ <" Let f be a surjective morphism. In this case, (A,idy, f)
is obviously a model for f and we will now show that it is an initial model.
Let (Y,j,p) be another model. We want there to be a unique morphism
g: A — Y such that gidg = j and pg = f. The existence is obvious since
g = j satisfies the required relations. The uniqueness is also given by the
fact that gid4 = 7, since the unique morphism that satisfies this is g = j.

“ = 7" Let f: A — B be a morphism in C such that there is an
initial model of f, which we denote (X,i,7). Suppose f is not surjective,
i.e., not an epimorphism. Then there is an object U in C and two morphisms
uy,u2: B — U such that uj f = usf and w1 # ug. In this case, uim # uom
since 7 is an epimorphism.

Consider now a product of X and U, (X x U,7wx,my). We apply the
universal property of the product to (X x U,7x,ny) and the morphisms
urf: A— U andi: A — X. Thus, there is a unique morphism ¢: A — X xU
such that mxq =i and 7myq = uy f. Since wxq = i is injective, so is ¢, thus ¢
is a monomorphism.

We now observe that (X x U, ¢, n7x) is a model of f.

U1

A= f B U
Tl u2
x /\ \q\\ ]TFU
X
TX

X xU

Next we apply the universal property of the product to (X x U, mx, my)
and the morphisms u;7w: X — U and idx: X — X. This implies that there
is a unique morphism g;: X — X xU such that nyg1 = w7 and wx g1 = idx.
Similarly, we obtain a morphism go: X — X x U such that nygs = uom and
mxge = idx. From these relations, it is obvious that g1 # go since uym # uom.
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Finally, we prove that g; and g» are morphisms from the initial model
(X,7,m) to the model (X x U,q,nmx) and this is in contradiction with the
assumption that (X, 4, 7) is initial, i.e.,

g1t =¢q, TAXxgL =T, Gol=¢q, TTXGgs=T.

Indeed, mx g1 = idx implies that 77xg; = 7 and similarly for go. Fur-
thermore, we have the following relations which imply that g1 = ¢ based on
the uniqueness of the morphism in the universal property of the product:

1=1idxi =mxg1? and 1=7xq,

urf =wmi =7wygrt and  wuif = myg.

In a similar manner it can be proved that g2¢ = ¢ and thus we reach a
contradiction.

b) “ <=7 Let f be an injective morphism. In this case, (B, f,idp)
is obviously a model for f and we will now show that it is a final model.
Let (Y,j,p) be another model. We want there to be a unique morphism
g: Y — B such that gj = f and idpg = p. The existence is obvious since
g = p satisfies the relations. The uniqueness is also given by the fact that
idpg = p, since the unique morphism that satisfies this is g = p.

“= "7 Let f: A —» B be a morphism in C such that there is a fi-
nal model of f, which we denote (X,7,7). Suppose f is not injective, i.e.,
not a monomorphism. Then there is an object U in C and two morphisms
uy,u2: U — A such that fu; = fuo and uj # uo. In this case, ju; # iug
since ¢ is a monomorphism.

Consider now a coproduct of X and U, (X I U,ix,iy). We apply the
universal property of the coproduct to (X II U,ix,iy) and the morphisms
fui1: U — B and m: X — B. Thus, there is a unique morphism ¢: X HU —
B such that qix = 7 and giyy = fu;. Since qix = m is surjective, so is ¢,
thus ¢ is an epimorphism.

We now observe that (X LI U, ixi,q) is a model of f.

u1
U_ <A
u2
7.

XU «

Next we apply the universal property of the coproduct to (X U, ix,iy)
and the morphisms u;: U — X and idx: X — X. This implies that there
is a unique morphism ¢g;: X HU — X such that g19y = iu; and g1ix = idx.
Similarly, we obtain a morphism ¢go: X I U — X such that goiyy = iue and
goix = idx. From these relations, it is obvious that g1 # go since iuy # ius.

1
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Finally, we prove that g; and go are morphisms from the model (X IT
U,ixi,q) to the final model (X,i,7) and this is in contradiction with the
assumption that (X,i, ) is final, i.e.,

91 =4, ngX,L = 7:’ g2 = (¢, gQ,LXZ =1.
Indeed, giix = idx implies that giixi = i and similarly for go. Fur-

thermore, we have the following relations which imply that wg; = ¢ based on
the uniqueness of the morphism in the universal property of the coproduct:

7T:7TidX:7Tg1iX and 7[':in,
fur = miuy = 7wgiiy  and  fuy = qiy.

In a similar manner it can be proved that mgo = ¢ and thus we reach a
contradiction. O

3. FINAL REMARKS

The reader may have noticed that in the proof given above the fact that
C is either the class of sets or the class of groups is only used for the facts that
products (coproducts) exist for any two objects in C, injective (surjective)
morphisms are monomorphisms (epimorphisms) and the two morphisms in
the product (coproduct) are epimorphisms (monomorphisms). Indeed, the
result above holds in a more general setting if we replace injective (surjective)
morphisms in the theorem’s statement and in the definition of a model with
monomorphisms (epimorphisms), namely when C is a category with products
(coproducts) for any two objects and in which the morphisms in any product
(coproduct) are epimorphisms (monomorphisms).

Alternatively, either one of a) and b) can be obtained from the other by
considering the dual category C°P of C. If f: A — B is a morphism in C and
(X,i,7) is a model of f in C, then (X, 7, 4) is a model of f in C°P. Moreover,
(X,7,m) is an initial model of f in C if and only if (X, 7,4) is a final model
of f in C°P. Using the fact that f is a monomorphism in C if and only if it is
an epimorphism in C°P, we obtain the equivalence of a) and b).

Acknowledgement. I would like to thank my professor, Dr. Militaru
Gigel, who proposed me this problem (see [3]). I would also like to thank
the referee for thorough and very useful remarks which greatly improved the
first version of this paper and for suggesting me the unification of the results
for sets and groups.
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Two new proofs of Sandham—Yeung series
Ovipiu FurbpulY), ALINA SINTAMARIAN?)

The paper is dedicated to the 125th appearance of Gazeta
Matematica.
La mulfi ani, Gazeta Matematicall!

Abstract. In this paper we give two new proofs of the remarkable equality

2 (Ii) = e,

where H,, =1+ % + -+ % denotes the nth harmonic number. The first

proof is based on evaluating the series . H2 (((3) —1- 2% ..... %)
n=1
by two different methods and the second proof follows from calculating, by
0 2
a new method, the series nz::1 W

Keywords: Holder continuous function, Lipschitz function.
MSC: Primary 40A05; Secondary 40C10.

1. INTRODUCTION AND THE MAIN RESULTS

In this paper we give two new proofs of the remarkable formula

X (HN\? 1T
> () =T )
where H, =1+ % 4+ 4 % denotes the nth harmonic number.

Formula (1) has an interesting history. It was the first quadratic series
introduced in the literature by H. F. Sandham in 1948 as a problem in the
American Mathematical Monthly [14]. Apparently, the series went unnoticed.
Castellanos recorded it in his survey article [3, p. 86], attributed it rightly
to Sandham, but with a wrong entry in the bibliography. De Doelder [5]

o0
. . H? 4.
evaluated the associated series ) wrE = Lr- without any reference to
=1

Sandham’s series. In April 199?’; the series was discovered numerically by
Enrico Au-Yeung, an undergraduate student in the Faculty of Mathematics
in Waterloo, and proved rigorously by David Borwein and Jonathan Borwein
in [2], who used Parseval’s theorem to prove it. Formula (1) was rediscovered
by Freitas as Proposition A.1 in the appendix section of [6]. Freitas proved
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it by calculating a double integral involving a logarithmic function. This

formula is revived and brought into light by Valean and Furdui [11], who

proved it by calculating a special integral involving a quadratic logarithmic

function. The series also appears as a problem in [7, problem 3.70, p. 150] and

[13, problem 2.6.1. p. 110]. In [8] Furdui and Sintdmarian proved formula (1)
o0

as a consequence of evaluating the series % (2((3) - % - % — Zg)
n=1

by two different ways. It is clear that this remarkable quadratic series has
attracted lots of attention lately and has become a classic in the theory of
nonlinear harmonic series.

The first proof of formula (1) is based on calculating the series

. 1 1
S (€)1 gy = ) =3 - 10) £ 240)
in two different ways. The second proof follows from the series Z 0 ili)Z =

1L¢(4), which is calculated differently than it is in [5]. We record the results
we prove in the next theorem.
Theorem 1. (a) A harmonic series.
The following identity holds
- 1 1
S (6 - 1= g5 - o5 ) = 36(4) - 163) + 2602
n=1

n3
(b) The Sandham—Yeung series.
The following identity holds
N (H,\? 17
) = 2.
S (%) =T

We collect some results we need in the proof of Theorem 1.
The Dilogarithm function Lia(z) is defined, for |z| < 1, by ([4, p. 176])

. 2" Zln(l -t
Lis(2) := Z 2= —/0 (t)dt.
n=1

The generating function of the nth harmonic number is given by the
formula (see [15, problem 3.54, (a)])

Zan Jhmw) . 2)

1—=x

The previous formula can be proved by multiplying the power series of the
functions f(z) = In(1 — z) and g(z) = L.

—X
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Integrating out the previous equality we have that the following power
series formula holds true [15, problem 3.54, (c)]

[e.9]

In?(1 — ) :22 Hr e e [-1,1). (3)
=1

T
n+1

The generating function of the sequence (Hfl)n>1 is given by ([10, The-
orem 9, p. 215]) -

> In?(1 — Li
3 p2gn = fﬂ; () e (1), (4)
n=1

Lemma 2. The following equalities hold:

() S0 =2(3)
n=1
0o H, B

) 3 gy =<2
o o

@ 3 T =2
n=1

Proof. (a) For the proof of part (a) see [7, problem 3.55, p. 148]. For the
sake of completeness we include below a new proof of this result.
First we show that if f: [0,1] — R is a continuous function, then

A%U@@mw_—ﬁvmmmm. (5)

We have

/ 1 / ' fay)dady = / 1 < / 1 f(fcy)dw) a = [ 1 (; / yf(t)dt) dy

y 1 1 1
=1ny/0 ft)dt 0/0 f(y)lnydyz/o f(y)Inydy,

i lim 1 Y = 0.
since lim ny [ f(t)dt =0

Formula (5) is also valid in the case when f is a Riemann integrable
function [9].



O. FurDpUI, A. SINTAMARIAN, TWO NEW PROOFS OF SANDHAM-YEUNG SERIES 9

We have

o) 1 01 o)
H, // Ty ”dxdy—// Hy(xy)™ | dedy
7”L+ Z 0J0 r;
_ 1 _
® // In(1 a:y dy@/ In(1 x)lnxdx
1—ay 0 11—z
_ 1 X n
:/ InzIn(1 xdx:/ lni;rzzidx
0 T T =n
n—1
:—Z / lnxdx—zﬁ

n=1

n=1
= C(3)-
It follows that
[e’e] Hn OoHnJrl*nL_i_l oon_% oon
T (nt1)? A~ (n )2 e w2 a2 N
and part (a) of Lemma 2 is proved.
(b) We have
—~ H,  ~~(H, H,\ ~~(H, Hpn 1
S =2 (G ar) =X (e e
=1+4¢(2) - 1=(¢(2)
(c) A proof of the formula Z 2, _ 7;, which is a special linear Euler

sum, is given in [7, problem 3. 58 pp 207-208] and it also appears in the
literature as a problem proposed by M.S. Klamkin [12]. Another proof of
this formula is given in [15, p. 247] and a proof based on symmetry appears
in [8, pp. 4-5]. O

Remark 3. One can prove, by using the same technique as in part (a) of
Lemma 2 that the following formula holds

n Hn ¢3)
Z(_l) 2~ ’
— (n+1) 8
from which we recover the known result 21(—1)"*1% = 2¢(3) ([7, problem

3.56, p. 148]).

Now we are ready to prove Theorem 1.
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Proof. (a) One can prove, using integration by parts twice, that the following
formula holds true fol zFIn? zde = ﬁ, k > —1. It follows that

1 11 [t o
]l = ... — == In? .
()1 5 L= /0 2w de (6)

We have, based on formula (6), that

> 1 1 1 & Loy
2 _ 2 2
n§_1Hn (g(g)—1—23—-.-—n3> _52 Hn/ 71_33111 rdz

0

- /O in_z (ZHQ ”) dz

)1/ In? 2 .ln (1—x)+L12($)dx
0

—

2 1—2z 11—z
:1/ In? z1n?(1 — )da:
2 0 (1—.'1}')
1 [!1n® zLis(2)
+2/0 7(1—1’)2 dx
1 1
=_JT+-J
2 +2 ’

where

'In?z1n?(1 - 'In? 2 Li
= / W a1 =) ) g g = / Werliy(e)
0 (1-z)? o (1-2)

We calculate the first integral and we have

I /1 In? z1n?(1 2— :C)d:v 1-z=y /1 1n2yln22(1 — y)dy
0 (1-2) 0 3/

(—)2/lln2y i d 22 /”11 d
I T n+1 v= n+1 ey

o0
Hy, H, H, Hy
nz::lng’(n—{—l) ;<n3 n? +n(n—|—1)>

Lemma 2 4 <i§(4) — 2((3) + C(2)> :
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We calculate the second integral and we have

J:/l I’ Lip(z) , _ In®eLis(a) |
0

I—22 7 1=z |,
_/1 2Inx Lig(x) _ln2xln(1—x) 1 de
0 x T l1—2
1 : 1 : 9
_ _2/ lna:ng(a:)dx_Q/ lnxng(a:)dx 9)
0 T 0 11—z
17,2 _ 11,2 _
+/ In® zIn(1 x)dx—f—/ In®z In(1 x)d:p
0 i 0 1—=2x

= 24-2B+C +D,

where

A:/ In z Lig(z dr. B— /ln:Ung -
0 z 1—2

and

x 1—=x

19,2 _ _
o _/ In“zIn(1 — x) dr. D= / In? z1In(1 x)da?.
0

We calculate the integrals A, C', D and B, in this order. We have,

10
—il/lmnllnxdx——il——g(@ Y
n:ln2 0 n:ln4

On the other hand,

B 'n? 21n(1 — ) B "n?z (X 2
C—/xdx—‘/ox<zn)dx
:_Z / 2" n? xdx——Z%:—QC(él).

n=1
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We calculate the integral D and we have

112 In(1 — 1 0
D:/ nxn(m)(m@_/ W?s (S Hoam | da
0 1—=z 0 —
() 1 o0
H
_ n 1.2 _ n
= — :_2 -
z mE ey ()

n=1

(12)

Lemma 2 (c

a2, _54(4).

We calculate the integral B, using integration by parts, and we have

"InzLi
5= [ 2@ 4y - “ a1 - 2)Lis(a)]}
0

11—z 0
' (Li Inz In(1 —
+/ ( ia(z) _Inz In{ x>>ln(1—m)dx
0 x T
(1 — . 119201 _

:/ n(1 x)ng(:U)dx_/ In“(1 x)lnxdx
0 x 0 x (13)
Li2 1 11,2 _

_ i5(x) _/ In® 2z In(1 x)dx

2 0 0 1—=x
Li3
_ 12(1)_D
2
3

= -2C(4

S,
since Lig(1) = %2

A calculation, based on (9), (10), (11), (12) and (13), readily shows that
J = ((4) and this implies together with (7) and (8) that
>, 1 1
DUHI(CB) 1= g = ) =30(4) — 4¢(3) + 2((2).
n=1

(b) The first proof. The following equality can be proved by mathe-
matical induction

n
> Hp=(n+1)H, - (2n+ 1)H, +2n
(14)
=+ 1)H2 — Hop1 —2(n+ D) Hpp1 +2(n+1), n>1

We also need Abel’s summation formula ([1, p. 55], [7, Lemma A.1,
p. 258]) which states that if (ay)p>1 and (b,),>1 are two sequences of real
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n n

numbers and A, = > ag, then > arby = Apbpi1 + Z Ag(b — bg1). We
k=1 k=1 k=1
will be using the infinite version of this formula

Z apby = nli_>1£10(z4nbn+1) + Z Ay (b, — by1). (15)
k=1 k=1

We calculate the series in part (a) of Theorem 1 by using formula (15),
with

1 1
an:Hz and bn:§(3)_1_¥_..._$
and we have, since b, — b,11 = ﬁ, that
= 1 1
2
Sa(a-1 b )
W Yim [(n+1)H2 = 20+ 1)H, +20] (¢(3) PR
n—00 n " 23 (’I’L—|— 1)3
1 i (n+ 1)H721+1 — Hnp1 —2(n+ 1)Hpp1 +2(n + 1)
= (n+1)3
_ —[ Hpyi  Hapn ) Hop 2
—ln+1)? (n+1)* (n+1)?  (n+1)?
n—&-l_:mi %_Hm_ Hm 2
N m2  m3 m2  m?2
m=2
_~~[HY Hw _Hp 2
=2 |0t o 5 T
m=1
Lemma2 (a),(c) 5
Z( ) C(4) - 4¢(3) +2¢(2)
since
lim [(n+1)H2 — 2n+ DH, +20] (¢3)—1— = —..c 1 Y,
n—00 n 23 (n_|_ 1)3

It follows that

oo 2
2 (B ) = Fe) - 1603) + 262) = 3604 - 16 + 2602

and this implies that Z ( ) 2C(4)+3¢4) = 17C( )-

(b) The second proof The second proof of formula (1) is based on

calculating, by a new method, De Doelder’s series E n;j = 11{( ).
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We have
2 < [ Lptfe
—nr = H "daedy = H " | dad
;(RJFDQ ; n/o/o(xy) wdy /0/0 ; n(zy)" | ddy
® /1/1 In?(1 — ay) + Liz(2y) dedy 6 /1 In?(1 — ) + Lig(z) I do
0Jo 1 —xzy 0 -
_ _/1 In?(1 — x) lnxdx B /1 Lis(x) lnxdl‘
0 1—=x 0 1—=x
_ _/1 In? zIn(1 —x)dx B /1 Lig(x)lnxdx
0 X 0 1—=x
=—-C-1B
11
=—C((4).
290
This implies that
2
o o0 — L
Uy - 3 H?2 (Hn+1 n+1>
4 N —(n+1? —  (n+1)?
_ i H721+1 o Hn 1
—\(n+1)2 (n+1P  (n+1)*
> (H? _H, 1
- Z m2  Tmd omd
m=1
Lemma 2 (c) > H72n 5)
= Zﬁ—ﬁg(‘l)*‘g(‘l)
m=1
> H? 3
= Z 9 §<(4)7
m=1
and the result follows. O
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Asymptotic evaluations for some sequences of triple integrals
DuMITRU PopaY)

Abstract. Let f : [0, 1}3 — R be a continuous function, an, bn, ¢, :
[0, 1]3 — [0, 1] be three sequences of continuous functions and the sequence
of triple integrals

In = J:[[ f (an ($, Y, Z) ) b’fl ($, Y, Z) ;Cn (-’If, Y, Z)) dxdydz
[0,1)?

As a consequence of a general result we obtain asymptotic evaluations of
the sequence (I5), oy in the case when f is differentiable at (0,0,0) and
twice differentiable at (0,0,0). Many and various concrete examples are
given.

Keywords: Riemann integral, multiple Riemann integral, uniform con-
vergence, asymptotic expansion of a sequence.

MSC: Primary 26A42, 28A20; Secondary 40A05, 40A25.

1. INTRODUCTION

In the theory of integration the problem of finding various asymptotic
estimates is of great importance. We recommend the reader to consult the
books [2, 3, 4, 5]. The main purpose of this paper is the following: given
a continuous function f : |0, 1]3 — R and three sequences of continuous
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functions ay, by, ¢, : [0, 1]3 — [0, 1], we will find the asymptotic evaluation
for the sequence of triple integrals

In - fff f (an (.T}, Y, Z) 7bn (1.7 Y, Z) 5 Cn ([E, Y, Z)) dxdydz
[0,1)°

in the case when f is differentiable at (0,0,0) and twice differentiable at
(0,0,0) in Theorems 5 and 18, respectively. In order to do this we first
prove a general result, Theorem 4. We give also many and various concrete
examples.

In the paper we will use the multiple Riemann integral. For details
regarding the multiple Riemann integral we recommend the reader to consult
the excellent treatment of this concept in the book of N. Boboc, see [1]. If
k is a natural number and A C R* is Jordan measurable, \; (A) denote
its Jordan measure, see [1]; we recall just that Ag ([a1,b1] X - -+ X [ag, bx]) =
(b1 —ay) -+ - (b —ag), for a; < b;, i = 1,..., k. If A C R* is a compact
Jordan measurable set and f : A — R is a continuous function, we denote
by [, f () dz the multiple Riemann integral. If E C R? then E denotes the
closure of . The notation and notions used and not defined in this paper
are standard, see [1, 2, 5].

Definition 1. Let E C R3 be such that (0,0,0) € E, f,g: E — R and
h:E —[0,00). We write

fe,y,2) = g(x,y,2) +o(h(2,y,2)) for (x,y,2) = (0,0,0)

if and only if Ve > 0 there exists 6. > 0 such that ¥V (z,y, z) € E with
max (|z|, |yl |2]) < b it follows that |f (x,y,2) — g (z,y,2)| < eh (x,y, 2).

Let us note that since (0,0,0) € E then, as is well-known, Ve > 0, we
have B ((0,0,0),e) (| E # @, and thus there exist points (z,y,z) € E with
max (x|, |y, |z]) < d.. Also if E C R? is such that (0,0,0) € E and

f(z,y,2) =g (z,y,2) +o(h(z,y,z2)) for (z,y,2z) — (0,0,0)

then f(0,0,0) = g (0,0,0). Indeed, Ve > 0 there exists d. > 0 such that for
(x,y,2) € E with max (|z|, |y|,|z]) < 0 it holds |f (z,y,2) — g (z,y, 2)| <
eh (z,y, z). In particular, since (0,0,0) € E, we have |f (0,0,0) — ¢ (0,0,0)| <
eh (0,0,0) and since £ > 0 is arbitrary, passing to the limit for ¢ — 0, ¢ > 0,
we get ‘f (07070) -9 (07070)’ <0, f (07070) =9 (07070)

Definition 2. Let (b,), oy be a sequence of real numbers. If (an),cy is @
sequence of real numbers we write a, = o(by,) if and only if Ye > 0 there
exists ne € N such that Vn > n. it follows that |a,| < €|by|. If (Tn),en
(Un)pen are two sequences of real numbers we write T, = yn + 0 (by) if and
only if T, —yn =0 (bn)
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Let us note that if there exists ng € N such that Vn > ng we have
b, # 0 then the condition a, = o(b,) is equivalent to the well known-

condition li_)m 7= = 0. The proof of the following remark is obvious and
n—oo “n

therefore is omitted.

Remark 3. Let (by),cn, (Cn),en be two sequences of real numbers with the
property that there exists M > 0 such that |by| < M |cy|, for alln € N. If
an = o (by), then a, = o(cy)

2. A GENERAL RESULT

We prove a general asymptotic evaluation for sequences of multiple
Riemann integrals.

Theorem 4. Let E C R? be such that (0,0,0) € E, f,g : E — R and
h:E —[0,00) three continuous functions such that

f(@y,2) =g(x,y,2) +o(h(z,y,2)) for (z,y,2) = (0,0,0).
Let k be a natural number, A C R* a compact Jordan measurable set and
Qnybn,cn : A — R three sequences of continuous functions such that

(an () ,bn (z),cn(z)) € E,VNRn e N,V € A
and moreover lim a, = 0, ILm b, = 0, ILm ¢n = 0 all uniformly on A.

n—oo
Then

/f(an (m),bn(w)vcn(w))dwz/g(an(fﬂ)’bn(w),cn(w))dw
A A

—i—o</Ah(an(x),bn(x),cn(x))dx>.

Proof. Let us note first that all the functions on the integrals are contin-
uous hence are Riemann integrable, see [1]. Let ¢ > 0. By the hypothe-
sis and the definition 1 there exists 6. > 0 such that V(z,y,2) € E with
max (|z|, |y|,|z]) < 0 it follows that |f (x,y,2) — g (z,y,2)| < eh(z,y,=2).

Since hﬁm an, = 0, hm b, = 0, hm ¢n, = 0 all uniformly on A, it follows

that there exists n. E N such that Vn > n. we have

an () < 0ey, by (z) <dey cpn(x) <6e,Vx € A
Let n > n.. Then (ay (z),by (z),cn () € E, max (an (z),b, (z),cn (2)) <
0 and hence Vx € A we have

|f (an () ,bp () ¢ () = g (an (2) b (2) , cn (2))] < €h(an (@), bn (2),cn (7))

By integration we get
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|f (an(‘r)a bn(x)a Cn(x)) -9 (an(l')’ bn(l‘), Cn(ZL‘))| dz

A

< E/Ah(an(:c),bn(a?),cn(x))dx.

Since

W (an (@), bn (@) 0 () = g (an (2], b (2) , €n ()] d

< / |f (an (2) ,bn (2) , €n () = g (an (), bn (2) , cn (2))] da,
A

by the linearity of the integral we obtain

flan (@) bn (2), cn (f))dz/g(an (@), bn (), cn (2)) d
A A

<e /A  (an (2) b () , e () d,

which ends the proof, see Definition 2. O

3. THE CASE OF DIFFERENTIABLE FUNCTIONS

In the sequel we analyze the case of differentiable functions.

Theorem 5. Let f : [0,1]> — R be a continuous function which is differ-

entiable at (0,0,0). Let k be a natural number, A C R* a compact Jordan

measurable set, ay,by,c, : A — [0,1] be three sequences of continuous func-

tions such that lim a, = 0, lim b, = 0, lim ¢, = 0 all uniformly on A.
n—oo n—oo o

n—
Then

Jat( (37) ())dx—f(OOO)Ak(A)
2L (0,0,0) ann dx+ (0,0,0) fA z)dz + 2L (0,0,0) [, en (x) da
+o ([, an xd:v—l—fA dﬂc+fAcn )dz) .

Proof. Since f is differentiable at (0,0, 0) we have
f(@.y.2)~£(0,0,0)~ 5 (0,0.0)2— 57(0.0.0)y— 5L (0,00)

(2,y,2)—(0,0,0) ||+ lyl+]2]

We deduce easily that f (z,y,2z) = f (0,0, 0)+ (0,0,0) x+ (O 0,0)y
+% (0,0,0)z + o(z+y+2) for (z,y,2) — (0,0,0). We apply Theoremil
for E = [0,1%, h(x,y,2) = 4+ y + 2. Let us note that in this case E = E
(since E is closed) and (0,0,0) € E. O

We will prove in the sequel some applications of Theorem 5.

=0.
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Proposition 6. Let f : [0, 1]3 — R be a continuous function which is dif-
ferentiable at (0,0,0) and up, vy, : [0,1] — [0,1] two sequences of continuous

functions such that either lim w, = 0 wuniformly on [0,1], or lim v, = 0
n—oo n—oo

uniformly on [0,1]. Then
[]J £ (@) vn () s () 00 (2) 1 (2) v () dadydz = £ (0,0,0)

[0,17°
+(510,0,0) + 5 (0,0,0) + 5 (0,0,0)) (fy n (2) dz) () vn () d2)

+o ((fol Uy, () d:c) (fo v () dx)) .

Proof. Let us take in Theorem 5, A = [0,1], an,bn,cn : [0,1> — [0,1],

an (2,9, 2) = tn (2) vn (Y), by (2,9, 2) = un (Y) 0n (2), ¢ (2,4, 2) = up (2) vn (2).

Let us suppose, for example, that lim u, = 0 uniformly on [0,1]. From
n—o0

0<wv,(y) <1,Vn eN, Vy € [0,1], we deduce that 0 < ay, (z,y, 2) < uy (),
Vn € N, V(2,y,2) € [0,1]* and hence li_>m ap, = 0. Similarly li_>rn b, = 0,

lim ¢, = 0, all uniformly on [0,1]*. Then
n—oo

f [ £ (@n(@y,2) ,bu (@,,2) , en (2,9, 2)) dedydz = £ (0,0,0)

ooofﬂ n+ 000Hb+ (0,0,0) [[] en

[0,1]3 [0,1]3

o g g1 1)

0,1 (0,13
above and in the sequel of thls proof we write simply Hf[o 13 On instead of
ﬂf[o 1)? Gn (x,y, z) dedydz, etc. Since by Fubini’s theorem

[ [T RS T PR

[0,1) [0,1]3 [0,1)3
the evaluation from the statement follows. O

For v, (z) = 1 in Proposition 6 we get

Corollary 7. Let f : [0, 1]3 — R be a continuous function which is differ-
entiable at (0,0,0) and uy, : [0,1] — [0,1] a sequence of continuous functions
such that hm up, = 0 uniformly on [0,1]. Then

fj f (up (z) ,up (y) ,up (2)) dedydz = f(0,0,0)

[0,1)3
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+<‘3f (0,0, 0)+gf(o 0, 0)+gf(o 0, 0)> /Olun(x)dx+0</01un(x)dx>.

Proposition 8. Let f : [0, ]3 — R be a continuous function which is dif-
ferentiable at (0,0,0) and up, vy, : [0,1] — [0,1] two sequences of continuous

functions such that lim wu, = 0 uniformly on [0,1]. Then
n—oo

jj S (tan () st () st (2) v () drdy = £ (0,0,0)

011
(gf (0,0, 0)+Z£(o 0, 0)> </Olun(x)dx>

+g£(o,o,0) </Olun(x)dx> (/Olvn(x)dx> +0</01un(w)dx>.

Proof. Let us take in Theorem 5, A = [0,1]*, an,bn,cn : [0,1> — [0,1],

an (x,y,2) = up (x), by (x,y,2) = up (y), cn (x,y,2) = up () vy (y). Let us
note that from lim u, = 0 uniformly on [0,1] and 0 < v, (z) < 1, Vz € [0, 1],
n—oo

Vn € N it follows that li_>m an = 0, li_)m b, =0, lim ¢, = 0, all uniformly

n—oo
on [0,1]®. Then

ff [ (un (z) ,un (v) , upn () v, (y)) dedydz = f(0,0,0)

+[01]:)00fﬂn+ 000[0f£3b+ ooo[oj{][%
(e g

above and in the sequel of this proof we write simply Hfm 1? @n instead of
J]]m 12 On (x,y, z) dedydz, etc. Since by Fubini’s theorem

fjjf (un (@), un (y) , un (z) vo (y)) dodydz

0,1
=[] (@), (9) un (2) v () drdy,
[0,1)°
f[fon = [[[ou= [ ontoran
[0,1° [0,1)°

[ffer = ([ o) ([ o)

[0,1)°
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JJ £ (@) (9) (@) v () dedy = £(0,0,0)

+(gf (0,0, 0)+gf<o 0 0)) </01un(a:)dx>
gf (0,0,0) </01un(a:)dx) (/Olvn(x)da:>
—i—o(/olun(x)dx—i—(/olun(x)dx) (/Olvn(x)dx>>. (1)

From 0 < v, () <1, Vz € [0,1], Yn € N, Wededucethat0<f0 vy, () da <

1, Vn € N and thus fo U ( dx+(f0 U ( ) (fo vn ( dx) < 2f0 up, (z) dz,
Vn € N. From Remark 3 and the relation (1) we deduce the evaluation from
the statement. 0

4. SOME EXAMPLES IN THE CASE OF DIFFERENTIABLE FUNCTIONS

In this section f : [0, 1] —> R is a continuous function which is differ-
entiable at (0,0,0) and § = §£(0,0,0) + 3£ (0,0,0) + §£ (0,0,0). We begin
with some applications of Corollary 7.

Corollary 9. The following evaluation holds

fﬂf< * )dwdde—f(OOO) 5. (12>.

0,1
Proof. Let up, : [0,1] — [0,1], u, (z) = £-. We have 0 < u, (z) < 2, Vn €
N,Vz € [0,1], and thus lim U, = 0 uniformly on [0, 1], also fol Uy, (z)de =

n(n T We deduce that

) (522 ez = 10,000+ o ().

[0,1)°

To finish the proof let us note that n%rl = % +o (%) O

Corollary 10. The following evaluation holds

n ZTL

jjff< (zn +1) (yz+1)an(zn+1)>dxdydz

(0,13
Sln2 1
:f(0,0,0)+ ’I’L2 +O(n2>
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Proof. Let uy, : [0,1] — [0,1], uy, (z) = M;T:_l) We have 0 < up, (z) < %7
Vn € N,Vz € [0, 1], and thus li_}m uy, = 0 uniformly on [0, 1]. We deduce that

n n

Hff( it (yz+1),n(2i+1)>dxdydz:f(O,O,O)

+S/1 x”dx+ 1/1 x"dz

2 ol = .

nJo " +1 nJjyg z"+1

But, as is well-known, hm nfl z"dz = In 2, that is, Lande _ 1“—2—1-0(%),

" +1 0 z"+1 n
see [6, problem 3.13]. The evaluation from the statement follows. O

Corollary 11. The following evaluation holds
oo £ (Brmbetpear=) Lustos ™ bisistens ) daqyas

= £(0,0,0) + Sh;n +o<hm>.
n

n2
Proof. Let uy, : [0,1] — [0,1], u, (z) = 1““*'”# We have 0 < u, (z) <
, Vn € N,V € [0 1], and thus le up = 0 uniformly on [0,1]. Also

fo up (x)dz =1+ 5 —|— . % = H,,. We deduce that

1 n—1 J4ytyZ4-tyn—1 1 2, .. n—1
«Ufo,lf f ( +x+x :2 Ha , y+y p Y ’ +z+2 ZQ +z dxdydz

SH, H,
= £(0,0,0) + 3 +0<n2>.

To finish the proof, we recall that, as is well-known, lim % = 1, that is
n—oo
H,=Inn+o(Inn). O

We continue with some applications of Proposition 6.
Corollary 12. The following evaluation holds
ffjf(m Y ,y i ,Z < >d$dydz:f(0,0,0)+3+o<3>.
e n n n n n

Proof. Let up, v, : [0,1] = [0,1], up (z) = Z-, v, (z) = ™. We have 0
up(z) < 2,0 < wvp(z) <1, Vn € N, Vo € [0,1], and thus lim Up,

IIIA

0 uniformly on [0,1]; also fol up (r)de = n(n+1 f() vy (x)dz = % Wi
deduce that

jfjf( n  n ' n >dxdydz_f(07070)+n(n+1)2+0<n(n+1)2>'

[0,1°

@)

To finish the proof let us note that o +1) # +o0 (%) O
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Corollary 13 The following evaluation holds
n—1 n PRI anl P Taeee xnfl
ﬂfmﬁf( 1+y+ +y )’y (L+zttzm=t) 214 ot ))dxdydz

n? ’ n

1 1
— (0,0,0)+ 2 §"+o<n”>.
n

n3

Proof. Let uy, vy, : [0,1] = [0,1], up, (x) = 2™, v, (z) = H"Hni We have
0<up(z) <1,0<v,(x) <3, VneN, vz € [0,1], and thus hm vp, =0
uniformly on [0, 1]; also fol Up, (z)dr = n+1’ fo vy, (z) do Where H, =

1+%+-~+%. We deduce that

[ £ un @) 00 () s 100 (9) v (2) 0 (2) v () deedlyd 2

SH, Hn
:f(0,0,0)+n2<n+1) +0<n2(n+1)>.

From the evaluation H,, = Inn + o(Inn) we get the evaluation from the
statement. 0

We continue with an application of Proposition 8.

Corollary 14. The following evaluation holds

(5 "

7y )dxdy:f(o,o,0)+ (8
0,12

w(5e)

Proof. Let us take in Proposition 8 u,,v, : [0,1] — [0,1], u, () = Z-,
vy () = y". We get

{[ 1 <$y’”ny >dxdy=f(0,0,0)+<8£ <0,0,0)+8§<07070>> o

TZ

(0,0,0) + gi (0,0,0)) L

n

n’'n n(n+1)
[0,1]
af 1 < 1 )
+—=(0,0,0 +o .
2z { )n(n—|—1)2 n(n+1)
By simple calculations we get the evaluation from the statement. O

We end this section with some applications of Theorem 5.
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Corollary 15. The following evaluation holds

2n 2n .2n 3n,3n . 3n

ff o (2 Y s = 1 00,0
n n
[0,1)3
of af
of gy (0,0,0)  21(0,0,0)\ 1 1
+<8x(0’0’0)+ 8 + 27 n4+0 nt )’

Proof. Let A = [0, 1] . Qn,bp,cp ot [O 1] — [0,1], an(z,y,2) = "y

by (2,9, 2) = 2R e (2 y, 2) = D From
1
O S Qn, (xvyaz) 7bn (xayaz) »Cn (l‘)ywz) S *7vn € N)v('ray7z) € [07 1]3
n

we deduce that h_>m a, =0, h_}m b, =0, hm ¢n = 0, all uniformly on [0, 1]°.
We ?lso have ﬂ]‘m]s an (z,y,z) dedydz = 1”("+1)3 , fffo,1 3 by (2,9, 2) dedydz =
W’ JZ[[[O,I]s Cp (33, Y, Z) dxdydz = m Then

2n 2n ,2n 3n,,3n.3n

jﬂf(”"yz ynz T ynz >dxdydz:f(0,0,0)

[0,1)3

of of
25(0,0,0 0,0,0 41(0,0,0 1
Bz( )+ By( )+8z( )+0<>

nin+1?® n@2n+1?* nBn+1)° nt
: 11 1 1 _ 1 1 1 _ 1 1
Since v = 7 + 0 (35), G = w7 T2 (5)s G = w0 (59),
by simple calculations we get the evaluation from the statement. O

Corollary 16. The following evaluation holds

n n n 2n 2n 2n 3n 3n 3n
ffff(x +yt 42" Yy 42 2y 2 )dxdydz

Y )

n n n
0,11

of of
B of gy (0,0,0)  2L(0,0,0)\ 1 1
= f(0’0’0)+3<6x(0’0’0)+ 5 + 3 5 to .

n n2

Proof. Let A =10, 1]3 and ay, by, ¢, : [0, 1]3 — [0,1], ap (z,y,2) = ity et

n
2n 2n 2n 3n 3n 3n
_ x4y 4z _ x4y 4z
b (7,y,2) = =" ¢, (2,9, 2) = = —""—. From

3
0<ap(z,y,2),by (z,y,2),cn (x,y,2) < E,Vne N,V (z,y,2) €0, 1]3

we deduce that lim a, = 0, lim b, = 0, lim ¢, = 0, all uniformly on
n— 00 n— o0 n—0o0

0,1]. Also ﬁj[o,l]?’ an (z,y,z) dedydz = ﬁ, ﬂf[mP by (z,y, z) dedydz =
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m’ JI[[O,I]S Cn (1’, Y, Z) dxdydz = m Then
n n n 2n 2n 2n 3n 3n 3n
fjff(x +y +z ’x +y"+z ’x +y"t+z >da:dydz
g n n n
[0,1]°
— £(0,0,0) + 32£(0,0,0) 3% (0,0,0) 39L(0,0,0) 1
- o n(n+1)  n@2n+1)  n(Bn+1) n? )"

Since 57 = 5 +0(3) o5 = 37 T 0(3)s 3p7 = 37 T o(3), by simple

calculations we get the evaluation from the statement. O

Corollary 17. The following evaluation holds

n n n n,n n . n n M n,,MnN N
jfff(x +y +z7my +y"z +Z$,xyz>dxdydz
n n

n
0,1
39L(0,0,0) 1
_ oz \9, 0

Proof. Let A = [9, 1l3nanil Zn,bn,cn : [0, 1]3 :>n[07Z 1], ap (z,y,2) = W,
by (2,y,2) = TLHZEZLE o (2,y,2) = T2 From

3 1
0<ap(z,y,2),bn (z,y,2) < —,0< ¢y (z,y,2) < —,Vn e N,V (z,y, z) € [0, 1]3

n n

we deduce that lim a, = 0, lim b, = 0, lim ¢, = 0, all uniformly on
n—o0 n—oo n—oo

[0, 2]3 Also ﬂj[o,l]?’ an (z,y, z) dedydz :1 ﬁ, HI[O,H?’ by (z,y,z) dedydz =
W7 J]]‘[O,l}?’ Cnp (.’E7 Y, Z) dxdydz = m Then

mf(x VAT S A >dxdydz=f<o,0,0>

n

[0,1)°

of
3%7(0,0,0) 35 (0.0,0)  9(0,0,0)
nin+1)  nm+1> nn+1)?

1 1 1
o + + .
(n(n+1) n(n+1)? n(n+1)3>
From this evaluation by simple calculations we get the evaluation from the
statement. O

5. THE CASE OF TWICE DIFFERENTIABLE FUNCTIONS

In this section we analyze the case of twice differentiable functions.
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Theorem 18. Let f : [0,1> = R be a continuous function which is twice

differentiable at (0,0,0). Let k be a natural number, A C RF a compact

Jordan measurable set, ay, by, cy, : A — [0, 1] be three sequences of continuous

functions such that lim a, =0, lim b, =0, lim ¢, = 0, all uniformly on
n—oo n—oo o0

A. Then "
/Af (an (x) by (), cp (x))dz = £(0,0,0) \g (A)

2000 [ o Zonn [ o Looo [ oo

2 2 2
8J;(o 0, 0)/A 2 (z )dx+8£(0,0,0)/b2( )dx+a"§(o,o,0)/Aci(x)dx
2 2
+2 axg (OOO)/A n (x) by, (z) dz +28 (‘{ (000)/A n(2) cp (2) dz

52
+2 Béf (000)/Ab (z) ey (z)dz

+0(/Aai(x)d:v+/Abi(z)dm+/40i(m)dx).

Proof. Since f is twice differentiable at (0,0, 0), from the Maclaurin formula
we have

f(m,y,z)—f(0,0,0)—Pl(x,y,z)—Pg(x,y,z)

li =0
where P (x,y,2) = f(O 0,0)z + f(0,0,0)y—i—%(0,0,0)z,
o f 2f 2f
O f 2f 0 f
2550 (0,0,0) g+ 255 (0,0,0) 22+ 255-(0,0,0)y2

see [1]. From this limit we deduce that

fxy,2) = g(2.y,2) +o (2 +y* +2%) for (z,y,2) — (0,0,0),
where g (z,y,2) = £(0,0,0)+ P; (x,y, 2) + P> (z,y,2). We apply Theorem 4
in which E = [0,1]® and & (z,y, z) = 22 + y? + 2% O

We will prove in the sequel some applications of Theorem 18.
Proposition 19. Let f : [0,1> — R be a continuous function which is
twice differentiable at (0,0,0) and un,vy, : [0,1] — [0,1] two sequences of
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continuous functions such that either li_}rn u, = 0 uniformly on [0,1], or
n o

hm v, = 0 uniformly on [0,1]. Then

ff I (up () v (y) s un (Y) v (2) , up (2) vy, () dedydz = f(0,0,0)

[0,1)*
+S (/Olun(:c)dx> </Olvn(x)dx>
+(Af)(0,0,0) (/Olui(x)dx> </01v3(x)dx)
+2T (/Olun(x)dx) </1vn(x)dx> (/lun(x)vn(x)dx)
o ([ shwren) (f 4 >>
0)+%
°f

whereS:B—f(OOO) a—f(o £(0,0,0), (Af)(0,0,0) = 24 (0,0,0)+
2(0,0,0) + 24 (0,0,0), T = xay(ooo) axaz(000)+ay (000)

31\3

Proof. Let us take in Theorem 18, A = [0, 1]3, Any by e 2 [0, 1] — [0,1],
Gnp, (1’, Y, Z) = Up (x) Un (y), bn (‘Ta Y, Z) = Up (y) Un (2)7 Cn ({E, Y, Z) = Un (Z) Un, («T)
We get

f (] £ (an(@,9.2) b0 (@9, %), e (2,9, 2)) dadydz = £ (0,0,0)

ooofﬂ n+ OOOHb + oooﬂjcn

[0,1] [0,1]3 [0,1)3

oooﬂ oooﬂb2 oooﬂf

[0,1)°

2f ooofﬂ wbn + 27 2f ooofﬂancn

0,1 0,1

2 000 [T [ o [+ [ )

[0,1]* 0,1 0,1
above and in the sequel of this proof we simply write ﬂfm 12 @n instead of
fﬂm 12 On (%,y, z) dedydz, etc. By Fubini’s theorem

[T on= [ b= ffeo= ([ 1) ([ 1),

[0,1]? [0,1)3 [0,1)3
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e i = [y ([terse) ([ sz erae)
o~ [ e

[0,1)3 [0,1] [0,1)3

_ </01un(x)d:n> (/Olvn(:v)dx> </01un(x)vn(x)dx>,

and thus we get the evaluation from the statement.

O
Taking v, () = 1 in Proposition 19 we get

Corollary 20. Let f : [0, 1]3 — R be a continuous function which is twice

differentiable at (0,0,0) and u, : [0,1] — [0,1] a sequence of continuous

functions such that lim w, = 0 uniformly on [0,1]. Then
n—o0

J]’ F (un () st () , un (2)) dzdydz = £(0,0,0) +

[0,1)3
+S/01un(x)dx+(Af) (0,0,0)/01u§(x)dx+2T </01un(x)d:n>2

+o</01u,%(x)dm>.

Proposition 21. Let f : [0, 1]3 — R be a continuous function which is twice
differentiable at (0,0,0) and up, v, : [0,1] — [0,1] two sequences of continu-
ous functions such that lim w, = 0 uniformly on [0,1] and lim fol vp () de =

I f(up (z),un (), up () v, (y)) dedy = f(0,0,0)

0.1
+<gf(000)+?(000)> </1 (@ )dx)
000 (fLmw) ([T )
+<§f@oo) 000>AZL

19 aa;g (000)< dx>2+0< x)dx).
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Proof. Let us take in Theorem 18, A = [0,1]*, an,bn,cn : [0,1]* — [0,1],
ap (ma Y, Z) = Un (w), bn, (ZE, Y, Z) = Un (y), Cn ($7 Y, Z) = Un (:L') Un (y) We get

jff flan (z,y,2),by (z,y,2), cn (2,9, 2)) dedydz = £ (0,0,0)

[0,1]°

ooojﬂan oooﬂfbn+ ooofﬂcn

[0,1) [0,1)
oooﬂf + ooojﬂzﬁ oooﬂf

0,1
b +2 (0,0,0) ﬂj anCr
[o 1 0,1
nw(ma fE )
0,1)3 [0,1]3 [0,1]3

above and in the sequel of this proof we write simply ﬂfm 1? @n instead of
jﬂ[(} 12 On (x,y, z) dedydz, etc. Since by Fubini’s theorem

[H]j _ mb2—/ (z) da,

[0,1]3

JHC% = (/01Ui(w)dx> (/Olvi(x)dx)

[0,1)°

and from the hypothesis 0 < v, (z) < 1, Vz € [0, 1] we have

0< </01u,%(a:)dx> (/Olvi(;p)dz> g/olui(g:)dx,

we deduce that

o< [[[ e fffie [ o[ ot ar

[0,1]? [0,1)3 [0,1)3



HencebyRm rk 3 we hav
] j f(u wn () v () dady = f(0,0,0)

[0,1)°

2 5-(0,0,0) (/Olun (2) dx>2

+2aajgz (0,0,0) (/Olui () dx) </01vn (z) d:v)

+2 aa;gz (0,0,0) ( /0 i (@) d:p) < /0 i () v (2) d:c)

+o < /O "2 @) da:) . 2)

Since by hypothesis lim fol vy, () dz = 0, we get
n—oo

(/Olui(x)dx) (/Olvn(a:)dx> —o(/olui(x)dm).

From the Cauchy-Buniakovski-Schwarz inequality and 0 < v, () < 1, Vx €
[0,1], we have

</01un(x)d:c) (/Olun(fv)vn(a:)d;p> <
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1u%(x)dx 1u%(x)dx 1v,2l(x)dx§ 1ui(a:)dx 1vn(x)dx
[, e [ o] [ woses ([ )

and again from the hypothesis li_)rn fol vp, () dz = 0 we deduce that
n o0

(/Olun(w)dx> (/Olun(x)vn(x)dx) =0</01u%(x)dx), (3)

The evaluation from the statement follows from the relations (2) and (3). O

6. SOME EXAMPLES IN THE CASE OF TWICE DIFFERENTIABLE FUNCTIONS

To avoid the repetitions: in this section f : [0,1]* — R is a contin-
uous function which is twice differentiable at (0,0,0), S = af = (0,0,0) +
5 (00,0045 (0,0.0). Af(0,0,0) = 54 (0,0,0)+ £ (0.0,0)+ +20,0,0)

2
T =24 (0,0,0)+ 2L (0,0,0) + 8y8fz (0,0,0).

= ozxdy
We begin with two applications of Corollary 20.

Corollary 22. The following evaluation holds

A -2 1
Hff()dxdydz_f(ooo)+s+ (0,09 S+0<>.
I3 n3
[0,1°
Proof. Let uy, : [0,1] — [0,1], uy, (z) = % We have fol Uy, (z)de = m,

fol u2 (z)de = m We deduce that

"oyt 2" _ S £/(0.0,0
s <n o n) dadydz = £0.0.00+ T+ )

0,1
Lo <1>
n2 (n + 1) n?

S Af(0,0,0) 1
= f(0,0,0 — .
A )+n(n+1)+n2(2n—|—1)+0 n3
Since m = n% - % + o(n%) and m = # + 0(%), after some
simple calculations we get the evaluation from the statement. O

Corollary 23. The following evaluation holds

yn Zn
dzdyd
H]ff( (" +1) <yn+1>’n<zn+1>) T
_ SIn2 (12In2—6)Af(0,0,0) — 728 1
= £(0,0,0) + 3 + Tom3 +o 5
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Proof. Let uy, : [0,1] — [0, 1], uy, (x) = We get

DEiEayE
Hff U, (), un (y) , un (2)) dzdydz = f(0,0,0)

[0,1]3

+s/1un(x)dx+Af(o,o,0)/1ui(x)dx
0 0

+2T(/Olun(m)dx>2+o(/Olu,%(x)dx>.

We now use the well-known results that if ¢ : [0,1] — R is continuous then
fol nx"p (") dz = fol p(x)dz +o0(1) and

nli_)nolon</01nm”gp(m")d:p—/01<p(x)dx> :—/01; </Ox<,o(t)dt> dz

or equivalently

/Dlnx"go(x”)dx:/olgo(:c)dx—711/01;;(/j(p(i)di)dﬂt—i—O(i)

for ¢ (z) = %H, see [6, problem 3.13]. We deduce that fol ;ﬁﬁldx =In2+

o(1), 01 ﬁfldlen2—%+o(%); we have used that fl In( Q;H)d = Tlr;,

see [7, Proposition 11]. Also

! 1 [t ona® 1 U tat
u? (z)der = / d:cz(/ +01>
/0 (@) n? Jo (zn41)° nd \Jo (t+1)° M

2ln2—1+ 1
= —_— [0} _—
2n3 n3

/1 (z)d 1/1nx dz  In2 2 n 1
Uy () de = — ——+o|— ).
0o n? Jy, an+1  n?2  12n3 n3

Hence (fol Up () dx>2 =o0 (n%) and we get that

and

([ 7 Ctn () 100 () 0 (2)) iy

[0,1]3

_ In2 72 (2In2—-1)Af(0,0,0) 1
= f(000)+5<n2 12n3>+ 53 —|—0< )

The stated evaluation is obtained from this by simple calculations. O

We continue with an application of Proposition 19.
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Corollary 24. The following evaluation holds
ij(x yyYE 22 )d:):dydz —£(0,0,0)+ 2
n n n

[0,1]? "

Af(0,0,0) — 8 1
+ 477,4 +o TL4>

Proof. With the choice up,v, : [0,1] — [0,1], u, (z) = %", vp () = 2"
1 1 1
we have [ u, (z)dz = ﬁ, Jo vn (z)dz = %H’ Jo vt (z)dz = =5

1 1
Jo v (z)da = TIH’ Jo tn () vy (z) dz = m We therefore get

Hj / <:£T;y" e Zn; n> dzdydz = f(0,0,0) + 8

0,12 " nn+1)°
n Af(0,0,0) n 2T +o(1>
n?2(2n+1)*  n2(n+1)22n+1) nt
and hence
n,n n 1 n.n S
ﬂff(gc R >dxdydz:f(0,0,0)+2
Af(0,0,0 1
FAI000) (1)
n?(2n+1) n
From m = % — % +o0 (n14) we deduce that
ﬂjf(”’” vy ye 22 )dxdydz - f(0,0,0)+5<3—4>
o1 n n n n n
Af(0,0,0) 1
+74n4 +o0 i)
that is, the stated evaluation. O

The next result is an application of Proposition 21.

Corollary 25. The following evaluation holds

"y x"y" B af of 1
I (nn o )dxdy = £(0,0,0) + (ax (0,0,0)+ 5 (o,o,0>) =
[0,1)°
of of of 10%f 16%f 1
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n

Proof. Let w,, vy : [0,1] = [0,1], u, () = -, vn (z) = 2™ in Proposition 21.
We get
TL n

ﬁ f( vl ety >dxdy:f(0,0,0)

af of 1 of 1
+<a (0,0,0) + 5 (0,0,0)>n(n+1) g(OOO)W

o f f 1 O*f 1
+<a 2(000) 8(000)> n2(2n+1)+28xay(070’0>m

+
( (2n+1 )
and hence

ﬂ f(fll; 2"y >dxdy:f(0,0,0)

(af 0,0,0)+ 7 ((),0,0))1+3f(o,o,0).n13

0 Ay n(n+1) 0z
0% f 0% f 1 1
(21000 2L 0.00) Ly vo( L)
From the evaluation m = 7712 — % +o0 (%), by simple calculations we get
the evaluation from the statement. O

We end this paper with an application of Theorem 18.
Corollary 26. The following evaluation holds

n,n,n 2n,,2n 2n 3n, 3n 3n

ffff(myz TV E TV >d:ndydz:f(O,O,O)—I-;{1

0,1
B 1
T o)

where A = 5 (0,0,0) + é%(()OO) %%(OOO)B:—ﬂ(ooo)—
%%(000)7%%<000)+ £(0.0,0)- 35+ 54 0,0,0)-4:+ 54 0,0,0)- 35
+2£(0,0,0) - & + 2L (0,0,0) - 45+8yaz(000) 2,

Proof. From Theorem 18 and obvious calculations we get

n, n,n 2n,,2n . 2n 3n, 3n_ 3n
Jﬂ7<xyz rye Ty Z)dMszﬂamm

0.1°
of 1 of 1 af 1
oz (0:00)- n(n—+1)>° +€Ty(0’0’0)'n(2n+ TR (0,0,0)- n(3n—+1)>°
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0% f 1 a2f 1
- (0,0,0) - 0,0,0) - ——
522 (0 0:0) n2 (2n+1)° oy (0.0.0)- n? (4n+1)°

o2 f 1 o2 f
27 0,0,0) - 42 0,0,0) —
0z 7 ( ) n2 (6n + 1) 6953,@( ) n2 (3n + 1)°

% f 1 o*f 1
+2——(0,0,0) - +2 0,0,0) ——————5 +o0
910z ( ) n?(4n+1)° 0Oyoz ( ) n? (5n + 1)3 (

: 1 _ 1 1 _ 1
From the evaluations no ) = F—f—i-o( ) n@niD® = Bl 16”5 +0(

n(3n1+1)3 - 271n4 - 271n5 +o (%) we deduce that

ffjf (iL‘ yzn 2ny2n22n’ 3ngzn 3n> dodyds — F(0.0.0

)

);

30_“,_. 3(,.“‘ =

n
0,13
of 1 3 of 1 3
*ax<0’0’0>'<n4‘n5> gy (0.0 <8n4 mns)
of 1 1 0% f 1 an
—1—6)(0,0,0)-<27n4—27n5>+a 2(000) %5 B—yQ(O,O,O)-m
2 2 2
0% f 1 o2 f 1 0% f
552 (00,00 g5 +255-0,0,0) - g5 +2575-(0,0,0)- 5

2
0 f 1 1
+25,5; (00,0 o5 4o (n5>

After some simple calculations we get the evaluation from the statement. O
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MATHEMATICAL NOTES

A sequence of integrals on the multidimensional unit cube
revisited

ULrIcH ABELY, VITALlY KUSHNIREVYCH?

Abstract. We present a new proof of the limit of a sequence of integrals
on the multidimensional unit cube. This limit was recently derived by
Popa. The approach is based on a reduction of multivariate integrals and
an application of a method of asymptotic analysis. Finally, we state a
slight generalization.

Keywords: Integral formulas, Integrals of Riemann and Lebesgue type.
MSC: Primary 28-01; Secondary 26B20, 26 A42.

1. INTRODUCTION

Let n, k be positive integers. Recently, Popa [2] considered the multi-
variate integrals

In,lc [f] = /[0 1}’@ (1 — 1Ty - -Tk)n f ((1 — Tix9 - xk)n) dX,

where dx = dxjdes - - - doy, and derived, for continuous functions f : [0, 1] —
R, the limit

. n
nlglgo ank / f(x)dw = I [f] (k €N). (1)
We start with some notation. The gamma function I' (2) = fo t*~letde,

for Re(z) > 0, interpolates the factorials (k — 1)! = I' (k) on the positive
integers k. By convention, we set 0! = 1.

In what follows, we use the Landau notation. Let g, h be two real-valued
functions defined on an open interval containing a € R U {—o0,+o0}. We
write g (x) = O (h(x)) as * — a, if there exists a positive constant M such
that the inequality |g ()| < M - h (z) is valid in a certain neighborhood of a.
For the one-sided limit  — a + 0, a € R, the definition of Landau’s symbol
O is obvious.

In the special case k = 1, Eq. (1) takes the form

n-Ini[f] = / d:c—/ f@)tn dt—>/ ft I [f]

as n — 0o (see the references given in |

DTechnische Hochschule Mittelhessen, Fachbereich MND, Wilhelm-Leuschner-Strafle
13, 61169 Friedberg, Germany, Ulrich.Abel@mnd.thm.de

2 Technische Hochschule Mittelhessen, Fachbereich MND, Wilhelm-Leuschner-Strafie
13, 61169 Friedberg, Germany, Vitaliy.Kushnirevych@mnd.thm.de
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The purpose of this note is a short proof of Popa’s formula (1). The

last section presents a generalization.

2. AN ALTERNATIVE PROOF
First, we take advantage of the reduction formula

1

1
- —In k—1
/[o,u’ff(m?”'x’“)dx_ r(k)/o (=Int)"" f (£) dt (2)

for integrals of Beukers’s type (see [1, Theorem 1]) in order to obtain

Llf] = —

As the next step we show Eq. (1) for monomials e, () = 2" (r =0,1,2,..

We study I, [er] by using relation (3). A change of variable t = 1 — e~

leads to

1 * —s\\k—1 —ms
F(k:)/o (—ln(l—e )) e ds

with m = (r + 1) n + 1. In the case k = 1, it immediately follows

In,k [er] =

. . n 1
A n - Ty fer] = lim r+L)n+1 r+1 = hler].

Now we deal with I,, ; [e,], for k > 2. Differentiating

/ 2 le™™sds = mAT ())
0

k times with respect to A, we obtain

/0 T (L) emids = <;A)k (mr )

This implies (put A = 1) the asymptotic formula

/Ooo (—Ins)* e ™ ds = - (Inm)* + O (1 (lnm)k1> (m — 00).

m m

Because

(—In(1—e*)" = (—lns—ln <1_e_s>>k = (-lns)*+0 ((—ms)’“*

! k—1 n n
i Cmn A 3)

).

S

)
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as s — 0+, since (1 —e™®) /s = 1+0 (s) as s — 0+, we can choose a constant
c with 0 < ¢ < e7!, such that

/ (—In(1- efs))k e "Mds = / (—Ins)* e ™ ds
0 0

+0 (/OC(—lns)k_l em3d3>

as m — 4o0o. Here we tacitly used the fact that, for each ¢ > 0,
/ (—In(1- 675))’{ e ™¥ds = O (exp (—cm/2)) (m — +00)
(cf. [3, Eq. (2.21) on page 69]). This approach is valid also in a more general

setting (see [3, Theorem 2 on page 70]). Combining the above formulas we
obtain

) n 1 .. In((r+1)n+1) k n
lim ——1, ] = =1
ney00 (Inn)* w1 ler] Kl oo < Inn (r+1)n+1
1 1

= H'mzlk"‘l[er]'

By linearity, the limit (1) is valid for each polynomial f. As shown in [2]
the desired result follows, for each continuous function f, by the Weier-
straf3 approximation theorem. In order to keep the paper self-contained,
we repeat the density argument. Put J, ; [f] := (n/ (In n)k*l).fmr€ [f]. Given
e > 0, we can choose a polynomial p approximating f € C'[0, 1] such that
|f (z) —p(x)| < e for all x € [0,1]. Furthermore, choose an integer N, such
that |J, k [p] — Ik [p]]| < € and |Jp, i [eo] — Ik [eo]| < 1, for n > N. Noting that
Iy [eg] = 1/T" (k), we conclude that

| Tnge [f1 = Lk [f1 < ok [f = DI + [Tk [p] = Lk [P]] + |1k [p — ]
< e-|Jnkleo)| +e+e-|Ix[eo]] <2e+e+e,

for n > N.

3. A GENERALIZATION

Let C'[0, 1] denote the linear space of continous functions f : [0,1] — R.
Define the linear operator L : C'[0,1] — C'[0,1] by (Lf) (0) = f (0) and

(Lf)(x):i/oxf(t)dt 0<x<1).

Denote its iterates by L/ = Lo L7~ (j € N), where L is the identity oper-

ator on C'[0,1]. In particular, one has Lie, = (r+1) e, (r=0,1,2,...).
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Furthermore, if we approximate a function f € C'[0,1] by a polynomial p
such that |f (z) —p(z)| < € for all = € [0, 1], we conclude that

@G-, [ea=c (<o),

and, by mathematical induction |(L7 (f —p)) ()| < e, for all z € [0,1]
and j € N. Following the lines of Section 2 one can show the following
generalization of Eq. (1).

Theorem 1. Let n, k, j be positive integers. For continuous functions
f:0,1] = R, the equality
ni 4
im ————— ... =l - n — - n
7}1—{20 (lnn)kfl /[0,1]’“ (x1zo - xk)’ T (L —xyxg - ap)” f (1 — 2y -+ - ) ") dx
Y
= — - d
i | @D @

holds, where dx = dx1dxs - - - dxg.

Popa’s result is the special case j = 1.
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Authors should submit proposed problems to gmaproblems@rms.unibuc.ro.
Files should be in PDF or DVI format. Once a problem is accepted and considered
for publication, the author will be asked to submit the TeX file also. The referee
process will usually take between several weeks and two months. Solutions may also
be submitted to the same e-mail address. For this issue, solutions should arrive
before 15th of November 2021.

PROPOSED PROBLEMS

513. Find all differentiable functions f : R — R which verify the identity
zf' (x) + kf(—z) = 2% for all z € R,
where k£ > 1 is an integer.

Poposed by Vasile Pop and Ovidiu Furdui, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania.

514. Evaluate the integral

L log"x

——dux,
0 Va(l—x)
where n is a positive integer.

Proposed by Mircea Ivan, Technical University of Cluj-Napoca,
Romania.

515. Let S = {(a, 8,7) € (0,7/2)3 : a+ B+~ =7} On S we define the
real valued functions

a:=a(a,f,y) = \/sin4ﬁ + sin* 4 — 2sin? B sin? 7 cos 2a,

b:=bla,B,7) = \/Sin4 a + sin* v — 2sin? asin? vy cos 23,

c:=ala,B,y) = \/sin4 a + sin? B — 2sin? asin® B cos 2.
Prove that the function f: S — S,

b2+ c? — a? a’ +c? — b? a? +b? — 2
fla, B,7y) = (arccos (ch) , ATCCOS (M) , aTCCos <2ab>) ,

is well defined.

Is f injective? Is it surjective?

Proposed by Leonard Giugiuc, Colegiul National Traian, Drobeta Tur-
nu Severin, Romania, and Abdilkadir Altintasg, Emirdag, Afyonkarahisar,
Turkey.
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516. Let n > 2 be an integer. Let v1,...,v,—1 be some orthonormal vectors
and let v be a unit vector in R". We regard vy, ...,v,-1,v as column vectors,
i.e., as n x 1 matrices.

We consider the n x n matrix

A:vl-vlT—i—---—l—vn_l-v,{_l—v-vT.
If A is not invertible, prove that A2 = A and determine its rank.

Proposed by Marian Pantiruc, Gheorghe Asachi Tehnical University
of Tagi, Romania.

517. Calculate the sum

oo

3p+r

S = :
P qzrl 5ptatrr(p+ q) (g + r)(r + p)

Proposed by Vasile Pop, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania.

518. Calculate the integral:
/OO z?\/rlnz de
0 Tt+a2+1
Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu,
Romania.

519. Calculate

o0
1 1 1 1 1
1) b — 24— —— ).
Z( )'n (n+1+n+2+ o T 16n2>

n=1

Proposed by Ovidiu Furdui and Alina Sintamdrian, Technical
University of Cluj-Napoca, Cluj-Napoca, Romania.

520. Let (zy)n>0 be a sequence with zg € (0,7/2) and

sinz,, n iseven,
Tn+l = .
" cosx, mnis odd.
Prove that x3, — a and z9,+1 — b when n — oo, where a and b are
two constants that are independent of the choice of x.
Also determine if the series

o0 [o¢]
Z |xo, —al® and Z |xon4+1 — b|*
n=1 n=1

are convergent for a > 0.

Proposed by Radu Strugariu, Gheorghe Asachi Tehnical University
of Tagi, Romania.
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SOLUTIONS

496. Calculate the integral:
[e.e]
/ arctan x do.
o Vat+az+1

Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu,
Romania.

oo
t
Solution by the author. Put A = / el S
0o Vat+ai+l
t
We also consider the integral: B = AT 4. We have
o Vit rl
Aip— /oo arctan x + arccot :Cdx T /00 1 de.
0 zt+a?+1 2Jo Vat+a2+1

We are going to calculate the integral

o0 1
o:/ 4
o Vat+az24+1

We can write
o 1 ! 1 o 1
C:/ dx:/ dx—l—/ —dux.
0o Vrrt+az2+1 0o Vrt+az2+1 1 Vat+a?+1
1
In the second integral we make the variable change x = T We have
1 1 1 1
——dr=—— | -5 |dt = ———————=dt
vVt +a? 41 Y 1< t2> VIT+ 2+ 1
Tt et
Hence / ————dz = —/ ———dz = / —dt
1 \/:c4+x2+11 1 Vat+a?+1 0o Vtr+t2+1
1
It follows that C' = 2 / —dt
0o Vtr+t2+1

We will show that the integral C' can also be expressed using the com-
plete elliptic integral of the first kind, which is defined by

3 1
Kk)= | —— 4§, with—1<k<L.
9
0 1 — k2sin

1
More exactly, we will show that C = K <2) To prove this, we write the

K (1) _ / B )
2 0 1— lgin26

T4

right-hand side as

Wl
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0 2t
Substitute ¢ = tan—-. We have sinf =

2 1+t
1+ ¢2

dé, so df = idt. It follows that
1+¢2

1 ! 1 ! 1
K|z)= . dt =2 | ————=dt =
2 0 f1_1_4a2 1412 0 VP +2+1

4 (14t2)2

1
In the integral A we make the change of variable x = —. We have arctan z =

1 1
arctan ¢, and as seen above, —————dz = ———dt. We get
Vat + 22+ 1 Vit + 12+ 1 &
/ °° arctan z O arctan t d
——dx = — ——dz,
0o Vat+azz+1 o VIE+12+1
T T 1 s 1
ie., A= B. Si A+B=-C=—-K|= tA=—-K|[=]. O
Le., nce A + 5 5 <2),We ge 1 (2>

Note from the Editor. We received similar proofs from Daniel
Vacaru, from Pitesti, Romania and Sean Stewart, from Bomaderry, NSW,
Australia.

Sean Stewart uses a different substitution to get fol ﬁdt =1K(}).

Namely, he takes x = tan 6 instead of tan g. He gets

1 s 2 2
/ 1dt:/4 sec” 0 dﬂz/ sec” 0 10
0o Vtt4+t24+1 0o Vtan?0 +tan26 +1 0 Vsect —tan246

B /Z{ do B /’Z do
0 v/1—sin26cos20 0 4/1—%3111229.
Then, after the substitution 6 — 6/2, he gets
1 de 1 (2 de 11
/ / 1 32 :2/ / L gip? :QK(i).
0 1 — 7sin” 20 0 1— 7sin”0

1
497. Let n > 4 and let aq,...,a, be nonzero real numbers such that — +
a1

1
-+ 4+ — = 0. Prove that

Qn
?4‘4‘0/72 Z(ai—a]‘) Zn .
1

1<j
When do we have equality?

Proposed by Leonard Giugiuc, Traian National College, Drobeta
Turnu Severin, Romania.
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Solution by the author. We define the 3 x n matrix

A: al e an
. 4
a1 an

From

1
n” 22:1 ai Yo a nn ZZ:1 a; 0

AAT = Z%=1 i > i1 G 2= Die1 G )i G S

> i1 a n i1 a? 0 n > ie1 a?

it follows that

n n n 2
det(AAT) = (Z a12> n Z a? — (Z ai> —n?
i=1 i=1

N

i=1 ¢
1
2 3
= (Za2> Z(ai—aj) —n .
i=1 1t/ i<y
For every i < j < k we denote by A; ;x the 3 x 3 matrix
1 a 1
Aiyj,k =|a a; ag
R G |

a a; ax

Then, by the Cauchy-Binet formula, we have

n
1
(Z (ﬁ) Z(ai —aj)? —n® = det(AAT) = Z det A; ; 1, det AZM

i=1 1/ i<j i<j<k

= Z det(A,-7j7k)2.
i<j<k

It follows that (E?:l a%) >icjlai— a;j)? > n?® with equality iff det 4; j 1 = 0
Vi, 5, k, 1< g <k.

But if we multiply the columns of A; ;. by a;, a; and ay, respectively,
and permute the rows we get a Vandermonde matrix. So we have

a; a; ag 1 1 1
a;ajap det A; jp = det a? a? a% =det | a; a; ayp
1 1 1 ai a af

= (aj — ai)(ax — a;)(ax — a;).

Hence the equality holds iff for every 7 < j < k the numbers a;, aj, ay

are not mutually distinct, i.e., iff [{a1, ..., a,}| < 2. Since 37 | L =0, some
of ay,...,a, are positive and some negative, so there are a,b € R, a > 0 > b,

and some 1 < k < n — 1 such that the sequence ay,...,a, contains n — k
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copies of a and k copies of b. Then 0 = > L _ nk 4 %. It follows that

i=1 a; a
a= (n—k)cand b = —kc for some ¢ > 0.
In conclusion, the equality holds if and only if there is some ¢ > 0 and
some 1 < k < n — 1 such that the sequence a1, ...,a, contains n — k copies
of (n — k)c and k copies of —kc. O

Solution by Marian Cucoanes, Eremia Grigorescu Technological High-
school, Marasesti, Vrancea, Romania. We may assume that a; > --- > ay,.
Since afll +-- -—l—é = 0, not all a; have the same sign, so thereis 1 <k <n-—1
such that a1 > -+ > ar > 0> agy1 > -+ > ay.

Let A={1,....k} and B={k+1,...,n}. As 3 ;_;c,(ai —a;)* >
>ica, jen(@i — a;)?, it suffices to prove that

(Z ;2) Z (a; —a;)* > n®.

i=1 /) ic€A, jeB
For j € B we put b; = —aj, so that b; > 0 for j € B. Then the
inequality from the hypothesis writes as i+- . -+i = b,iH +-- -+é =X>0
and the inequality we want to prove writes as
1 11 1 s g
<a2+”'+a2+b2+”'+b2> > (ait+b)?=nt (1)
1 k k+1 "/ icA, jeB
We have
. N2 — 2 2 2 2
Y (@i +b)?=(n—k)(a?+ - +a}) + k(O + oo+ by)
icA,jeB
+2(ar + -+ ag) (bgp1 + -+ -+ by). (2)

Now the functions f,g,h : (0,00) = R, f(z) = 2%, g(z) = 272, and h(x) =

x~ ! are convex. We apply Jensen’s inequality for the functions f, g,k to the

1 1 : 1 1 _
numbers a—l,...,ae(o,oo). Slncea—i—--wi—a—X, we have

X? X 1 1 1 1

2 el 2) < il )= — 4

co () =) e () —a

E kg () <o (L) ag (L) =2t va

xz =k %) =9, 9 o )= ® a,

k2 X 1 1

Ykl ZE )<= =) = ]

() sn(n) () mas b
Similarly, when we apply Jensen’s inequality to b,iH s é, with bk1+1 +-
i:X,Weget
1 1 X? (n — k)3 (n —k)?
%‘F"""E > bpyqt+e - +b3 > o bkt 2
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It follows that

1 1 X2 X2 nXx?2
62f+...+i> =
k+1

R
o )

and, by (2), we also have

k3 (n — k)3 k2 (n—k)?
2
E;ﬁ;%+@)z@pw»2+k-‘2+22-12

—k@%j0®1+m—kf+2ﬂn—M)—kgwkxn?
In conclusion, the right hand side of (1) is > k:(nn)izk) ) k(};k) -n? = n3, as
claimed.
Since f, g, h are strictly convex, the equality in (2) holds iffa; = - -+ = ay,
and bgy1 = -+ = by, ie, agy1 = -+ = ay. Butifa; = --- = a; and
Qg1 =+ = ap, then 32y o (a; — aj)? = >ica, jen(@i — a;)?, so in fact

the equality holds in the original inequality.

498. Let A, B € M,,(C) be two matrices such that
2 2 1
A? = B?~ I, = <(AB - BA).

Prove that:
(i) det(A? — B?) = det(A — B) det(A+ B) = 1.
(ii) (AB — BA)" = 0.

Proposed by Florin Stanescu, Serban Cioculescu School, Gaesti,
Dambovita, Romania.

Solution by the author. Let X = A4+ B, Y = A — B, so that A =
(X +Y) and B = 3(X —Y). Then the relation from the statement writes
as

XY (X —YP) L= (X4 ¥)(X ~Y) ~ (X~ ¥)(X +Y)),

which implies that 2XY + Y X = 31,.
Now XY and Y X have the same characteristic polynomial, Pxy (t) =
Pyx(T) =: P(T) = (t — A1)+~ (t — An), with Aq,..., A, € C. We have
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P(t) = det(tl, — XY) and also
P(t) = det(tl, — Y X) = det(tI, — 31, + 2XY)

= det <(—2) (3’;1” - XY>> = (—2)" det <32_t.rn - XY)

=c2re (P =1 ()

Since P(t) = [[;—,(t — Xi) = [, (t +2X; — 3), we have that A\i,..., A\,
are equal, in some order, to 3 — 2\,...,3 — 2\, i.e., there is a permutation
o € Sy such that \; = 3 — 2)\,(;), i.e,, such that \; — 1 = (=2)(As) — 1)
V1l<i<n.

Let N > 0 be an integer such that ¢ = 1. (Since o € S,, we may take
N =S,| = n!l.) Then for every 1 < i < n we have

Ai—1=(=2)Asiy = 1) = (=22 o2y — 1) =+ = (=2 Agnpy — 1)
= (=2)V(\ - 1).
Hence (1 — (=2)M)(X\; —1) =0 and so \; = 1.
Thus we proved that Ay = --- = A\, = 1 and so P(t) = (¢t — 1)". We

now prove our statements.
We clearly have

det(A — B)det(A+ B) = det(A+ B)(A— B) =det XY = Ay -\, = 1.
From A= 3(X+Y), B=3(X-Y), and YX =3I, — 2XY we get

AB— BA = %((X FY) X —V) = (X — Y)(X + 1))
= LYX - XY) = (L, XY),

which implies that

A2 —B?=1,+ %(AB —~BA) =1, + %(In —XY) = %(31'” — XY).

It follows that

1 1 1
det(A? — B?) = det 5 (8l = XY) = o2 det(31, = XY) = o Pxy (3)
1
= _—3-1)"=1
2n( ) ?

which concludes the proof of (i).
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Next, we have

Pag_pa(t) = det(tT, — (AB — BA)) = det (un _ g(In _ XY))

(D) (o))
() ()
() ()= (3 (e e

By the Cayley-Hamilton theorem, (AB — BA)" = 0. O

Generalization by Cornel Baetica. Let A, B € M,(C) be two matrices
such that

A? — B? 4+ u(AB — BA) = vI,,

where u, v are non-zero real numbers. Prove that:
(i) det(A? — B?) = det(A — B) det(A + B) = ™.
(ii) (AB — BA)" = 0.

By using the same substitutions, that is, X = A+ Band Y = A — B,
we get

(1—-uw)XY +(1+uw)YX =2vl,. (1)
If u =1, then YX = vl,. It follows that XY = v[,, and thus XY —
Y X = 0. The same conclusion holds for ©u = —1.
Suppose u # £1. Then (1) is equivalent to
1 2
xy - "Flyx - 2 g
u—1 1—u

Now note that g—ﬂ #-1,0,1.
In the following we show that if X,Y € M,,(C) are such that
XY —aY X = bl,, (2)

with a, b non-zero real numbers, a # £1, then (XY — Y X)" = 0.
Let us denote the characteristic polynomial of a matrix M by Py (T).
We have

Pxy_yx(T) =det (TI, — (XY —Y X)) =det (T — b)I, — (a — 1)Y X))
= P(afl)YX(T - b) = P(afl)xy(T — b)
=det (T = b)I, — (a — 1)XY)) = det (T'I,, — a(XY — Y X))
= Pyxv-yx)(T) = a"Pxy_yx(a™'T).
Writing
Pxy_yx(T)=ag+aT+ - +ap T +T"
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we get
ap+arT+ -+ an T" F + 17"
=a"(ag + aja T+ -+ ap_qa "7 4 a "T™).
This leads to a”‘a; = a; for all i = 0,1,...,n — 1. Since a”* # 1 for

all ¢ = 0,1,...,n — 1 we obtain a; = 0 for all ¢ = 0,1,...,n — 1, and
thus Pxy_yx(T) = T". In particular, by Cayley-Hamilton Theorem we get
(XY -YX)"=0. Since XY —YX =2(BA— AB) we get (AB—BA)" =0
and (ii) is proved.

In order to show (i) notice that XY = vl, + “F(XY — Y X) and then

det X detY = det(XY) = (“TH)nPXy_YX (%) = v"™. On the other side,
det(A? — B?) = det (v, — u(AB — BA)) = u"Pap_pa (%) = v™

Remark. Note that in (2) we may assume that a,b are non-zero com-
plex numbers such that a’ # 1 for all j = 1,...,n. Taking into account that
a= Z—ﬂ, it follows that the condition u,v are non-zero complex numbers and
u 1s not purely imaginary can replace in the problem the condition u,v are

non-zero real numbers.

499. Let a,b > 0. Calculate

g
lim \/ﬁ/ \/a sin?” x + bcos?" x dz.
0

n—oo

Proposed by Ovidiu Furdui, Alina Sintamarian, Technical
University of Cluj-Napoca, Cluj-Napoca, Romania.

™

2
T, 5] we get

Solution by the authors. The limit equals (\/a +Vb

By making the substitution t = § — x on the interval

3 i
\/5/2 \/asin2”m+bc:082” zdx = \/ﬁ/ \/asin2“1:+b(3052” xdzx
0 0 (1)

+\/ﬁ/4 \/acos%x+bsin2”xdx.
0

Let I, = \/5/4 \/a sin?" x + bcos2? xdz. We have
0

\/5\/5/4 cos"xzdx < I, < \/&\/5/4 sin” zdx + \/5\/5/4 cos" zdz. (2)
0 0 0
On the other hand

ud 5 n
O<\/ﬁ/4sin”xdx<\/ﬁ-z'<\g>
0
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and it follows that

lim \/5/4 sin” xdx = 0. (3)
0

n—oo

Also,
\/5/4 cos" xdx = \/ﬁ/2 cos" xdr — \/ﬁ/2 cos" xdx.
0 0 %
We have

s 2 n
OS\/ﬁ/2cosnxdx§\/ﬁ'Z-<\g>
I

and this implies that

n—o0

lim \/ﬁ/2 cos" zdx = 0.
g
On the other hand

2 1 11
lim \/ﬁ/zcos”xdleim \/ﬁ--B<n+ ,)
0 n—00 2 2

n—o0

where the last limit follows based on Stirling’s formula. This implies that

lim \/5/4 cos" xdx = \/? (4)
n—00 0 2
Combining (2), (3) and (4) we get that
lim I, = lim \/5/4 Vasin? z + beos?" zdz = \/1;\/? (5)
n—00 n—00 0 2

Similarly one can prove that

lim \/ﬁ/4 Vacos?n z + bsin® zdz = \/&\/z (6)
0

n—oo

Combining (1), (5) and (6) one has that

lim \/ﬁ/2 Vasin? z + beos?n z dx = (\/a—l— \/5) \/Z
0

n—oo

The problem is solved. O

Note from the Editor. We also received a solution from Sedn Stewart,
from Bomaderry, NSW, Australia.
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500. Let C' be a simplex in R" with the vertices A1,..., Ay11 and let M be
a point in the interior of C. For every 1 < ¢ < j < n+ 1 we denote by A4; ;
the point where hyperplane generated by M and Aq,... A, ,Aj, LA,
intersects the edge A;A; of C. We denote by D the convex hull of {4;; :
1<i<j<n+1}

Prove that the volume of D is < (1 — %45 )V where V is the volume of
C, and the equality is reached if and only if M is the centroid of C.

Proposed by Leonard Giugiuc, National College Traian, Drobeta
Turnu Severin, Costel B3lcau, University of Pitesti, and Constantin-
Nicolae Beli, IMAR, Bucuregti, Romania.

Solution by the authors. For convenience, for every ¢ < j we denote
Aji = A;; so that A;; is defined for i # j.
Since M is in the interior of the simplex C, we have M = c1 A1 +--- +

Cni1Ant1, where c1,...,¢p01 > 0 and ¢1 + -+ 4+ ¢p1 = 1. Moreover, M is
. . _ _ _ 1
the centroid of C iff ¢ = - -- :1 Cn+j; = 1 e
We claim that A;; = GG Tndeed, A’- .= GG e A convex
citcj citc;

combination of A; and A;, so that A’ belongs to the edge A Aj. We also
have M = c1 A1 + -+ + cnp1An+1 and 01 + - Fepg =1, Whence
A;j _ M_Zk;éi,j kA and 1 _Zk;éi,j Gk _Gte 1
’ ¢+ ¢y c + ¢ c + ¢

Thus A’ is an affine combination of M and Ay with k # 4, j. Therefore A’
is on the hyperspace generated by M and Ay, with k # 4, j. By the deﬁmtlon
of A; j, we have A; ; = Al j» as claimed.

The volume of D is equal to V — Z”H Vi, where V; is the volume of
the simplex with the vertices A and A; ;, with j # i. For very j # i we have

i Aq . '
Ajj— A= % A; = C+C —(Aj — A;), so Aij is on the edge A;A; with
|AiA; 5| = QCTjC],|AiAj|. It follows that V; = [, & +C "% V. Hence the volume
of D is
n+1
V- ZHCZ+C] 1—fn(61,.,_7cn+1))‘/’
i=1 j#i

where fo(z1,. .., &ny1) = So0t! H#l 77z, We must prove that if

S={(z1,...,xpy1) ER" 1 z1,...,2p41 >0, 21 + -+ Tpy1 = 1},

then ming, ... yes fu(1,. . Tng1) = ”2‘21 and the minimum is reached

only at (z1,...,%n41) = (%H, e n%rl)

Since the map f,, is homogeneous of degree 0, i.e., f(tz1,...,tTpt1) =
f(z1,...,xpq1) for every t,x1,..., 241 > 0, our statement is equivalent
to ming, . gz, 150 fu(®1, .. Tpp1) = ”2—';1, with the minimum obtained only
when 1 = --- = x,4+1. We have to prove this for n > 2, but we extend this
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result, minus the fact that the minimum is reached only when z1 = - --
ZTn+1, to m =0 and 1. We will need these cases in an induction argument.
We have fo(x1) = 1 Vo > 0 and fi(zg,20) = =2 + 22— =1

r1+x1 r2+x1
Vx1,x2 > 0. Since ? = % = 1, our statement for n = 0,1 is trivial.
Suppose now that n > 2. Note that if z; = ... = z,41 = x then each
term HH,éZ ita; i the definition of f,(x1, .. $n+1) is equal to ()" = 1

ons
so fu(x,...,x) = ”2‘21.

First we prove that ming,, . . .)es f(T1,...,Tny1) exists Note that

S is an open simplex of dlmensmn n. For every 0 <e< ? we consider

S&* = {(1‘1,...,1'”4_1) e R™ . T1yeveyTptl >e, x1+ - + Ty = 1}. Then
S. C S is a closed simplex of dimension n containing (%ﬂ’ e %H) Since
S is a compact set and f,, is continuous, ming, . . yes. fa(1,. .., Tny1)
exists and it is at most fn(n%rl, e n%rl) = ntl
We prove that there is ¢ > 0 small enough such that f,(x1,...,Zp41) >
for every (x1,...,Zp41) € S\ Se.

For every 0 < m < n we define

n+1

(m+1)/2™

_(mapmyem o —
5m_<(n+1 ) Lsothar (146, = LT

)/2r

Note that for m > 1 we have 2(m+1) > m+2 and ZH > ;@Jﬁ Hence

1 2 3 n+1
09172 e

Consequently, ”;nl < ”;—;Zl for 0 < m < n. Hence for every 0 < m < n we

have1<W<2";ﬂ fe, 1< (14 8,)"™ < 20™ 50 0< 6 < 1.
0"

We now define ¢ = n+1 . Since 0 < &, < 1 Vm, Wehave0<5<n—+1
Assume that (xl,...,:nnH) € S\ S:. Then z; < ¢ for some i. By
reordering the variables, we may assume that 0 < z; < .-+ < x,41 and so
x1 < €. Since x4 is the largest term of the sum x1 + - + 241 = 1, we

have

S 1 1 S 1
X = 3 x1.
LS T S0 00 0n !

Hence

X1 x x
8o -0y > ==...2"
Tn+1 X2 Tn+1

It follows that there is 0 < m < n — 1 with i:—:; < Om
Ifi<m+1and j > m+ 2, then x; < xp41 and z; > Zy,42, so that

Li < Zmtl o 5 which implies that —1- = L > Hence, if

Tj — Tm+42 i+, 1+$i/$j

1
14+0m



SOLUTIONS 53

1 <:<m+1, then
n+1

H i_’_ij: H i—l—]a:j H xi-f—ij

€T x
1<j<n+1,5#i 1<j<m+1,5%4 j=m+2

T 1 nem
> J

1< <mt1,j£i

B (n+1)/2" H xj
(M D2 | s T F T

It follows that
n+1 m+1

fn(xlw"?xn-‘rl) :Z H xz—l—x] > Z H wzl_:x]

i=1 1<j<n+1,ji i=1 1<j<n-+1,j#i
m+1
n+1)/2"

T
m—|-1/2mZ H i—i-jl‘j

i=1 1<j<m+1,5#1

(n+1)/2"
=2 f (x1,...,x
(m+ 1)/2mfm( 1 m-‘rl)
But, by the induction hypothesis, we have fp,(z1,...,Zms1) > 7”2—#,
1)/2n .

whence f(z1,...,2pt1) > %fm(m, ey Tmg1) > B as claimed.

Since ming, . ....)es. fa(x1,...,xnt1) exists and it is at most ”;,21
and fp(z1,...,Tny1) > "ztl V(x1,...,Zpnt1) € S\ Se, we conclude that
Mingg, . 2..)es fa(T1, ..., Tpi1) also exists and it is equal to the minimum
of f, on S.. As seen above, since f, homogeneous of degree 0, this implies
that ming, . z..,>0 fu(®1,...,2n41) also exists and is equal to the minimum
of f, on S.

Let ¢1,...,cn+1 > 0 be such that

fety o yenin) = min (@1, @s):
(1, Tny1)ES

Then all partial derivatives of f,, at (c1,...,cn41) are zero. We claim that
¢1 = -+ = cpt1. Assume the contrary. So, if [ is an index for which it holds
¢ = min{cy, ..., chy1}, then at least one of the inequalities ¢; > ¢ is strict.
We show that i(cl, cvvyCnt1) < 0, which will result in a contradiction.

If i # 1, then dT:l xii’xl = (mﬁm)z’ and all the other factors of the product

Hj oy a:ziijzj are independent of z;. It follows that

il H - a2
dz; i i +x;  (m +xl )2 :cz—l—xj (@i + 20)? [ ]y (@s + 35)
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; d i
If i # 1, then dT:z:vzixi =& +m 2 It follows that
d .T}j
d:cljl;llxl—i-wj ; (a:l—i-xl )2 H xl—i-a:j

oy (i + »’UZ)Q [z (@ + )
By adding the formulas above, we get

dfn xj
digjl(xlj‘.'“/];n—i_l Z sz—f—f[?] d$lHI‘l+$]
J#

1#l

. Z Hﬁl Tj B Z Hﬁél Ly
(@i +2)? [ 100 (s + 25) oy (@i +20)? [0 (21 + 25)

)20 5] (N B
G ’ T\ @it @) (@it o) (@t 2)? [z (o +ag) )

But ¢; > ¢ for every i # [ and ¢; > ¢; for at least one value of ¢ # [. It
1

follows that each term — 1 is <0 and at
(Ci+Cl)2 H i, l(Cz+Cj) (Ci+Cl)2 Hj?gi’l(cl‘i‘cj) -
least one of them is < 0. Hence i’;" (c1,...,¢nt1) <0, as claimed.
In conclusion, for every cy, ..., cpy1 > 0 with
fn(cly"'aCTLJrl) = min fn(xla“-vwn+1)
T1,.00yTp41>0
we have ¢y = -+ = ¢p41 =: ¢ and so
. 1
ming, . z..150 fn(®1, ..., Tny1) = fule, .. 0) = ”QJ[L . O

501. Let f : R — R be a differentiable function. Then f(z +y) — f(z) >
yf'(x) Vo,y € R if and only if n(f(xz + 1/n) — f(z)) > f'(z) Y2 € R and for

every positive integer n.

Proposed by Florin Stanescu, Jerban Cioculescu School, Gaesgti,
Dambovita, Romania.

Solution by the author. The “only if” part is trivial.

For the “if” part we prove that f is a convex function. Assuming
the contrary, we infer that there are a,b € R and 0 < t < 1 such that
flta+ (1 —1t)b) > tf(a)+ (1 —1t)f(b). We define the function

o 0l B o) = 1)~ fla) - 1O W )

Note that ¢(a) = ¢(b) = 0.
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We have
d(ta+ (1 —t)b) = f(ta+ (1 —t)b) — f(a) — f(bl)):f:(a)(ta +(1—¢t)b—a)

= f(ta+ (1 —t)b) — (tf(a) + (1 —¢t)f (b)) > 0.

Let M = max,¢[qp (), which exists because ¢ is continuous and [a, 0]
is compact. We obviously have M > ¢(ta + (1 — ¢)b) > 0. Define the set
A ={z € [a,b] : ¢(x) = M}. Then A is closed and () # A C [a,b]. Hence
A is a non-empty compact set and so it has a maximum, say, max A = m.
From ¢(m) = M > 0 = ¢(a) = ¢(b) it follows that m # a,b, i.e., m € (a,b).
Then ¢(m) = max,cpp f(2) implies f'(m) = 0.

Since m < b, there is an integer n > 0 such that m + 1/n < b and so
m+1/n € [a,b]. If we put h = 1/n, then m + h € [a,b] and the inequality
n(f(m+1/n) — f(m)) > f'(m), from the hypothesis, writes as f(m + h) —
F(m) > hf'(m).

Note that f(z) = ¢(z) + f(a) + LO=LD (z — a) entails f/(z) = ¢/ () +
M. Therefore the inequality f(m + h) — f(m) > hf'(m) writes as

f(b) — f(a)
b—a

- <¢<m> + f(a) + "W(m - a>> = (¢’<m> * W) ’

which is equivalent to ¢(m + h) — ¢(m) > h¢/(m) = 0. In other words
¢(m~+h) > ¢p(m) = M = max,¢[qp (), which implies that ¢p(m +h) = M,
that is m 4+ h € A. But this contradicts the fact that m = max A.

Hence f is convex, which implies that one has f(z+y) — f(z) > yf'(z)
for all z,y € R. O

(6tm+ 1)+ fi0) + m+n-a)

502. Let m > 0 be an integer. Evaluate the series

o0 m| (k-+m)
S e
k=1 ’

where () is the derivative of order i of f.

Proposed by Mircea Ivan, Technical University of Cluj-Napoca,
Romania.

Solution by the author. In order to calculate the required derivatives
(™ log a:)(k+m), k =1,2,..., one can proceed with the Leibniz formula for
the higher derivative of a product, which is quite laborious. We provide here
a straightforward method.

Fix k£ > 1. For m = 0, we have

(logz)® = (=) Yk —1)! - 27",
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For m > 1, we obtain the recurrence relation:

(2™ log x)(k—i—m) - ((xm log $)/)(k+m71) _ (m 2 Mog x + xm_l)(k—i-m—l)

=m- (2" logz) (htm—1)

+0,
hence,
(™ log x)(k+m) =m!- (log x)(k) =m! (=) k-1 .27

Now it is easy to find the answer:

00 mq (k+m) > (—1)k-1 21
( ogkﬂ'f) —m Y (lzxk 2 EOD o og (1+271)
1 : k=1

i

=m!-log

Note. As pointed out by Mircea Rus, the derivative (2™ logz)™+1)
can be calculated by using the Leibniz formula for (fg)™. Then, with the
help of some binomial formula, one gets (2™ log z)(™+1) = m!z~1. From here
we get (2™ logz)*+t™) = ml(z=1)E=D = m! . (=1)F 1k — 1)1 - 27,

Solution by Mircea Rus, Technical University of Cluj-Napoca, Romania.
Let f(x) =a™logz (z > 1) and fix . Then

. (2™ log g)(k+m) (B (g o)
5im 3 I082) :<ka!< >> = (flz+ 1)~ £
k=1

k!
k=1

where we used the power series expansion of the function f around x:

0 £(k) (4
f(y)zzf k( Jy—a)h, ye©020)

0

k=
with y := 2+ 1 € (0,2x) (it is an elementary task to show that the radius of
convergence is ).
It remains to compute (z™ log a:)(m) for arbitrary > 1 and m € N.
Denote g, (z) = (2™ log x)(m). Then go(x) = logx and

gm(x) = ((:cm log x)/) (m=1)

= (ma™ 'logx + xmfl)(m_l) =m-gm-1(x) +(m -1  (m>1),

hence
gm(T) _ 9m— () 1
m! _(m—ll)!_’_g (m = 1),

which leads to

gm () _ go(x)
m)! 0!

1 1
+<1++~--+> =logx + Hp,.
2 m
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Concluding,

1
S:gm(l’—i-l)—gm(x):m!-loggg+ .

Note from the Editor. We also received solutions from Sean Stewart
from Bomaderry, NSW, Australia, Brian Bradie from Christopher Newport
University Newport News, VA, USA, Ulrich Abel from Technische Hochschule
Mittelhessen, Germany, and Daniel Vacaru from Pitegti, Romania. Their
solutions are similar to the author’s, in the sense that they first prove explicit
formulas for the derivatives of ' log x. In the solutions by Bradie, Abel and
Vacaru, they first calculate

m
(a™ logz)™ =Y <TIZ> (™) (m — k) (log z)®)

k=0

- I (DR 1k —1)!
:m!logm%—Z(Z)TZ’xk( i ) =mllogx + C,
k=1 )

xk

k—
where C'is a constant. From here one gets (z ( mog x)k+m) = m!(_l)xiz(k_l)!

Vk > 1 and so our sum writes as m! ) 2, ;)IZ =m!log (1 + %)
Alternatively, as in Abel’s proof, one may consider the function f(z) =
(2™ log )™ = m!log z + C, which is analytic in the open disk with center z

and radius z > 1, and our sum writes as

(k (k
pORA ka, —J(@) = fe 1) - )

k=1

1
= m!(log(x + 1) — logz) = m!log <1 + > .
x

503. The Poincaré half-space model of the non-Euclidean n-dimensional
space is the upper half-space H,, = {(z,y) : z € R""! y > 0}. We regard
the elements z € R"! as a column vector, i.e., as an element of M,,_1 1(R).

Then the group of positively oriented isometries of H,, is made of the
functions fu, A4 : Hy, — Hy, with @ >0, A € OT(n —1) and a € R}, given
by (z,y) — a(Ax + a,y) and the functions gn, 4, @ Hy, — Hy, with a > 0,

AeceO (n—1),racR" ! given by (z,y) — a <|xA(T|2+LQ + 0, m>
Give a direct proof of the fact that if G is the set of all f, 4., and g A1

then (G, o) is a group.

Here o denotes functional composition. Recall that the orthogonal
group O(n — 1) = {A € M,,_1(R) : ATA = I, 1} has a decomposition
O(n—1)=0T(n—-1)UO~(n—1), where OF(n —1) = {A € O(n —1) :
det A = +1}.
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If 2 = (v1,...,2,_1)7 € R"! then |z| denotes its Euclidean length,
x> = af + - 2y

Proposed by Constantin-Nicolae Beli, IMAR, Bucuresti, Romania.

Solution by the author. We show that the composition of two functions
f,g9 € G is always in G. We have four cases, corresponding to f and g being
of the type fa,A,a Or Jo,At,a-

L f = fa,Aa 9= [3Bb We have fzps(z,y) = (BBx + b, By) and

fa,aaf8,8(%,Y) = fa,aa(BBx + Bb, By) = a(A(BBx + Bb) + a, By)
= af(ABz 4+ Ab+ B ta,y),

so that fo aaf3,86 = fap.aB.abis—1a € G- (From A, B € Ot (n — 1) we get
AB e Ot(n—-1).)

II. f = faAa 9 = 98,B,sp- With the help of the explicit formula
98,B,5,6(T, y) = (5|x3236|2j;2 + /b, 5\:5 plbar ) we obtain
hﬁmmam@wozﬁwm<ﬁ;%3;?2+Bhﬁm_jg+¢>
= (ACp i M )
~o (G A )

Thus fa,4,0498,B,56(%,Y) = Yap.ABsAb+s—16 € G. (We have A € OF(n — 1)
and B € O~ (n—1), so that AB€ O~ (n—1).)

IIL. f = gaAra, 9 = [8.Bb We have fzpp(z,y) = (2/,y), where we
put 2’ = fBx + b, y' = By, so

Az’ — ) Y ) |

$/—T‘2+y/2 ’ |1L’/—T|2+y,2
But ' —r = 8Bz + b —r = BB(x —t), where t = 37'B~'r — B~1b, so
that A(z' —r) = BAB(z — t) and

&' —r|* +y? = [BB(z = t)]* + (By)? = B2(|z — 1> + ).

(From B € O(n — 1) we get |3B(z —t)|> = B?|B(x — t)]? = %]z — t|*.) In
follows that

ga,A,r,afB,B,b($7 y) = ga,A,r,a($/7 y/) =« <|

_ BAB(z —t) By
ga,A,r,afB,B,b(xa y) =« (/32(’33 — t|2 n yQ) +a, ,32(]x _ t|2 + y2)>

a ( AB(z —1t) Y
B <|x—t!2+y2 e Ix—t!2+y2>'

SO ga,Araf8,Bb = 9% ,AB.tfa = 9%,ABS~1 B~ \r—B~1b,6a € G. (We have used
that A€ O (n—1) and B€ O*(n—1) imply AB€ O~ (n—1).)
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IV. f = 90,40, 9 = 98,B,s,p- We have

goz,A,r,agB,B,s,b(xa y) = YGa,Ar,a (xla y/)
=a(A@ =)' =P+ ) Fay (2 =Py,

where

B —
Py )

N _
(1) = ) = (8 Ty

—Ss r—s r—s z—s]24y?)e
W= e = (it ) —

where ¢ = b — 8~ 1r. We have two subcases:
(a) c=0,i.e., 7= 0b Then 2/ —r = @mﬂ so that

$75|2+y27
B(z—s) 2 Yy 2
I 2 2 _
|x T’ Ty ‘B’$—S‘2+y2‘ +(5|x—8\2+y2)
B2 2, .2 g2
- B —s)P+y?) = ——
(|x—s|2+y2)2( ) lv — s]2 +y?

(We have B € O(n — 1) and therefore |B(x — 5)|? + 3 = |z — s|> + y%.)
Az — ’ .
It follows that ga,A,r,agﬂ,B,s,b(x7 y) =« (\x’—(:l2-:z)/2 +a, |x’—7’212+y’2> writes

as

Bz — ) AN y A
A
“( iy o) o (e

= a(ﬁflAB(x —s)+a, ﬂfly) = %(ABQ; — ABs + Ba, y).
Thus ga,A,r,agB,B,s,b(xay) = f%,AB,ﬁa—ABs € G. (From A,B € Oi(” - 1) it

follows that AB € O (n —1).)
(b) ¢ # 0, i.e., r # Bb. Now we het

Bz —s) + (lz — s|* + y°)c

2 2
2 2 _ Y
S ()

|z — 5|2 +y?
= - (1B(z = s) + (jx = s +4°)c|” +°).
(lz = s[> +¢?)?
We consider the following scalar product (-,-) : R*™! x R*~1 — R: if u =
(ut, ..y un—1)?, v = (v1,...,v-1)T € R*! then (u,v) = vfv = vlu =

vy + -+ Up_1vp—1. We have |u + v|? = |u|? + |v|? + 2(u, v). Moreover, if
C € M,_1(R) then (Cu,v) = (u, CTv). We also use the fact B € O(n — 1),
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so |B(x — s)| = |x — s|. We get

|B(m —5)+ (Jz — s|? + y2)c|2 + 92
— Bz — )+ (Jz — s> + v*)*|c]> + 2(Jo — s> + v*) (B(z — 5),¢) + ¢
— |z —s)®+ (lz — s>+ *)°|c) + 2(jz — s> + v?) (& — 5, BTe)| + 1/
= (]:1: — s|2 + y2) (1 + (|1: — 5\2 + y2)|c|2 +2(x — s, BTC>)

1 BT¢
= le[*(lz — s> + v?) <| |2+\:c—s|2+y + 2(|z — s, pE ))

T _ ci2 _ [BTe? e 1
But BT € O(n — 1), so |2 E |2 £1° = A = | = oz Hence

1 BTc B¢
H2+|x_8|2+y +2< H2> | S|2+|H2|2+2< 7W>+y2
BTc
= |z 3+w’2+y jx — [ + 47,

T .
where t = s — Jch |2C. In conclusion,

62
o =P 4y = o (B =) + (= sl el +47)
B 2 2, .2 2, .2
= (’$—8|2+y2)2|6| (|$_S| +y )(|ZL'—t| +y )
_ Bz — 1> + 9%
=Py
It follows that
~1
v :ﬁB®—$+(w—ﬂ”Hﬂc<@kﬂm—ﬂl+f0
2" = +9? |z — s* +y? |z — s> + ¢
_ 5_1|C|_2B(x —8)+ (lz — s +y?)c
|z — t|2 + 32 '
Butx—s=2—1t- ?CTTQC and, again, ‘ ‘2 °? = ﬁ It follows that we have

T. 2
= sl = o — 2 | B 20— 1, B5) = o — 12 4k — 2(Bla— 1), 15,

lc[? ’ el
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Therefore

Bz —s)+ (Jz — s> +y?)e

BT¢ 1 c
=B(z—t—— — 24— — 2Bz —t), —) +
(QJ ’C|2 ) + <’$ ‘ + |C‘2 < (aj )7 |C‘2> +y )C

BBT¢ c c
== ° = 2Bz —t), —
EE o ~ 2B =0, e
C

=B —t)+ (Jz =t} +y*)c—2(B(z — t), W>c.

=B(rx —t)— + (|z =t +y*)c+

(We have BBT =1, 4, so —BE;PTC and ﬁ cancel each other.)

We regard (B(x — t),ﬁ) = (ﬁ)TB(x —t) € R as a1l x 1 matrix,
which can be multiplied to the right by the (n — 1) x 1 matrix ¢. With
(B(x—t), ﬁﬁ = c(ﬁ)TB(x—t) = ‘CCT—PCB(;U—t) we can rewrite the expression
B(x — 8) + (|z — s + 9°)c as

T

e cte
B(a:—t)—l—(\x—t|2+y2)c—2WB(x—t) = (In_l—QW)B(w—t)+(]a:—t|2+y2)c.
Hence

T
2 —r PRI (In,l —Qﬁ)B(z—t)—i— (!m—t|2+y2)c
o =1y o=t + 4
T
P (In—1— zﬁ)B(:p —t) P
:6 ’C| ‘gj—t|2+’y2 +ﬁ |C‘ C.
We also have
Sl —rfay?) = By (BUPlz =ty
e sE e\ e sy

_ =12 Yy
=Bl |z — 2+ 42

-1 Az’ —r / .
Then a g4 r.a95.8,50(T y) = (ol + @, =Yy ) writes as
[z"—r[2+y |2’ —r|2+y

(In-1 = 255) Bz — 1)

—1.1-2 Yy
A - g
o F R A
A(L_1 — 258)B(x — t)
— B e| 2 o1 — 2ff) +c+ lePa, —

|z =t + 52 |z —t* +y?
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To prove

Thus ga,A,r,ag,B,B,s,b('ray) = ga,é’*1|c|*2,A(

<) Bit.ctBlea’
that this function belongs to G, one needs to show that A(I,,—; — 2‘|3T—|§)B €
O~ (n— ) As A, B € O~ (n—1), this is equivalent to I, — 20 |C € O~ (n—1).
If C ﬁ then C' = T and C? = “&)¢ With cc” = |¢f?, we obtain
C? = |C|§ = C. It follows that (I, — 20)T(I,_1 — 2C) = (I,—1 — 2C)% =
L1 —4C +4C?* =1, 1 and I, — 2615 ‘C =1I,_1—2C €0(n-1).

To compute the determinant of I,,_1 — 2?”?—‘5 we use a well known result

which states that if C is a k£ x [ matrix and D is an [ X k& matrix then
X'Pop(X) = XkPpe(X). We take X = 1 and we get Pop(1) = Ppc(1),

i.e., det(I—CD) = det(I;—DC). We take the matrices C' = @ and D = 2¢T
of sizes (n —1) x 1 and 1 x (n — 1), respectively, and get det(I,,— 2'|3§|2) =
det(I; — 2|°:—|§) But the right side is a 1 x 1 matrix, i.e., a number, so its
determinant is itself. Hence det(l, 1 — 2f5) = 1 — 26§ = 1 - 2}2}2 =1,
which shows that I,,_1 — 2?0‘2 €0~ ( 1).

Alternatively, we note that (In—l - 2%)0 = 26|C|26 =c—2c= —c.
(We have c’c = |¢|2.) On the other hand, if v € R*™! = M,,_ 11(R) is
orthogonal on ¢, then (c,u) = ¢'u = 0, so (I,_1 — 2%)u =u— Cfclgu =

u—0=wu. Thus I, 1 — 2% coincides with the symmetry with respect to c,
which is known to belong to O~ (n — 1).

The identity map can be written as f1 1, , 0 € G. To conclude the proof
we must prove that for every f € G thereis g € G with fg=9f = fi1,_.0
We consider the two possible cases for f.

If f = fa,A.4, then we look for an inverse of the type g = fz . By case
I, we have fo AafpBbo = fap,AB,Ab+p-14- SO in order that fz gy is a right
inverse of f, 4, we need that o8 = 1, AB = I,_1 and Ab + Bla =0, ie.,
that (8, B,b) = (!, A~!,—aA~1a). (The third coordinate follows from
Ab = —7'a = —aa.) But if (3,B,b) = (o', A7, —aA~la), then also
(, A,a) = (B71,B7Y, —BB71b) and so f, A, is a right inverse of fs .
Thus f;(lélva = fa717A71,_aA71a.

If f = ga,Ara, then we are looking for an inverse g = ggpsp. In
order that we are in case IV, we need that » = 3b. Then go 4ra98,B.sb =
ge ABBa—ABs- Hence in order that gg psp is a right inverse of g, A One

needs that » = 8b and (%, AB,Ba—ABs) = (1,1,-1,0). This is equivalent to
(B,B,s,b) = (a, A=}, aa,a™1r). (The formulas for s and b follow from aa =
Ba = ABs = s and r = 8b = ab.) But if (8, B,s,b) = (o, A~L, aa,a”r),
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then we also have (a, A,r,a) = (3, B~1,8b,371s), so that g, A, is a right
inverse of gg 5. Thus 9;7}477"@ = Ga. A1 aa,0-1r O



