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A new characterization of injective and surjective functions
and group homomorphisms
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Abstract. A model of a morphism f between two objects is defined to be
a factorization f = πi, where π is a surjective morphism and i is an injec-
tive morphism. In this note we shall prove that a morphism f is surjective
(respectively injective) if and only if it has an initial (respectively final)
model in some classes of objects and morphisms.
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1. Introduction and preliminary remarks

In what follows we denote by C either

(i) the class of sets with morphisms between them being maps, or
(ii) the class of groups with morphisms between them being group homo-

morphisms.

The purpose of this paper is to study the link between injectivity and
surjectivity of morphisms in C and the notion of a model defined below.

Definition 1. For a morphism f : A → B in C we define a model of f to
be a triple (X, i, π) such that X ∈ C, i : A → X is an injective morphism,
π : X → B is a surjective morphism, and f = πi, i.e., the following diagram
commutes
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A model (X, i, π) of a morphism f is called an initial model if for any
other model (Y, j, p) of f there is a unique morphism g : X → Y such that
gi = j and pg = π.

A model (X, i, π) of a morphism f is called a final model if for any
other model (Y, j, p) of f there is a unique morphism g : Y → X such that
gj = i and πg = p.

We now introduce a couple of definitions necessary for the proof.

Definition 2. A product of A and B in C is a triple (A×B, πA, πB), where
A×B is an object in C and πA : A×B → A, πB : A×B → B are morphisms
such that the following universal property is satisfied: for any object H in C
and any morphisms f : H → A, g : H → B, there exists a unique morphism
ϕ : H → A×B such that πAϕ = f and πBϕ = g.

In both cases studied in this paper (sets and groups) the morphisms
πA : A×B → A and πB : A×B → B are surjective and it is easy to see that
there is at least one product for any two objects in C: in (i) a product is the
cartesian product of sets along with the canonical projections and in (ii) a
product is the direct product of groups along with the canonical projections
[1], p. 41.

Definition 3. A coproduct of A and B in C is a triple (AqB, iA, iB), where
AqB is an object in C and iA : A→ AqB, iB : B → AqB are morphisms
such that the following universal property is satisfied: for any object H in C
and any morphisms f : A → H, g : B → H, there exists a unique morphism
ϕ : AqB → H such that ϕiA = f and ϕiB = g.

In both cases studied in this paper (sets and groups) the morphisms
iA : A → A q B and iB : B → A q B are injective and it is easy to see that
there is at least one coproduct for any two objects in C: in (i) a coproduct is
the disjoint union along with the canonical injections and in (ii) a coproduct
is the free product of groups along with the canonical injections [1, p. 59–60].

Here are a couple of remarks before we dive into the main result of this
paper.

Remark 4. There is at least one model of f : A → B, for any morphism f
in C. For example, apply the universal property of the coproduct to (A q
B, iA, iB) and the object B with morphisms f : A → B, idB : B → B. We
obtain a morphism ϕ : AqB → B which satisfies the relations f = ϕiA and
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idB = ϕiB. From the second relation it is obvious that ϕ is surjective hence
(AqB, iA, ϕ) is a model for f .

Remark 5. In C, a morphism is injective if and only if it is a monomorphism
and it is surjective if and only if it is an epimorphism. For definitions and
proofs of these results see [2], p. 24–25 and 27–30.

2. Initial and final models of a morphism in C

The next theorem gives a new characterization of injective and surjec-
tive morphisms in C.
Theorem 6. Let f : A→ B be a morphism in C. Then:

a) there is an initial model of f if and only if f is surjective;
b) there is a final model of f if and only if f is injective.

Proof. a) “ ⇐= ” Let f be a surjective morphism. In this case, (A, idA, f)
is obviously a model for f and we will now show that it is an initial model.
Let (Y, j, p) be another model. We want there to be a unique morphism
g : A → Y such that g idA = j and pg = f . The existence is obvious since
g = j satisfies the required relations. The uniqueness is also given by the
fact that g idA = j, since the unique morphism that satisfies this is g = j.

“ =⇒ ” Let f : A → B be a morphism in C such that there is an
initial model of f , which we denote (X, i, π). Suppose f is not surjective,
i.e., not an epimorphism. Then there is an object U in C and two morphisms
u1, u2 : B → U such that u1f = u2f and u1 6= u2. In this case, u1π 6= u2π
since π is an epimorphism.

Consider now a product of X and U , (X × U, πX , πU ). We apply the
universal property of the product to (X × U, πX , πU ) and the morphisms
u1f : A→ U and i : A→ X. Thus, there is a unique morphism q : A→ X×U
such that πXq = i and πUq = u1f . Since πXq = i is injective, so is q, thus q
is a monomorphism.

We now observe that (X × U, q, ππX) is a model of f .

A

X

B U

X × U

f

i π

u1

u2

πX

πUq

Next we apply the universal property of the product to (X×U, πX , πU )
and the morphisms u1π : X → U and idX : X → X. This implies that there
is a unique morphism g1 : X → X×U such that πUg1 = u1π and πXg1 = idX .
Similarly, we obtain a morphism g2 : X → X × U such that πUg2 = u2π and
πXg2 = idX . From these relations, it is obvious that g1 6= g2 since u1π 6= u2π.
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Finally, we prove that g1 and g2 are morphisms from the initial model
(X, i, π) to the model (X × U, q, ππX) and this is in contradiction with the
assumption that (X, i, π) is initial, i.e.,

g1i = q, ππXg1 = π, g2i = q, ππXg2 = π.

Indeed, πXg1 = idX implies that ππXg1 = π and similarly for g2. Fur-
thermore, we have the following relations which imply that g1i = q based on
the uniqueness of the morphism in the universal property of the product:

i = idXi = πXg1i and i = πXq,

u1f = u1πi = πUg1i and u1f = πUq.

In a similar manner it can be proved that g2i = q and thus we reach a
contradiction.

b) “ ⇐= ” Let f be an injective morphism. In this case, (B, f, idB)
is obviously a model for f and we will now show that it is a final model.
Let (Y, j, p) be another model. We want there to be a unique morphism
g : Y → B such that gj = f and idBg = p. The existence is obvious since
g = p satisfies the relations. The uniqueness is also given by the fact that
idBg = p, since the unique morphism that satisfies this is g = p.

“ =⇒ ” Let f : A → B be a morphism in C such that there is a fi-
nal model of f , which we denote (X, i, π). Suppose f is not injective, i.e.,
not a monomorphism. Then there is an object U in C and two morphisms
u1, u2 : U → A such that fu1 = fu2 and u1 6= u2. In this case, iu1 6= iu2
since i is a monomorphism.

Consider now a coproduct of X and U , (X q U, iX , iU ). We apply the
universal property of the coproduct to (X q U, iX , iU ) and the morphisms
fu1 : U → B and π : X → B. Thus, there is a unique morphism q : X qU →
B such that qiX = π and qiU = fu1. Since qiX = π is surjective, so is q,
thus q is an epimorphism.

We now observe that (X q U, iXi, q) is a model of f .

U A

X

B

X q U

f

i
πiU

iX

u1

u2
q

Next we apply the universal property of the coproduct to (XqU, iX , iU )
and the morphisms iu1 : U → X and idX : X → X. This implies that there
is a unique morphism g1 : X qU → X such that g1iU = iu1 and g1iX = idX .
Similarly, we obtain a morphism g2 : X q U → X such that g2iU = iu2 and
g2iX = idX . From these relations, it is obvious that g1 6= g2 since iu1 6= iu2.
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Finally, we prove that g1 and g2 are morphisms from the model (X q
U, iXi, q) to the final model (X, i, π) and this is in contradiction with the
assumption that (X, i, π) is final, i.e.,

πg1 = q, g1iXi = i, πg2 = q, g2iXi = i.

Indeed, g1iX = idX implies that g1iXi = i and similarly for g2. Fur-
thermore, we have the following relations which imply that πg1 = q based on
the uniqueness of the morphism in the universal property of the coproduct:

π = πidX = πg1iX and π = qiX ,

fu1 = πiu1 = πg1iU and fu1 = qiU .

In a similar manner it can be proved that πg2 = q and thus we reach a
contradiction. 2

3. Final remarks

The reader may have noticed that in the proof given above the fact that
C is either the class of sets or the class of groups is only used for the facts that
products (coproducts) exist for any two objects in C, injective (surjective)
morphisms are monomorphisms (epimorphisms) and the two morphisms in
the product (coproduct) are epimorphisms (monomorphisms). Indeed, the
result above holds in a more general setting if we replace injective (surjective)
morphisms in the theorem’s statement and in the definition of a model with
monomorphisms (epimorphisms), namely when C is a category with products
(coproducts) for any two objects and in which the morphisms in any product
(coproduct) are epimorphisms (monomorphisms).

Alternatively, either one of a) and b) can be obtained from the other by
considering the dual category Cop of C. If f : A→ B is a morphism in C and
(X, i, π) is a model of f in C, then (X,π, i) is a model of f in Cop. Moreover,
(X, i, π) is an initial model of f in C if and only if (X,π, i) is a final model
of f in Cop. Using the fact that f is a monomorphism in C if and only if it is
an epimorphism in Cop, we obtain the equivalence of a) and b).

Acknowledgement. I would like to thank my professor, Dr. Militaru
Gigel, who proposed me this problem (see [3]). I would also like to thank
the referee for thorough and very useful remarks which greatly improved the
first version of this paper and for suggesting me the unification of the results
for sets and groups.
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Two new proofs of Sandham–Yeung series

Ovidiu Furdui1), Alina Ŝıntămărian2)

The paper is dedicated to the 125th appearance of Gazeta
Matematică.

La mulţi ani, Gazeta Matematică!!!

Abstract. In this paper we give two new proofs of the remarkable equality
∞∑
n=1

(
Hn
n

)2

=
17

4
ζ(4),

where Hn = 1 + 1
2

+ · · ·+ 1
n

denotes the nth harmonic number. The first

proof is based on evaluating the series
∞∑
n=1

H2
n

(
ζ(3)− 1− 1

23
− · · · − 1

n3

)
by two different methods and the second proof follows from calculating, by

a new method, the series
∞∑
n=1

H2
n

(n+1)2
.

Keywords: Hölder continuous function, Lipschitz function.

MSC: Primary 40A05; Secondary 40C10.

1. Introduction and the main results

In this paper we give two new proofs of the remarkable formula
∞∑
n=1

(
Hn

n

)2

=
17

4
ζ(4), (1)

where Hn = 1 + 1
2 + · · ·+ 1

n denotes the nth harmonic number.
Formula (1) has an interesting history. It was the first quadratic series

introduced in the literature by H. F. Sandham in 1948 as a problem in the
American Mathematical Monthly [14]. Apparently, the series went unnoticed.
Castellanos recorded it in his survey article [3, p. 86], attributed it rightly
to Sandham, but with a wrong entry in the bibliography. De Doelder [5]

evaluated the associated series
∞∑
n=1

H2
n

(n+1)2
= 11π4

360 without any reference to

Sandham’s series. In April 1993 the series was discovered numerically by
Enrico Au-Yeung, an undergraduate student in the Faculty of Mathematics
in Waterloo, and proved rigorously by David Borwein and Jonathan Borwein
in [2], who used Parseval’s theorem to prove it. Formula (1) was rediscovered
by Freitas as Proposition A.1 in the appendix section of [6]. Freitas proved

1)Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Ro-
mania, Ovidiu.Furdui@math.utcluj.ro

2)Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Ro-
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it by calculating a double integral involving a logarithmic function. This
formula is revived and brought into light by Vălean and Furdui [11], who
proved it by calculating a special integral involving a quadratic logarithmic
function. The series also appears as a problem in [7, problem 3.70, p. 150] and
[13, problem 2.6.1. p. 110]. In [8] Furdui and Ŝıntămărian proved formula (1)

as a consequence of evaluating the series
∞∑
n=1

1
n

(
2ζ(3)− H1

12
− H2

22
− · · · − Hn

n2

)
by two different ways. It is clear that this remarkable quadratic series has
attracted lots of attention lately and has become a classic in the theory of
nonlinear harmonic series.

The first proof of formula (1) is based on calculating the series

∞∑
n=1

H2
n

(
ζ(3)− 1− 1

23
− · · · − 1

n3

)
= 3ζ(4)− 4ζ(3) + 2ζ(2)

in two different ways. The second proof follows from the series
∞∑
n=1

H2
n

(n+1)2
=

11
4 ζ(4), which is calculated differently than it is in [5]. We record the results

we prove in the next theorem.

Theorem 1. (a) A harmonic series.

The following identity holds

∞∑
n=1

H2
n

(
ζ(3)− 1− 1

23
− · · · − 1

n3

)
= 3ζ(4)− 4ζ(3) + 2ζ(2).

(b) The Sandham–Yeung series.

The following identity holds

∞∑
n=1

(
Hn

n

)2

=
17

4
ζ(4).

We collect some results we need in the proof of Theorem 1.
The Dilogarithm function Li2(z) is defined, for |z| ≤ 1, by ([4, p. 176])

Li2(z) :=

∞∑
n=1

zn

n2
= −

∫ z

0

ln(1− t)
t

dt.

The generating function of the nth harmonic number is given by the
formula (see [15, problem 3.54, (a)])

∞∑
n=1

Hnx
n = − ln(1− x)

1− x
, x ∈ (−1, 1). (2)

The previous formula can be proved by multiplying the power series of the
functions f(x) = ln(1− x) and g(x) = 1

1−x .
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Integrating out the previous equality we have that the following power
series formula holds true [15, problem 3.54, (c)]

ln2(1− x) = 2
∞∑
n=1

Hn

n+ 1
xn+1, x ∈ [−1, 1). (3)

The generating function of the sequence
(
H2
n

)
n≥1 is given by ([10, The-

orem 9, p. 215])

∞∑
n=1

H2
nx

n =
ln2(1− x) + Li2(x)

1− x
, x ∈ (−1, 1). (4)

Lemma 2. The following equalities hold:

(a)

∞∑
n=1

Hn

n2
= 2ζ(3);

(b)

∞∑
n=1

Hn

n(n+ 1)
= ζ(2);

(c)
∞∑
n=1

Hn

n3
=
π4

72
=

5

4
ζ(4).

Proof. (a) For the proof of part (a) see [7, problem 3.55, p. 148]. For the
sake of completeness we include below a new proof of this result.

First we show that if f : [0, 1]→ R is a continuous function, then

∫ 1

0

∫ 1

0
f(xy)dxdy = −

∫ 1

0
f(x) lnx dx. (5)

We have∫ 1

0

∫ 1

0
f(xy)dxdy =

∫ 1

0

(∫ 1

0
f(xy)dx

)
dy

xy=t
=

∫ 1

0

(
1

y

∫ y

0
f(t)dt

)
dy

= ln y

∫ y

0
f(t)dt

∣∣∣∣1
0

−
∫ 1

0
f(y) ln y dy = −

∫ 1

0
f(y) ln y dy,

since lim
y→0

ln y
∫ y
0 f(t)dt = 0.

Formula (5) is also valid in the case when f is a Riemann integrable
function [9].



O. Furdui, A. Ŝıntămărian, Two new proofs of Sandham–Yeung series 9

We have

∞∑
n=1

Hn

(n+ 1)2
=
∞∑
n=1

Hn

∫ 1

0

∫ 1

0
(xy)ndxdy =

∫ 1

0

∫ 1

0

( ∞∑
n=1

Hn(xy)n

)
dxdy

(2)
= −

∫ 1

0

∫ 1

0

ln(1− xy)

1− xy
dxdy

(5)
=

∫ 1

0

ln(1− x) lnx

1− x
dx

=

∫ 1

0

lnx ln(1− x)

x
dx = −

∫ 1

0

lnx

x

∞∑
n=1

xn

n
dx

= −
∞∑
n=1

1

n

∫ 1

0
xn−1 lnx dx =

∞∑
n=1

1

n3

= ζ(3).

It follows that

ζ(3) =

∞∑
n=1

Hn

(n+ 1)2
=

∞∑
n=1

Hn+1 − 1
n+1

(n+ 1)2
=

∞∑
m=2

Hm − 1
m

m2
=

∞∑
m=1

Hm

m2
− ζ(3),

and part (a) of Lemma 2 is proved.
(b) We have

∞∑
n=1

Hn

n(n+ 1)
=
∞∑
n=1

(
Hn

n
− Hn

n+ 1

)
=
∞∑
n=1

(
Hn

n
− Hn+1

n+ 1
+

1

(n+ 1)2

)
= 1 + ζ(2)− 1 = ζ(2).

(c) A proof of the formula
∞∑
n=1

Hn
n3 = π4

72 , which is a special linear Euler

sum, is given in [7, problem 3.58, pp. 207–208] and it also appears in the
literature as a problem proposed by M.S. Klamkin [12]. Another proof of
this formula is given in [15, p. 247] and a proof based on symmetry appears
in [8, pp. 4–5]. 2

Remark 3. One can prove, by using the same technique as in part (a) of
Lemma 2 that the following formula holds

∞∑
n=1

(−1)n
Hn

(n+ 1)2
= −ζ(3)

8
,

from which we recover the known result
∞∑
n=1

(−1)n−1Hn
n2 = 5

8ζ(3) ([7, problem

3.56, p. 148]).

Now we are ready to prove Theorem 1.
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Proof. (a) One can prove, using integration by parts twice, that the following

formula holds true
∫ 1
0 x

k ln2 x dx = 2
(k+1)3

, k > −1. It follows that

ζ(3)− 1− 1

23
− · · · − 1

n3
=

1

2

∫ 1

0

xn

1− x
ln2 x dx. (6)

We have, based on formula (6), that

∞∑
n=1

H2
n

(
ζ(3)− 1− 1

23
− · · · − 1

n3

)
=

1

2

∞∑
n=1

H2
n

∫ 1

0

xn

1− x
ln2 x dx

=
1

2

∫ 1

0

ln2 x

1− x

( ∞∑
n=1

H2
nx

n

)
dx

(3)
=

1

2

∫ 1

0

ln2 x

1− x
· ln2(1− x) + Li2(x)

1− x
dx

=
1

2

∫ 1

0

ln2 x ln2(1− x)

(1− x)2
dx

+
1

2

∫ 1

0

ln2 xLi2(x)

(1− x)2
dx

=
1

2
I +

1

2
J,

(7)
where

I =

∫ 1

0

ln2 x ln2(1− x)

(1− x)2
dx and J =

∫ 1

0

ln2 xLi2(x)

(1− x)2
dx.

We calculate the first integral and we have

I =

∫ 1

0

ln2 x ln2(1− x)

(1− x)2
dx

1−x=y
=

∫ 1

0

ln2 y ln2(1− y)

y2
dy

(3)
= 2

∫ 1

0

ln2 y

y2

( ∞∑
n=1

Hn

n+ 1
yn+1

)
dy = 2

∞∑
n=1

Hn

n+ 1

∫ 1

0
yn−1 ln2 y dy

= 4

∞∑
n=1

Hn

n3(n+ 1)
= 4

∞∑
n=1

(
Hn

n3
− Hn

n2
+

Hn

n(n+ 1)

)
Lemma2

= 4

(
5

4
ζ(4)− 2ζ(3) + ζ(2)

)
.

(8)
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We calculate the second integral and we have

J =

∫ 1

0

ln2 xLi2(x)

(1− x)2
dx =

ln2 xLi2(x)

1− x

∣∣∣∣1
0

−
∫ 1

0

(
2 lnxLi2(x)

x
− ln2 x ln(1− x)

x

)
1

1− x
dx

= −2

∫ 1

0

lnxLi2(x)

x
dx− 2

∫ 1

0

lnxLi2(x)

1− x
dx

+

∫ 1

0

ln2 x ln(1− x)

x
dx+

∫ 1

0

ln2 x ln(1− x)

1− x
dx

= −2A− 2B + C +D,

(9)

where

A =

∫ 1

0

lnxLi2(x)

x
dx, B =

∫ 1

0

lnxLi2(x)

1− x
dx,

and

C =

∫ 1

0

ln2 x ln(1− x)

x
dx, D =

∫ 1

0

ln2 x ln(1− x)

1− x
dx.

We calculate the integrals A, C, D and B, in this order. We have,

A =

∫ 1

0

lnxLi2(x)

x
dx =

∫ 1

0

lnx

x

( ∞∑
n=1

xn

n2

)
dx

=
∞∑
n=1

1

n2

∫ 1

0
xn−1 lnx dx = −

∞∑
n=1

1

n4
= −ζ(4).

(10)

On the other hand,

C =

∫ 1

0

ln2 x ln(1− x)

x
dx = −

∫ 1

0

ln2 x

x

( ∞∑
n=1

xn

n

)
dx

= −
∞∑
n=1

1

n

∫ 1

0
xn−1 ln2 x dx = −

∞∑
n=1

2

n4
= −2ζ(4).

(11)
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We calculate the integral D and we have

D =

∫ 1

0

ln2 x ln(1− x)

1− x
dx

(2)
= −

∫ 1

0
ln2 x

( ∞∑
n=1

Hnx
n

)
dx

= −
∞∑
n=1

Hn

∫ 1

0
xn ln2 x dx = −2

∞∑
n=1

Hn

(n+ 1)3

= −2

∞∑
n=1

Hn+1 − 1
n+1

(n+ 1)3
= −2

∞∑
n=1

(
Hn

n3
− 1

n4

)
Lemma2, (c)

= −1

2
ζ(4).

(12)

We calculate the integral B, using integration by parts, and we have

B =

∫ 1

0

lnxLi2(x)

1− x
dx = − lnx ln(1− x)Li2(x)

∣∣1
0

+

∫ 1

0

(
Li2(x)

x
− lnx ln(1− x)

x

)
ln(1− x)dx

=

∫ 1

0

ln(1− x) Li2(x)

x
dx−

∫ 1

0

ln2(1− x) lnx

x
dx

= −Li22(x)

2

∣∣∣∣1
0

−
∫ 1

0

ln2 x ln(1− x)

1− x
dx

= −Li22(1)

2
−D

= −3

4
ζ(4),

(13)

since Li2(1) = π2

6 .
A calculation, based on (9), (10), (11), (12) and (13), readily shows that

J = ζ(4) and this implies together with (7) and (8) that

∞∑
n=1

H2
n

(
ζ(3)− 1− 1

23
− · · · − 1

n3

)
= 3ζ(4)− 4ζ(3) + 2ζ(2).

(b) The first proof. The following equality can be proved by mathe-
matical induction

n∑
k=1

H2
k = (n+ 1)H2

n − (2n+ 1)Hn + 2n

= (n+ 1)H2
n+1 −Hn+1 − 2(n+ 1)Hn+1 + 2(n+ 1), n ≥ 1.

(14)

We also need Abel’s summation formula ([1, p. 55], [7, Lemma A.1,
p. 258]) which states that if (an)n≥1 and (bn)n≥1 are two sequences of real
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numbers and An =
n∑
k=1

ak, then
n∑
k=1

akbk = Anbn+1 +
n∑
k=1

Ak(bk − bk+1). We

will be using the infinite version of this formula
∞∑
k=1

akbk = lim
n→∞

(Anbn+1) +
∞∑
k=1

Ak(bk − bk+1). (15)

We calculate the series in part (a) of Theorem 1 by using formula (15),
with

an = H2
n and bn = ζ(3)− 1− 1

23
− · · · − 1

n3

and we have, since bn − bn+1 = 1
(n+1)3

, that

∞∑
n=1

H2
n

(
ζ(3)− 1− 1

23
− · · · − 1

n3

)
(14)
= lim

n→∞

[
(n+ 1)H2

n − (2n+ 1)Hn + 2n
](

ζ(3)− 1− 1

23
− · · · − 1

(n+ 1)3

)
+
∞∑
n=1

(n+ 1)H2
n+1 −Hn+1 − 2(n+ 1)Hn+1 + 2(n+ 1)

(n+ 1)3

=
∞∑
n=1

[
H2
n+1

(n+ 1)2
− Hn+1

(n+ 1)3
− 2

Hn+1

(n+ 1)2
+

2

(n+ 1)2

]
n+1=m

=
∞∑
m=2

[
H2
m

m2
− Hm

m3
− 2

Hm

m2
+

2

m2

]

=
∞∑
m=1

[
H2
m

m2
− Hm

m3
− 2

Hm

m2
+

2

m2

]
Lemma2, (a),(c)

=
∞∑
m=1

(
Hm

m

)2

− 5

4
ζ(4)− 4ζ(3) + 2ζ(2),

since

lim
n→∞

[
(n+ 1)H2

n − (2n+ 1)Hn + 2n
](

ζ(3)− 1− 1

23
− · · · − 1

(n+ 1)3

)
= 0.

It follows that
∞∑
m=1

(
Hm

m

)2

− 5

4
ζ(4)− 4ζ(3) + 2ζ(2) = 3ζ(4)− 4ζ(3) + 2ζ(2)

and this implies that
∞∑
m=1

(
Hm
m

)2
= 5

4ζ(4) + 3ζ(4) = 17
4 ζ(4).

(b) The second proof. The second proof of formula (1) is based on

calculating, by a new method, De Doelder’s series
∞∑
n=1

H2
n

(n+1)2
= 11

4 ζ(4).
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We have
∞∑
n=1

H2
n

(n+ 1)2
=
∞∑
n=1

H2
n

∫ 1

0

∫ 1

0
(xy)ndxdy =

∫ 1

0

∫ 1

0

( ∞∑
n=1

H2
n(xy)n

)
dxdy

(3)
=

∫ 1

0

∫ 1

0

ln2(1− xy) + Li2(xy)

1− xy
dxdy

(5)
= −

∫ 1

0

ln2(1− x) + Li2(x)

1− x
lnx dx

= −
∫ 1

0

ln2(1− x) lnx

1− x
dx−

∫ 1

0

Li2(x) lnx

1− x
dx

= −
∫ 1

0

ln2 x ln(1− x)

x
dx−

∫ 1

0

Li2(x) lnx

1− x
dx

= −C −B

=
11

4
ζ(4).

This implies that

11

4
ζ(4) =

∞∑
n=1

H2
n

(n+ 1)2
=
∞∑
n=1

(
Hn+1 − 1

n+1

)2
(n+ 1)2

=
∞∑
n=1

(
H2
n+1

(n+ 1)2
− 2

Hn+1

(n+ 1)3
+

1

(n+ 1)4

)

=
∞∑
m=1

(
H2
m

m2
− 2

Hm

m3
+

1

m4

)
Lemma2 (c)

=
∞∑
m=1

H2
m

m2
− 5

2
ζ(4) + ζ(4)

=
∞∑
m=1

H2
m

m2
− 3

2
ζ(4),

and the result follows. 2
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Asymptotic evaluations for some sequences of triple integrals

Dumitru Popa1)

Abstract. Let f : [0, 1]3 → R be a continuous function, an, bn, cn :

[0, 1]3 → [0, 1] be three sequences of continuous functions and the sequence
of triple integrals

In =
y

[0,1]3

f (an (x, y, z) , bn (x, y, z) , cn (x, y, z)) dxdydz.

As a consequence of a general result we obtain asymptotic evaluations of
the sequence (In)n∈N in the case when f is differentiable at (0, 0, 0) and
twice differentiable at (0, 0, 0). Many and various concrete examples are
given.

Keywords: Riemann integral, multiple Riemann integral, uniform con-
vergence, asymptotic expansion of a sequence.

MSC: Primary 26A42, 28A20; Secondary 40A05, 40A25.

1. Introduction

In the theory of integration the problem of finding various asymptotic
estimates is of great importance. We recommend the reader to consult the
books [2, 3, 4, 5]. The main purpose of this paper is the following: given

a continuous function f : [0, 1]3 → R and three sequences of continuous

1)Department of Mathematics, Ovidius University, Constanţa, Romania,
dpopa@univ-ovidius.ro
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functions an, bn, cn : [0, 1]3 → [0, 1], we will find the asymptotic evaluation
for the sequence of triple integrals

In =
y

[0,1]3

f (an (x, y, z) , bn (x, y, z) , cn (x, y, z)) dxdydz

in the case when f is differentiable at (0, 0, 0) and twice differentiable at
(0, 0, 0) in Theorems 5 and 18, respectively. In order to do this we first
prove a general result, Theorem 4. We give also many and various concrete
examples.

In the paper we will use the multiple Riemann integral. For details
regarding the multiple Riemann integral we recommend the reader to consult
the excellent treatment of this concept in the book of N. Boboc, see [1]. If
k is a natural number and A ⊂ Rk is Jordan measurable, λk (A) denote
its Jordan measure, see [1]; we recall just that λk ([a1, b1]× · · · × [ak, bk]) =
(b1 − a1) · · · (bk − ak), for ai ≤ bi, i = 1,. . . , k. If A ⊂ Rk is a compact
Jordan measurable set and f : A → R is a continuous function, we denote
by
∫
A f (x) dx the multiple Riemann integral. If E ⊆ R3 then E denotes the

closure of E. The notation and notions used and not defined in this paper
are standard, see [1, 2, 5].

Definition 1. Let E ⊆ R3 be such that (0, 0, 0) ∈ E, f, g : E → R and
h : E → [0,∞). We write

f (x, y, z) = g (x, y, z) + o (h (x, y, z)) for (x, y, z)→ (0, 0, 0)

if and only if ∀ε > 0 there exists δε > 0 such that ∀ (x, y, z) ∈ E with
max (|x| , |y| , |z|) < δε it follows that |f (x, y, z)− g (x, y, z)| ≤ εh (x, y, z).

Let us note that since (0, 0, 0) ∈ E then, as is well-known, ∀ε > 0, we
have B ((0, 0, 0) , ε)

⋂
E 6= ∅, and thus there exist points (x, y, z) ∈ E with

max (|x| , |y| , |z|) < δε. Also if E ⊆ R3 is such that (0, 0, 0) ∈ E and

f (x, y, z) = g (x, y, z) + o (h (x, y, z)) for (x, y, z)→ (0, 0, 0)

then f (0, 0, 0) = g (0, 0, 0). Indeed, ∀ε > 0 there exists δε > 0 such that for
(x, y, z) ∈ E with max (|x| , |y| , |z|) < δε it holds |f (x, y, z)− g (x, y, z)| ≤
εh (x, y, z). In particular, since (0, 0, 0) ∈ E, we have |f (0, 0, 0)− g (0, 0, 0)| ≤
εh (0, 0, 0) and since ε > 0 is arbitrary, passing to the limit for ε→ 0, ε > 0,
we get |f (0, 0, 0)− g (0, 0, 0)| ≤ 0, f (0, 0, 0) = g (0, 0, 0).

Definition 2. Let (bn)n∈N be a sequence of real numbers. If (an)n∈N is a
sequence of real numbers we write an = o (bn) if and only if ∀ε > 0 there
exists nε ∈ N such that ∀n ≥ nε it follows that |an| ≤ ε |bn|. If (xn)n∈N,
(yn)n∈N are two sequences of real numbers we write xn = yn + o (bn) if and
only if xn − yn = o (bn).
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Let us note that if there exists n0 ∈ N such that ∀n ≥ n0 we have
bn 6= 0 then the condition an = o (bn) is equivalent to the well known-
condition lim

n→∞
an
bn

= 0. The proof of the following remark is obvious and

therefore is omitted.

Remark 3. Let (bn)n∈N, (cn)n∈N be two sequences of real numbers with the
property that there exists M > 0 such that |bn| ≤ M |cn|, for all n ∈ N. If
an = o (bn), then an = o (cn)

2. A general result

We prove a general asymptotic evaluation for sequences of multiple
Riemann integrals.

Theorem 4. Let E ⊆ R3 be such that (0, 0, 0) ∈ E, f, g : E → R and
h : E → [0,∞) three continuous functions such that

f (x, y, z) = g (x, y, z) + o (h (x, y, z)) for (x, y, z)→ (0, 0, 0) .

Let k be a natural number, A ⊂ Rk a compact Jordan measurable set and
an, bn, cn : A→ R three sequences of continuous functions such that

(an (x) , bn (x) , cn (x)) ∈ E,∀n ∈ N,∀x ∈ A
and moreover lim

n→∞
an = 0, lim

n→∞
bn = 0, lim

n→∞
cn = 0 all uniformly on A.

Then∫
A
f (an (x) , bn (x) , cn (x)) dx =

∫
A
g (an (x) , bn (x) , cn (x)) dx

+ o

(∫
A
h (an (x) , bn (x) , cn (x)) dx

)
.

Proof. Let us note first that all the functions on the integrals are contin-
uous hence are Riemann integrable, see [1]. Let ε > 0. By the hypothe-
sis and the definition 1 there exists δε > 0 such that ∀ (x, y, z) ∈ E with
max (|x| , |y| , |z|) < δε it follows that |f (x, y, z)− g (x, y, z)| ≤ εh (x, y, z).
Since lim

n→∞
an = 0, lim

n→∞
bn = 0, lim

n→∞
cn = 0 all uniformly on A, it follows

that there exists nε ∈ N such that ∀n ≥ nε we have

an (x) < δε, bn (x) < δε, cn (x) < δε,∀x ∈ A.
Let n ≥ nε. Then (an (x) , bn (x) , cn (x)) ∈ E, max (an (x) , bn (x) , cn (x)) <
δε and hence ∀x ∈ A we have

|f (an (x) , bn (x) , cn (x))− g (an (x) , bn (x) , cn (x))| ≤ εh (an (x) , bn (x) , cn (x)) .

By integration we get
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∫
A
|f (an(x), bn(x), cn(x))− g (an(x), bn(x), cn(x))| dx

≤ ε
∫
A
h (an(x), bn(x), cn(x)) dx.

Since ∣∣∣∣∫
A

[f (an (x) , bn (x) , cn (x))− g (an (x) , bn (x) , cn (x))] dx

∣∣∣∣
≤
∫
A
|f (an (x) , bn (x) , cn (x))− g (an (x) , bn (x) , cn (x))|dx,

by the linearity of the integral we obtain∣∣∣∣∫
A
f (an (x) , bn (x) , cn (x)) dx−

∫
A
g (an (x) , bn (x) , cn (x)) dx

∣∣∣∣
≤ ε

∫
A
h (an (x) , bn (x) , cn (x)) dx,

which ends the proof, see Definition 2. 2

3. The case of differentiable functions

In the sequel we analyze the case of differentiable functions.

Theorem 5. Let f : [0, 1]3 → R be a continuous function which is differ-
entiable at (0, 0, 0). Let k be a natural number, A ⊂ Rk a compact Jordan
measurable set, an, bn, cn : A → [0, 1] be three sequences of continuous func-
tions such that lim

n→∞
an = 0, lim

n→∞
bn = 0, lim

n→∞
cn = 0 all uniformly on A.

Then ∫
A f (an (x) , bn (x) , cn (x)) dx = f (0, 0, 0)λk (A)

+∂f
∂x (0, 0, 0)

∫
A an (x) dx+ ∂f

∂y (0, 0, 0)
∫
A bn (x) dx+ ∂f

∂z (0, 0, 0)
∫
A cn (x) dx

+o
(∫
A an (x) dx+

∫
A bn (x) dx+

∫
A cn (x) dx

)
.

Proof. Since f is differentiable at (0, 0, 0) we have

lim
(x,y,z)→(0,0,0)

f(x,y,z)−f(0,0,0)− ∂f
∂x

(0,0,0)x− ∂f
∂y

(0,0,0)y− ∂f
∂z

(0,0,0)z

|x|+|y|+|z| = 0.

We deduce easily that f (x, y, z) = f (0, 0, 0)+ ∂f
∂x (0, 0, 0)x+ ∂f

∂y (0, 0, 0) y

+∂f
∂z (0, 0, 0) z + o (x+ y + z) for (x, y, z) → (0, 0, 0). We apply Theorem 4

for E = [0, 1]3, h (x, y, z) = x + y + z. Let us note that in this case E = E
(since E is closed) and (0, 0, 0) ∈ E. 2

We will prove in the sequel some applications of Theorem 5.
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Proposition 6. Let f : [0, 1]3 → R be a continuous function which is dif-
ferentiable at (0, 0, 0) and un, vn : [0, 1] → [0, 1] two sequences of continuous
functions such that either lim

n→∞
un = 0 uniformly on [0, 1], or lim

n→∞
vn = 0

uniformly on [0, 1]. Then
y

[0,1]3

f (un (x) vn (y) , un (y) vn (z) , un (z) vn (x)) dxdydz = f (0, 0, 0)

+
(
∂f
∂x (0, 0, 0) + ∂f

∂y (0, 0, 0) + ∂f
∂z (0, 0, 0)

)(∫ 1
0 un (x) dx

)(∫ 1
0 vn (x) dx

)
+o
((∫ 1

0 un (x) dx
)(∫ 1

0 vn (x) dx
))

.

Proof. Let us take in Theorem 5, A = [0, 1]3, an, bn, cn : [0, 1]3 → [0, 1],
an (x, y, z) = un (x) vn (y), bn (x, y, z) = un (y) vn (z), cn (x, y, z) = un (z) vn (x).
Let us suppose, for example, that lim

n→∞
un = 0 uniformly on [0, 1]. From

0 ≤ vn (y) ≤ 1, ∀n ∈ N, ∀y ∈ [0, 1], we deduce that 0 ≤ an (x, y, z) ≤ un (x),

∀n ∈ N, ∀ (x, y, z) ∈ [0, 1]3 and hence lim
n→∞

an = 0. Similarly lim
n→∞

bn = 0,

lim
n→∞

cn = 0, all uniformly on [0, 1]3. Then
y

[0,1]3

f (an (x, y, z) , bn (x, y, z) , cn (x, y, z)) dxdydz = f (0, 0, 0)

+
∂f

∂x
(0, 0, 0)

y

[0,1]3

an +
∂f

∂y
(0, 0, 0)

y

[0,1]3

bn +
∂f

∂z
(0, 0, 0)

y

[0,1]3

cn

+o

y

[0,1]3

an +
y

[0,1]3

bn +
y

[0,1]3

cn

 ;

above and in the sequel of this proof we write simply
t

[0,1]3 an instead of
t

[0,1]3 an (x, y, z) dxdydz, etc. Since by Fubini’s theorem

y

[0,1]3

an =
y

[0,1]3

bn =
y

[0,1]3

cn =

(∫ 1

0
un (x) dx

)(∫ 1

0
vn (x) dx

)
,

the evaluation from the statement follows. 2

For vn (x) = 1 in Proposition 6 we get

Corollary 7. Let f : [0, 1]3 → R be a continuous function which is differ-
entiable at (0, 0, 0) and un : [0, 1]→ [0, 1] a sequence of continuous functions
such that lim

n→∞
un = 0 uniformly on [0, 1]. Then
y

[0,1]3

f (un (x) , un (y) , un (z)) dxdydz = f (0, 0, 0)
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+

(
∂f

∂x
(0, 0, 0) +

∂f

∂y
(0, 0, 0) +

∂f

∂z
(0, 0, 0)

)∫ 1

0
un (x) dx+o

(∫ 1

0
un (x) dx

)
.

Proposition 8. Let f : [0, 1]3 → R be a continuous function which is dif-
ferentiable at (0, 0, 0) and un, vn : [0, 1] → [0, 1] two sequences of continuous
functions such that lim

n→∞
un = 0 uniformly on [0, 1]. Then

x

[0,1]2

f (un (x) , un (y) , un (x) vn (y)) dxdy = f (0, 0, 0)

+

(
∂f

∂x
(0, 0, 0) +

∂f

∂y
(0, 0, 0)

)(∫ 1

0
un (x) dx

)
+
∂f

∂z
(0, 0, 0)

(∫ 1

0
un (x) dx

)(∫ 1

0
vn (x) dx

)
+ o

(∫ 1

0
un (x) dx

)
.

Proof. Let us take in Theorem 5, A = [0, 1]3, an, bn, cn : [0, 1]3 → [0, 1],
an (x, y, z) = un (x), bn (x, y, z) = un (y), cn (x, y, z) = un (x) vn (y). Let us
note that from lim

n→∞
un = 0 uniformly on [0, 1] and 0 ≤ vn (x) ≤ 1, ∀x ∈ [0, 1],

∀n ∈ N it follows that lim
n→∞

an = 0, lim
n→∞

bn = 0, lim
n→∞

cn = 0, all uniformly

on [0, 1]3. Then
y

[0,1]3

f (un (x) , un (y) , un (x) vn (y)) dxdydz = f (0, 0, 0)

+
∂f

∂x
(0, 0, 0)

y

[0,1]3

an +
∂f

∂y
(0, 0, 0)

y

[0,1]3

bn +
∂f

∂z
(0, 0, 0)

y

[0,1]3

cn

+o

y

[0,1]3

an +
y

[0,1]3

bn +
y

[0,1]3

cn

 ;

above and in the sequel of this proof we write simply
t

[0,1]3 an instead of
t

[0,1]3 an (x, y, z) dxdydz, etc. Since by Fubini’s theorem
y

[0,1]3

f (un (x) , un (y) , un (x) vn (y)) dxdydz

=
x

[0,1]2

f (un (x) , un (y) , un (x) vn (y)) dxdy,

y

[0,1]3

an =
y

[0,1]3

bn =

∫ 1

0
un (x) dx,

y

[0,1]3

cn =

(∫ 1

0
un (x) dx

)(∫ 1

0
vn (x) dx

)
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we get x

[0,1]2

f (un (x) , un (y) , un (x) vn (y)) dxdy = f (0, 0, 0)

+

(
∂f

∂x
(0, 0, 0) +

∂f

∂y
(0, 0, 0)

)(∫ 1

0
un (x) dx

)
+
∂f

∂z
(0, 0, 0)

(∫ 1

0
un (x) dx

)(∫ 1

0
vn (x) dx

)
+o

(∫ 1

0
un (x) dx+

(∫ 1

0
un (x) dx

)(∫ 1

0
vn (x) dx

))
. (1)

From 0 ≤ vn (x) ≤ 1, ∀x ∈ [0, 1], ∀n ∈ N, we deduce that 0 ≤
∫ 1
0 vn (x) dx ≤

1, ∀n ∈ N and thus
∫ 1
0 un (x) dx+

(∫ 1
0 un (x) dx

)(∫ 1
0 vn (x) dx

)
≤ 2

∫ 1
0 un (x) dx,

∀n ∈ N. From Remark 3 and the relation (1) we deduce the evaluation from
the statement. 2

4. Some examples in the case of differentiable functions

In this section f : [0, 1]3 → R is a continuous function which is differ-

entiable at (0, 0, 0) and S = ∂f
∂x (0, 0, 0) + ∂f

∂y (0, 0, 0) + ∂f
∂z (0, 0, 0). We begin

with some applications of Corollary 7.

Corollary 9. The following evaluation holds
y

[0,1]3

f

(
xn

n
,
yn

n
,
zn

n

)
dxdydz = f (0, 0, 0) +

S

n2
+ o

(
1

n2

)
.

Proof. Let un : [0, 1] → [0, 1], un (x) = xn

n . We have 0 ≤ un (x) ≤ 1
n , ∀n ∈

N,∀x ∈ [0, 1], and thus lim
n→∞

un = 0 uniformly on [0, 1], also
∫ 1
0 un (x) dx =

1
n(n+1) . We deduce that

y

[0,1]3

f

(
xn

n
,
yn

n
,
zn

n

)
dxdydz = f (0, 0, 0) +

S

n (n+ 1)
+ o

(
1

n (n+ 1)

)
.

To finish the proof let us note that 1
n+1 = 1

n + o
(
1
n

)
. 2

Corollary 10. The following evaluation holds
y

[0,1]3

f

(
xn

n (xn + 1)
,

yn

n (yn + 1)
,

zn

n (zn + 1)

)
dxdydz

= f (0, 0, 0) +
S ln 2

n2
+ o

(
1

n2

)
.
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Proof. Let un : [0, 1] → [0, 1], un (x) = xn

n(xn+1) . We have 0 ≤ un (x) ≤ 1
n ,

∀n ∈ N,∀x ∈ [0, 1], and thus lim
n→∞

un = 0 uniformly on [0, 1]. We deduce that

y

[0,1]3

f

(
xn

n (xn + 1)
,

yn

n (yn + 1)
,

zn

n (zn + 1)

)
dxdydz = f (0, 0, 0)

+
S

n

∫ 1

0

xndx

xn + 1
+ o

(
1

n

∫ 1

0

xndx

xn + 1

)
.

But, as is well-known, lim
n→∞

n
∫ 1
0
xndx
xn+1 = ln 2, that is,

∫ 1
0
xndx
xn+1 = ln 2

n + o
(
1
n

)
,

see [6, problem 3.13]. The evaluation from the statement follows. 2

Corollary 11. The following evaluation holds
t

[0,1]3 f
(
1+x+x2+···+xn−1

n2 , 1+y+y
2+···+yn−1

n2 , 1+z+z
2+···+zn−1

n2

)
dxdydz

= f (0, 0, 0) +
S lnn

n2
+ o

(
lnn

n2

)
.

Proof. Let un : [0, 1] → [0, 1], un (x) = 1+x+···+xn−1

n2 . We have 0 ≤ un (x) ≤
1
n , ∀n ∈ N, ∀x ∈ [0, 1], and thus lim

n→∞
un = 0 uniformly on [0, 1]. Also∫ 1

0 un (x) dx = 1 + 1
2 + · · ·+ 1

n = Hn. We deduce that
t

[0,1]3 f
(
1+x+x2+···+xn−1

n2 , 1+y+y
2+···+yn−1

n2 , 1+z+z
2+···+zn−1

n2

)
dxdydz

= f (0, 0, 0) +
SHn

n2
+ o

(
Hn

n2

)
.

To finish the proof, we recall that, as is well-known, lim
n→∞

Hn
lnn = 1, that is

Hn = lnn+ o (lnn). 2

We continue with some applications of Proposition 6.

Corollary 12. The following evaluation holds
y

[0,1]3

f

(
xnyn

n
,
ynzn

n
,
znxn

n

)
dxdydz = f (0, 0, 0) +

S

n3
+ o

(
1

n3

)
.

Proof. Let un, vn : [0, 1] → [0, 1], un (x) = xn

n , vn (x) = xn. We have 0 ≤
un (x) ≤ 1

n , 0 ≤ vn (x) ≤ 1, ∀n ∈ N, ∀x ∈ [0, 1], and thus lim
n→∞

un =

0 uniformly on [0, 1]; also
∫ 1
0 un (x) dx = 1

n(n+1) ,
∫ 1
0 vn (x) dx = 1

n+1 . We

deduce that
y

[0,1]3

f

(
xnyn

n
,
ynzn

n
,
znxn

n

)
dxdydz = f (0, 0, 0)+

S

n (n+ 1)2
+o

(
1

n (n+ 1)2

)
.

To finish the proof let us note that 1
(n+1)2

= 1
n2 + o

(
1
n2

)
. 2



D. Popa, Asymptotic evaluations for some triple integrals 23

Corollary 13. The following evaluation holds
t

[0,1]3 f

(
xn(1+y+···+yn−1)

n2 ,
yn(1+z+···+zn−1)

n2 ,
zn(1+x+···+xn−1)

n2

)
dxdydz

= f (0, 0, 0) +
S lnn

n3
+ o

(
lnn

n3

)
.

Proof. Let un, vn : [0, 1]→ [0, 1], un (x) = xn, vn (x) = 1+x+···+xn−1

n2 . We have

0 ≤ un (x) ≤ 1, 0 ≤ vn (x) ≤ 1
n , ∀n ∈ N, ∀x ∈ [0, 1], and thus lim

n→∞
vn = 0

uniformly on [0, 1]; also
∫ 1
0 un (x) dx = 1

n+1 ,
∫ 1
0 vn (x) dx = Hn

n2 , where Hn =

1 + 1
2 + · · ·+ 1

n . We deduce that

y

[0,1]3

f (un (x) vn (y) , un (y) vn (z) , un (z) vn (x)) dxdydz

= f (0, 0, 0) +
SHn

n2 (n+ 1)
+ o

(
Hn

n2 (n+ 1)

)
.

From the evaluation Hn = lnn + o (lnn) we get the evaluation from the
statement. 2

We continue with an application of Proposition 8.

Corollary 14. The following evaluation holds

x

[0,1]2

f

(
xn

n
,
yn

n
,
xnyn

n

)
dxdy = f (0, 0, 0) +

(
∂f

∂x
(0, 0, 0) +

∂f

∂y
(0, 0, 0)

)
1

n2

+ o

(
1

n2

)
.

Proof. Let us take in Proposition 8 un, vn : [0, 1] → [0, 1], un (x) = xn

n ,
vn (x) = yn. We get

x

[0,1]2

f

(
xn

n
,
yn

n
,
xnyn

n

)
dxdy = f (0, 0, 0)+

(
∂f

∂x
(0, 0, 0) +

∂f

∂y
(0, 0, 0)

)
1

n (n+ 1)

+
∂f

∂z
(0, 0, 0)

1

n (n+ 1)2
+ o

(
1

n (n+ 1)

)
.

By simple calculations we get the evaluation from the statement. 2

We end this section with some applications of Theorem 5.
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Corollary 15. The following evaluation holds

y

[0,1]3

f

(
xnynzn

n
,
x2ny2nz2n

n
,
x3ny3nz3n

n

)
dxdydz = f (0, 0, 0)

+

(
∂f

∂x
(0, 0, 0) +

∂f
∂y (0, 0, 0)

8
+

∂f
∂z (0, 0, 0)

27

)
1

n4
+ o

(
1

n4

)
.

Proof. Let A = [0, 1]3, an, bn, cn : [0, 1]3 → [0, 1], an (x, y, z) = xnynzn

n ,

bn (x, y, z) = x2ny2nz2n

n , cn (x, y, z) = x3ny3nz3n

n . From

0 ≤ an (x, y, z) , bn (x, y, z) , cn (x, y, z) ≤ 1

n
,∀n ∈ N,∀ (x, y, z) ∈ [0, 1]3

we deduce that lim
n→∞

an = 0, lim
n→∞

bn = 0, lim
n→∞

cn = 0, all uniformly on [0, 1]3.

We also have
t

[0,1]3 an (x, y, z) dxdydz = 1
n(n+1)3

,
t

[0,1]3 bn (x, y, z) dxdydz =
1

n(2n+1)3
,
t

[0,1]3 cn (x, y, z) dxdydz = 1
n(3n+1)3

. Then

y

[0,1]3

f

(
xnynzn

n
,
x2ny2nz2n

n
,
x3ny3nz3n

n

)
dxdydz = f (0, 0, 0)

+
∂f
∂x (0, 0, 0)

n (n+ 1)3
+

∂f
∂y (0, 0, 0)

n (2n+ 1)3
+

∂f
∂z (0, 0, 0)

n (3n+ 1)3
+ o

(
1

n4

)
.

Since 1
(n+1)3

= 1
n3 + o

(
1
n3

)
, 1

(2n+1)3
= 1

8n3 + o
(

1
n3

)
, 1

(3n+1)3
= 1

27n3 + o
(

1
n3

)
,

by simple calculations we get the evaluation from the statement. 2

Corollary 16. The following evaluation holds

y

[0,1]3

f

(
xn + yn + zn

n
,
x2n + y2n + z2n

n
,
x3n + y3n + z3n

n

)
dxdydz

= f (0, 0, 0) + 3

(
∂f

∂x
(0, 0, 0) +

∂f
∂y (0, 0, 0)

2
+

∂f
∂z (0, 0, 0)

3

)
1

n2
+ o

(
1

n2

)
.

Proof. Let A = [0, 1]3 and an, bn, cn : [0, 1]3 → [0, 1], an (x, y, z) = xn+yn+zn

n ,

bn (x, y, z) = x2n+y2n+z2n

n , cn (x, y, z) = x3n+y3n+z3n

n . From

0 ≤ an (x, y, z) , bn (x, y, z) , cn (x, y, z) ≤ 3

n
,∀n ∈ N,∀ (x, y, z) ∈ [0, 1]3

we deduce that lim
n→∞

an = 0, lim
n→∞

bn = 0, lim
n→∞

cn = 0, all uniformly on

[0, 1]3. Also
t

[0,1]3 an (x, y, z) dxdydz = 3
n(n+1) ,

t
[0,1]3 bn (x, y, z) dxdydz =
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3
n(2n+1) ,

t
[0,1]3 cn (x, y, z) dxdydz = 3

n(3n+1) . Then

y

[0,1]3

f

(
xn + yn + zn

n
,
x2n + y2n + z2n

n
,
x3n + y3n + z3n

n

)
dxdydz

= f (0, 0, 0) +
3∂f∂x (0, 0, 0)

n (n+ 1)
+

3∂f∂y (0, 0, 0)

n (2n+ 1)
+

3∂f∂z (0, 0, 0)

n (3n+ 1)
+ o

(
1

n2

)
.

Since 1
n+1 = 1

n + o
(
1
n

)
, 1

2n+1 = 1
2n + o

(
1
n

)
, 1

3n+1 = 1
3n + o

(
1
n

)
, by simple

calculations we get the evaluation from the statement. 2

Corollary 17. The following evaluation holds

y

[0,1]3

f

(
xn + yn + zn

n
,
xnyn + ynzn + znxn

n
,
xnynzn

n

)
dxdydz

= f (0, 0, 0) +
3∂f∂x (0, 0, 0)

n2
+ o

(
1

n2

)
.

Proof. Let A = [0, 1]3 and an, bn, cn : [0, 1]3 → [0, 1], an (x, y, z) = xn+yn+zn

n ,

bn (x, y, z) = xnyn+ynzn+znxn

n , cn (x, y, z) = xnynzn

n . From

0 ≤ an (x, y, z) , bn (x, y, z) ≤ 3

n
, 0 ≤ cn (x, y, z) ≤ 1

n
, ∀n ∈ N, ∀ (x, y, z) ∈ [0, 1]3

we deduce that lim
n→∞

an = 0, lim
n→∞

bn = 0, lim
n→∞

cn = 0, all uniformly on

[0, 1]3. Also
t

[0,1]3 an (x, y, z) dxdydz = 3
n(n+1) ,

t
[0,1]3 bn (x, y, z) dxdydz =

3
n(n+1)2

,
t

[0,1]3 cn (x, y, z) dxdydz = 1
n(n+1)3

. Then

y

[0,1]3

f

(
xn + yn + zn

n
,
xnyn + ynzn + znxn

n
,
xnynzn

n

)
dxdydz = f (0, 0, 0)

+
3∂f∂x (0, 0, 0)

n (n+ 1)
+

3∂f∂y (0, 0, 0)

n (n+ 1)2
+

∂f
∂z (0, 0, 0)

n (n+ 1)3

+o

(
1

n (n+ 1)
+

1

n (n+ 1)2
+

1

n (n+ 1)3

)
.

From this evaluation by simple calculations we get the evaluation from the
statement. 2

5. The case of twice differentiable functions

In this section we analyze the case of twice differentiable functions.
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Theorem 18. Let f : [0, 1]3 → R be a continuous function which is twice
differentiable at (0, 0, 0). Let k be a natural number, A ⊂ Rk a compact
Jordan measurable set, an, bn, cn : A→ [0, 1] be three sequences of continuous
functions such that lim

n→∞
an = 0, lim

n→∞
bn = 0, lim

n→∞
cn = 0, all uniformly on

A. Then ∫
A
f (an (x) , bn (x) , cn (x)) dx = f (0, 0, 0)λk (A)

+
∂f

∂x
(0, 0, 0)

∫
A
an (x) dx+

∂f

∂y
(0, 0, 0)

∫
A
bn (x) dx+

∂f

∂z
(0, 0, 0)

∫
A
cn (x) dx

+
∂2f

∂x2
(0, 0, 0)

∫
A
a2n (x) dx+

∂2f

∂y2
(0, 0, 0)

∫
A
b2n (x) dx+

∂2f

∂z2
(0, 0, 0)

∫
A
c2n (x) dx

+2
∂2f

∂x∂y
(0, 0, 0)

∫
A
an (x) bn (x) dx+2

∂2f

∂x∂z
(0, 0, 0)

∫
A
an (x) cn (x) dx

+2
∂2f

∂y∂z
(0, 0, 0)

∫
A
bn (x) cn (x) dx

+o

(∫
A
a2n (x) dx+

∫
A
b2n (x) dx+

∫
A
c2n (x) dx

)
.

Proof. Since f is twice differentiable at (0, 0, 0), from the Maclaurin formula
we have

lim
(x,y,z)→(0,0,0)

f (x, y, z)− f (0, 0, 0)− P1 (x, y, z)− P2 (x, y, z)

x2 + y2 + z2
= 0,

where P1 (x, y, z) = ∂f
∂x (0, 0, 0)x+ ∂f

∂y (0, 0, 0) y + ∂f
∂z (0, 0, 0) z,

P2 (x, y, z) =
∂2f

∂x2
(0, 0, 0)x2 +

∂2f

∂y2
(0, 0, 0) y2 +

∂2f

∂z2
(0, 0, 0) z2

+ 2
∂2f

∂x∂y
(0, 0, 0)xy + 2

∂2f

∂x∂z
(0, 0, 0)xz + 2

∂2f

∂y∂z
(0, 0, 0) yz,

see [1]. From this limit we deduce that

f (x, y, z) = g (x, y, z) + o
(
x2 + y2 + z2

)
for (x, y, z)→ (0, 0, 0) ,

where g (x, y, z) = f (0, 0, 0) +P1 (x, y, z) +P2 (x, y, z). We apply Theorem 4

in which E = [0, 1]3 and h (x, y, z) = x2 + y2 + z2. 2

We will prove in the sequel some applications of Theorem 18.

Proposition 19. Let f : [0, 1]3 → R be a continuous function which is
twice differentiable at (0, 0, 0) and un, vn : [0, 1] → [0, 1] two sequences of
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continuous functions such that either lim
n→∞

un = 0 uniformly on [0, 1], or

lim
n→∞

vn = 0 uniformly on [0, 1]. Then

y

[0,1]3

f (un (x) vn (y) , un (y) vn (z) , un (z) vn (x)) dxdydz = f (0, 0, 0)

+S

(∫ 1

0
un (x) dx

)(∫ 1

0
vn (x) dx

)
+ (∆f) (0, 0, 0)

(∫ 1

0
u2n (x) dx

)(∫ 1

0
v2n (x) dx

)
+ 2T

(∫ 1

0
un (x) dx

)(∫ 1

0
vn (x) dx

)(∫ 1

0
un (x) vn (x) dx

)
+o

((∫ 1

0
u2n (x) dx

)(∫ 1

0
v2n (x) dx

))
,

where S = ∂f
∂x (0, 0, 0)+ ∂f

∂y (0, 0, 0)+ ∂f
∂z (0, 0, 0), (∆f) (0, 0, 0) = ∂2f

∂x2
(0, 0, 0)+

∂2f
∂y2

(0, 0, 0) + ∂2f
∂z2

(0, 0, 0), T = ∂2f
∂x∂y (0, 0, 0) + ∂2f

∂x∂z (0, 0, 0) + ∂2f
∂y∂z (0, 0, 0).

Proof. Let us take in Theorem 18, A = [0, 1]3, an, bn, cn : [0, 1]3 → [0, 1],
an (x, y, z) = un (x) vn (y), bn (x, y, z) = un (y) vn (z), cn (x, y, z) = un (z) vn (x).
We get

y

[0,1]3

f (an (x, y, z) , bn (x, y, z) , cn (x, y, z)) dxdydz = f (0, 0, 0)

+
∂f

∂x
(0, 0, 0)

y

[0,1]3

an +
∂f

∂y
(0, 0, 0)

y

[0,1]3

bn +
∂f

∂z
(0, 0, 0)

y

[0,1]3

cn

+
∂2f

∂x2
(0, 0, 0)

y

[0,1]3

a2n +
∂2f

∂y2
(0, 0, 0)

y

[0,1]3

b2n +
∂2f

∂z2
(0, 0, 0)

y

[0,1]3

c2n

+2
∂2f

∂x∂y
(0, 0, 0)

y

[0,1]3

anbn + 2
∂2f

∂x∂z
(0, 0, 0)

y

[0,1]3

ancn

+2
∂2f

∂y∂z
(0, 0, 0)

y

[0,1]3

bncn + o

y

[0,1]3

a2n +
y

[0,1]3

b2n +
y

[0,1]3

c2n

 ;

above and in the sequel of this proof we simply write
t

[0,1]3 an instead of
t

[0,1]3 an (x, y, z) dxdydz, etc. By Fubini’s theorem

y

[0,1]3

an =
y

[0,1]3

bn =
y

[0,1]3

cn =

(∫ 1

0
un (x) dx

)(∫ 1

0
vn (x) dx

)
,
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y

[0,1]3

a2n =
y

[0,1]3

b2n =
y

[0,1]3

c2n =

(∫ 1

0
u2n (x) dx

)(∫ 1

0
v2n (x) dx

)
,

and
y

[0,1]3

anbn =
y

[0,1]3

ancn =
y

[0,1]3

bncn

=

(∫ 1

0
un (x) dx

)(∫ 1

0
vn (x) dx

)(∫ 1

0
un (x) vn (x) dx

)
,

and thus we get the evaluation from the statement. 2

Taking vn (x) = 1 in Proposition 19 we get

Corollary 20. Let f : [0, 1]3 → R be a continuous function which is twice
differentiable at (0, 0, 0) and un : [0, 1] → [0, 1] a sequence of continuous
functions such that lim

n→∞
un = 0 uniformly on [0, 1]. Then

y

[0,1]3

f (un (x) , un (y) , un (z)) dxdydz = f (0, 0, 0) +

+S

∫ 1

0
un (x) dx+ (∆f) (0, 0, 0)

∫ 1

0
u2n (x) dx+ 2T

(∫ 1

0
un (x) dx

)2

+o

(∫ 1

0
u2n (x) dx

)
.

Proposition 21. Let f : [0, 1]3 → R be a continuous function which is twice
differentiable at (0, 0, 0) and un, vn : [0, 1] → [0, 1] two sequences of continu-

ous functions such that lim
n→∞

un = 0 uniformly on [0, 1] and lim
n→∞

∫ 1
0 vn (x) dx =

0. Then
x

[0,1]2

f (un (x) , un (y) , un (x) vn (y)) dxdy = f (0, 0, 0)

+

(
∂f

∂x
(0, 0, 0) +

∂f

∂y
(0, 0, 0)

)(∫ 1

0
un (x) dx

)
+
∂f

∂z
(0, 0, 0)

(∫ 1

0
un (x) dx

)(∫ 1

0
vn (x) dx

)

+

(
∂2f

∂x2
(0, 0, 0) +

∂2f

∂y2
(0, 0, 0)

)∫ 1

0
u2n (x) dx

+2
∂2f

∂x∂y
(0, 0, 0)

(∫ 1

0
un (x) dx

)2

+ o

(∫ 1

0
u2n (x) dx

)
.
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Proof. Let us take in Theorem 18, A = [0, 1]3, an, bn, cn : [0, 1]3 → [0, 1],
an (x, y, z) = un (x), bn (x, y, z) = un (y), cn (x, y, z) = un (x) vn (y). We get

y

[0,1]3

f (an (x, y, z) , bn (x, y, z) , cn (x, y, z)) dxdydz = f (0, 0, 0)

+
∂f

∂x
(0, 0, 0)

y

[0,1]3

an +
∂f

∂y
(0, 0, 0)

y

[0,1]3

bn +
∂f

∂z
(0, 0, 0)

y

[0,1]3

cn

+
∂2f

∂x2
(0, 0, 0)

y

[0,1]3

a2n +
∂2f

∂y2
(0, 0, 0)

y

[0,1]3

b2n +
∂2f

∂z2
(0, 0, 0)

y

[0,1]3

c2n

+2
∂2f

∂x∂y
(0, 0, 0)

y

[0,1]3

anbn + 2
∂2f

∂x∂z
(0, 0, 0)

y

[0,1]3

ancn

+2
∂2f

∂y∂z
(0, 0, 0)

y

[0,1]3

bncn + o

y

[0,1]3

a2n +
y

[0,1]3

b2n +
y

[0,1]3

c2n

 ;

above and in the sequel of this proof we write simply
t

[0,1]3 an instead of
t

[0,1]3 an (x, y, z) dxdydz, etc. Since by Fubini’s theorem

y

[0,1]3

a2n =
y

[0,1]3

b2n =

∫ 1

0
u2n (x) dx,

y

[0,1]3

c2n =

(∫ 1

0
u2n (x) dx

)(∫ 1

0
v2n (x) dx

)

and from the hypothesis 0 ≤ vn (x) ≤ 1, ∀x ∈ [0, 1] we have

0 ≤
(∫ 1

0
u2n (x) dx

)(∫ 1

0
v2n (x) dx

)
≤
∫ 1

0
u2n (x) dx,

we deduce that

0 ≤
y

[0,1]3

a2n +
y

[0,1]3

b2n +
y

[0,1]3

c2n ≤ 3

∫ 1

0
u2n (x) dx.
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Also

y

[0,1]3

anbn =

(∫ 1

0
un (x) dx

)2

,

y

[0,1]3

ancn =

(∫ 1

0
u2n (x) dx

)(∫ 1

0
vn (x) dx

)
,

y

[0,1]3

bncn =

(∫ 1

0
un (x) dx

)(∫ 1

0
un (x) vn (x) dx

)
.

Hence by Remark 3 we have
x

[0,1]2

f (un (x) , un (y) , un (x) vn (y)) dxdy = f (0, 0, 0)

+

(
∂f

∂x
(0, 0, 0) +

∂f

∂y
(0, 0, 0)

)(∫ 1

0
un (x) dx

)

+
∂f

∂z
(0, 0, 0)

(∫ 1

0
un (x) dx

)(∫ 1

0
vn (x) dx

)
+

(
∂2f

∂x2
(0, 0, 0) +

∂2f

∂y2
(0, 0, 0)

)∫ 1

0
u2n (x) dx

+2
∂2f

∂x∂y
(0, 0, 0)

(∫ 1

0
un (x) dx

)2

+2
∂2f

∂x∂z
(0, 0, 0)

(∫ 1

0
u2n (x) dx

)(∫ 1

0
vn (x) dx

)
+2

∂2f

∂y∂z
(0, 0, 0)

(∫ 1

0
un (x) dx

)(∫ 1

0
un (x) vn (x) dx

)
+o

(∫ 1

0
u2n (x) dx

)
. (2)

Since by hypothesis lim
n→∞

∫ 1
0 vn (x) dx = 0, we get(∫ 1

0
u2n (x) dx

)(∫ 1

0
vn (x) dx

)
= o

(∫ 1

0
u2n (x) dx

)
.

From the Cauchy-Buniakovski-Schwarz inequality and 0 ≤ vn (x) ≤ 1, ∀x ∈
[0, 1], we have (∫ 1

0
un (x) dx

)(∫ 1

0
un (x) vn (x) dx

)
≤
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0
u2n (x) dx

√∫ 1

0
u2n (x) dx

√∫ 1

0
v2n (x) dx ≤

(∫ 1

0
u2n (x) dx

)√∫ 1

0
vn (x) dx

and again from the hypothesis lim
n→∞

∫ 1
0 vn (x) dx = 0 we deduce that(∫ 1

0
un (x) dx

)(∫ 1

0
un (x) vn (x) dx

)
= o

(∫ 1

0
u2n (x) dx

)
. (3)

The evaluation from the statement follows from the relations (2) and (3). 2

6. Some examples in the case of twice differentiable functions

To avoid the repetitions: in this section f : [0, 1]3 → R is a contin-

uous function which is twice differentiable at (0, 0, 0), S = ∂f
∂x (0, 0, 0) +

∂f
∂y (0, 0, 0)+ ∂f

∂z (0, 0, 0), ∆f (0, 0, 0) = ∂2f
∂x2

(0, 0, 0)+ ∂2f
∂y2

(0, 0, 0)+ ∂2f
∂z2

(0, 0, 0),

T = ∂2f
∂x∂y (0, 0, 0) + ∂2f

∂x∂z (0, 0, 0) + ∂2f
∂y∂z (0, 0, 0).

We begin with two applications of Corollary 20.

Corollary 22. The following evaluation holds
y

[0,1]3

f

(
xn

n
,
yn

n
,
zn

n

)
dxdydz = f (0, 0, 0) +

S

n2
+

∆f (0, 0, 0)− 2S

2n3
+o

(
1

n3

)
.

Proof. Let un : [0, 1] → [0, 1], un (x) = xn

n . We have
∫ 1
0 un (x) dx = 1

n(n+1) ,∫ 1
0 u

2
n (x) dx = 1

n2(2n+1)
. We deduce that

y

[0,1]3

f

(
xn

n
,
yn

n
,
zn

n

)
dxdydz = f (0, 0, 0) +

S

n (n+ 1)
+

∆f (0, 0, 0)

n2 (2n+ 1)

+
2T

n2 (n+ 1)2
+ o

(
1

n3

)
= f (0, 0, 0) +

S

n (n+ 1)
+

∆f (0, 0, 0)

n2 (2n+ 1)
+ o

(
1

n3

)
.

Since 1
n(n+1) = 1

n2 − 1
n3 + o

(
1
n3

)
and 1

n2(2n+1)
= 1

2n3 + o
(

1
n3

)
, after some

simple calculations we get the evaluation from the statement. 2

Corollary 23. The following evaluation holds
y

[0,1]3

f

(
xn

n (xn + 1)
,

yn

n (yn + 1)
,

zn

n (zn + 1)

)
dxdydz

= f (0, 0, 0) +
S ln 2

n2
+

(12 ln 2− 6) ∆f (0, 0, 0)− π2S
12n3

+ o

(
1

n3

)
.
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Proof. Let un : [0, 1]→ [0, 1], un (x) = xn

n(xn+1) . We get

y

[0,1]3

f (un (x) , un (y) , un (z)) dxdydz = f (0, 0, 0)

+S

∫ 1

0
un (x) dx+ ∆f (0, 0, 0)

∫ 1

0
u2n (x) dx

+2T

(∫ 1

0
un (x) dx

)2

+ o

(∫ 1

0
u2n (x) dx

)
.

We now use the well-known results that if ϕ : [0, 1] → R is continuous then∫ 1
0 nx

nϕ (xn) dx =
∫ 1
0 ϕ (x) dx+ o (1) and

lim
n→∞

n

(∫ 1

0
nxnϕ (xn) dx−

∫ 1

0
ϕ (x) dx

)
= −

∫ 1

0

1

x

(∫ x

0
ϕ (t) dt

)
dx

or equivalently∫ 1

0
nxnϕ (xn) dx =

∫ 1

0
ϕ (x) dx− 1

n

∫ 1

0

1

x

(∫ x

0
ϕ (t) dt

)
dx+ o

(
1

n

)
for ϕ (x) = 1

x+1 , see [6, problem 3.13]. We deduce that
∫ 1
0

nxn

xn+1dx = ln 2 +

o (1),
∫ 1
0

nxn

xn+1dx = ln 2 − π2

12n + o
(
1
n

)
; we have used that

∫ 1
0

ln(x+1)
x dx = π2

12 ,

see [7, Proposition 11]. Also∫ 1

0
u2n (x) dx =

1

n3

∫ 1

0

nx2n

(xn + 1)2
dx =

1

n3

(∫ 1

0

tdt

(t+ 1)2
+ o (1)

)
=

2 ln 2− 1

2n3
+ o

(
1

n3

)
and ∫ 1

0
un (x) dx =

1

n2

∫ 1

0

nxndx

xn + 1
=

ln 2

n2
− π2

12n3
+ o

(
1

n3

)
.

Hence
(∫ 1

0 un (x) dx
)2

= o
(

1
n3

)
and we get that

y

[0,1]3

f (un (x) , un (y) , un (z)) dxdydz

= f (0, 0, 0) + S

(
ln 2

n2
− π2

12n3

)
+

(2 ln 2− 1) ∆f (0, 0, 0)

2n3
+ o

(
1

n3

)
.

The stated evaluation is obtained from this by simple calculations. 2

We continue with an application of Proposition 19.
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Corollary 24. The following evaluation holds
y

[0,1]3

f

(
xnyn

n
,
ynzn

n
,
znxn

n

)
dxdydz =f (0, 0, 0) +

S

n3

+
∆f (0, 0, 0)− 8S

4n4
+ o

(
1

n4

)
.

Proof. With the choice un, vn : [0, 1] → [0, 1], un (x) = xn

n , vn (x) = xn,

we have
∫ 1
0 un (x) dx = 1

n(n+1) ,
∫ 1
0 vn (x) dx = 1

n+1 ,
∫ 1
0 u

2
n (x) dx = 1

n2(2n+1)
,∫ 1

0 v
2
n (x) dx = 1

2n+1 ,
∫ 1
0 un (x) vn (x) dx = 1

n(2n+1) . We therefore get

y

[0,1]3

f

(
xnyn

n
,
ynzn

n
,
znxn

n

)
dxdydz = f (0, 0, 0) +

S

n (n+ 1)2

+
∆f (0, 0, 0)

n2 (2n+ 1)2
+

2T

n2 (n+ 1)2 (2n+ 1)
+ o

(
1

n4

)
and hence

y

[0,1]3

f

(
xnyn

n
,
ynzn

n
,
znxn

n

)
dxdydz = f (0, 0, 0) +

S

n (n+ 1)2

+
∆f (0, 0, 0)

n2 (2n+ 1)2
+ o

(
1

n4

)
.

From 1
n(n+1)2

= 1
n3 − 2

n4 + o
(

1
n4

)
we deduce that

y

[0,1]3

f

(
xnyn

n
,
ynzn

n
,
znxn

n

)
dxdydz = f (0, 0, 0) + S

(
1

n3
− 2

n4

)

+
∆f (0, 0, 0)

4n4
+ o

(
1

n4

)
,

that is, the stated evaluation. 2

The next result is an application of Proposition 21.

Corollary 25. The following evaluation holds
x

[0,1]2

f

(
xn

n
,
yn

n
,
xnyn

n

)
dxdy = f (0, 0, 0) +

(
∂f

∂x
(0, 0, 0) +

∂f

∂y
(0, 0, 0)

)
1

n2

+

[
∂f

∂z
(0, 0, 0)− ∂f

∂x
(0, 0, 0)− ∂f

∂y
(0, 0, 0) +

1

2

∂2f

∂x2
(0, 0, 0) +

1

2

∂2f

∂y2
(0, 0, 0)

]
1

n3

+o

(
1

n3

)
.
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Proof. Let un, vn : [0, 1]→ [0, 1], un (x) = xn

n , vn (x) = xn in Proposition 21.
We get

x

[0,1]2

f

(
xn

n
,
yn

n
,
xnyn

n

)
dxdy = f (0, 0, 0)

+

(
∂f

∂x
(0, 0, 0) +

∂f

∂y
(0, 0, 0)

)
1

n (n+ 1)
+
∂f

∂z
(0, 0, 0)

1

n (n+ 1)2

+

(
∂2f

∂x2
(0, 0, 0) +

∂2f

∂y2
(0, 0, 0)

)
1

n2 (2n+ 1)
+ 2

∂2f

∂x∂y
(0, 0, 0)

1

n2 (n+ 1)2

+o

(
1

n2 (2n+ 1)

)
and hence

x

[0,1]2

f

(
xn

n
,
yn

n
,
xnyn

n

)
dxdy = f (0, 0, 0)

+

(
∂f

∂x
(0, 0, 0) +

∂f

∂y
(0, 0, 0)

)
1

n (n+ 1)
+
∂f

∂z
(0, 0, 0) · 1

n3

+

(
∂2f

∂x2
(0, 0, 0) +

∂2f

∂y2
(0, 0, 0)

)
1

2n3
+ o

(
1

n3

)
.

From the evaluation 1
n(n+1) = 1

n2 − 1
n3 + o

(
1
n3

)
, by simple calculations we get

the evaluation from the statement. 2

We end this paper with an application of Theorem 18.

Corollary 26. The following evaluation holds
y

[0,1]3

f

(
xnynzn

n
,
x2ny2nz2n

n
,
x3ny3nz3n

n

)
dxdydz =f (0, 0, 0) +

A

n4

+
B

n5
+ o

(
1

n5

)
,

where A = ∂f
∂x (0, 0, 0) + 1

8
∂f
∂y (0, 0, 0) + 1

27
∂f
∂z (0, 0, 0), B = −3∂f∂x (0, 0, 0) −

3
16
∂f
∂y (0, 0, 0)− 1

27
∂f
∂z (0, 0, 0)+ ∂2f

∂x2
(0, 0, 0)· 1

23
+ ∂2f
∂y2

(0, 0, 0)· 1
43

+ ∂2f
∂z2

(0, 0, 0)· 1
63

+ ∂2f
∂x∂y (0, 0, 0) · 2

33
+ ∂2f

∂x∂z (0, 0, 0) · 2
43

+ ∂2f
∂y∂z (0, 0, 0) · 2

53
.

Proof. From Theorem 18 and obvious calculations we get
y

[0,1]3

f

(
xnynzn

n
,
x2ny2nz2n

n
,
x3ny3nz3n

n

)
dxdydz = f (0, 0, 0)

+
∂f

∂x
(0, 0, 0) · 1

n (n+ 1)3
+
∂f

∂y
(0, 0, 0) · 1

n (2n+ 1)3
+
∂f

∂z
(0, 0, 0) · 1

n (3n+ 1)3
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+
∂2f

∂x2
(0, 0, 0) · 1

n2 (2n+ 1)3
+
∂2f

∂y2
(0, 0, 0) · 1

n2 (4n+ 1)3

+
∂2f

∂z2
(0, 0, 0) · 1

n2 (6n+ 1)3
+ 2

∂2f

∂x∂y
(0, 0, 0) · 1

n2 (3n+ 1)3

+2
∂2f

∂x∂z
(0, 0, 0) · 1

n2 (4n+ 1)3
+ 2

∂2f

∂y∂z
(0, 0, 0) · 1

n2 (5n+ 1)3
+ o

(
1

n5

)
.

From the evaluations 1
n(n+1)3

= 1
n4− 3

n5 +o
(

1
n5

)
; 1
n(2n+1)3

= 1
8n4− 3

16n5 +o
(

1
n5

)
;

1
n(3n+1)3

= 1
27n4 − 1

27n5 + o
(

1
n5

)
we deduce that

y

[0,1]3

f

(
xnynzn

n
,
x2ny2nz2n

n
,
x3n3ynz3n

n

)
dxdydz = f (0, 0, 0)

+
∂f

∂x
(0, 0, 0) ·

(
1

n4
− 3

n5

)
+
∂f

∂y
(0, 0, 0) ·

(
1

8n4
− 3

16n5

)
+
∂f

∂z
(0, 0, 0) ·

(
1

27n4
− 1

27n5

)
+
∂2f

∂x2
(0, 0, 0) · 1

23n5
+
∂2f

∂y2
(0, 0, 0) · 1

43n5

+
∂2f

∂z2
(0, 0, 0) · 1

63n5
+ 2

∂2f

∂x∂y
(0, 0, 0) · 1

33n5
+ 2

∂2f

∂x∂z
(0, 0, 0) · 1

43n5

+2
∂2f

∂y∂z
(0, 0, 0) · 1

53n5
+ o

(
1

n5

)
.

After some simple calculations we get the evaluation from the statement. 2
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A sequence of integrals on the multidimensional unit cube
revisited

Ulrich Abel1), Vitaliy Kushnirevych2)

Abstract. We present a new proof of the limit of a sequence of integrals
on the multidimensional unit cube. This limit was recently derived by
Popa. The approach is based on a reduction of multivariate integrals and
an application of a method of asymptotic analysis. Finally, we state a
slight generalization.

Keywords: Integral formulas, Integrals of Riemann and Lebesgue type.

MSC: Primary 28-01; Secondary 26B20, 26A42.

1. Introduction

Let n, k be positive integers. Recently, Popa [2] considered the multi-
variate integrals

In,k [f ] :=

∫
[0,1]k

(1− x1x2 · · ·xk)n f ((1− x1x2 · · ·xk)n) dx,

where dx = dx1dx2 · · · dxk and derived, for continuous functions f : [0, 1]→
R, the limit

lim
n→∞

n

(lnn)k−1
In,k [f ] =

1

Γ (k)

∫ 1

0
f (x) dx := Ik [f ] (k ∈ N) . (1)

We start with some notation. The gamma function Γ (z) =
∫∞
0 tz−1e−tdt,

for Re (z) > 0, interpolates the factorials (k − 1)! = Γ (k) on the positive
integers k. By convention, we set 0! = 1.

In what follows, we use the Landau notation. Let g, h be two real-valued
functions defined on an open interval containing a ∈ R ∪ {−∞,+∞}. We
write g (x) = O (h (x)) as x → a, if there exists a positive constant M such
that the inequality |g (x)| ≤M ·h (x) is valid in a certain neighborhood of a.
For the one-sided limit x→ a+ 0, a ∈ R, the definition of Landau’s symbol
O is obvious.

In the special case k = 1, Eq. (1) takes the form

n · In,1 [f ] = n

∫ 1

0
xnf (xn) dx =

∫ 1

0
f (t) t

1
ndt→

∫ 1

0
f (t) dt = I1 [f ]

as n→∞ (see the references given in [2]).

1)Technische Hochschule Mittelhessen, Fachbereich MND, Wilhelm-Leuschner-Straße
13, 61169 Friedberg, Germany, Ulrich.Abel@mnd.thm.de

2)Technische Hochschule Mittelhessen, Fachbereich MND, Wilhelm-Leuschner-Straße
13, 61169 Friedberg, Germany, Vitaliy.Kushnirevych@mnd.thm.de
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The purpose of this note is a short proof of Popa’s formula (1). The
last section presents a generalization.

2. An alternative proof

First, we take advantage of the reduction formula∫
[0,1]k

f (x1x2 · · ·xk) dx =
1

Γ (k)

∫ 1

0
(− ln t)k−1 f (t) dt (2)

for integrals of Beukers’s type (see [1, Theorem 1]) in order to obtain

In,k [f ] =
1

Γ (k)

∫ 1

0
(− ln t)k−1 (1− t)n f ((1− t)n) dt. (3)

As the next step we show Eq. (1) for monomials er (x) = xr (r = 0, 1, 2, . . .).
We study In,k [er] by using relation (3). A change of variable t = 1 − e−s
leads to

In,k [er] =
1

Γ (k)

∫ ∞
0

(
− ln

(
1− e−s

))k−1
e−msds

with m = (r + 1)n+ 1. In the case k = 1, it immediately follows

lim
n→∞

n · In,1 [er] = lim
n→∞

n

(r + 1)n+ 1
=

1

r + 1
= I1 [er] .

Now we deal with In,k [er], for k ≥ 2. Differentiating∫ ∞
0

sλ−1e−msds = mλΓ (λ)

k times with respect to λ, we obtain∫ ∞
0

sλ−1 (− ln s)k e−msds =

(
d

dλ

)k (
m−λΓ (λ)

)
= m−λ

k∑
j=0

(−1)j
(
k

j

)
Γ(j) (λ) (lnm)k−j .

This implies (put λ = 1) the asymptotic formula∫ ∞
0

(− ln s)k e−msds =
1

m
(lnm)k +O

(
1

m
(lnm)k−1

)
(m→∞) .

Because(
− ln

(
1− e−s

))k
=

(
− ln s− ln

(
1− e−s

s

))k
= (− ln s)k +O

(
(− ln s)k−1

)
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as s→ 0+, since (1− e−s) /s = 1+O (s) as s→ 0+, we can choose a constant
c with 0 < c < e−1, such that∫ ∞

0

(
− ln

(
1− e−s

))k
e−msds =

∫ c

0
(− ln s)k e−msds

+O

(∫ c

0
(− ln s)k−1 e−msds

)
as m→ +∞. Here we tacitly used the fact that, for each c > 0,∫ ∞

c

(
− ln

(
1− e−s

))k
e−msds = O (exp (−cm/2)) (m→ +∞)

(cf. [3, Eq. (2.21) on page 69]). This approach is valid also in a more general
setting (see [3, Theorem 2 on page 70]). Combining the above formulas we
obtain

lim
n→∞

n

(lnn)k
In,k+1 [er] =

1

k!
lim
n→∞

(
ln ((r + 1)n+ 1)

lnn

)k n

(r + 1)n+ 1

=
1

k!
· 1

r + 1
= Ik+1 [er] .

By linearity, the limit (1) is valid for each polynomial f . As shown in [2]
the desired result follows, for each continuous function f , by the Weier-
straß approximation theorem. In order to keep the paper self-contained,

we repeat the density argument. Put Jn,k [f ] := (n/ (lnn)k−1)In,k [f ]. Given
ε > 0, we can choose a polynomial p approximating f ∈ C [0, 1] such that
|f (x)− p (x)| < ε for all x ∈ [0, 1]. Furthermore, choose an integer N , such
that |Jn,k [p]− Ik [p]| < ε and |Jn,k [e0]− Ik [e0]| < 1, for n > N . Noting that
Ik [e0] = 1/Γ (k), we conclude that

|Jn,k [f ]− Ik [f ]| ≤ |Jn,k [f − p]|+ |Jn,k [p]− Ik [p]|+ |Ik [p− f ]|
< ε · |Jn,k [e0]|+ ε+ ε · |Ik [e0]| < 2ε+ ε+ ε,

for n > N .

3. A generalization

Let C [0, 1] denote the linear space of continous functions f : [0, 1]→ R.
Define the linear operator L : C [0, 1]→ C [0, 1] by (Lf) (0) = f (0) and

(Lf) (x) =
1

x

∫ x

0
f (t) dt (0 < x ≤ 1) .

Denote its iterates by Lj = L ◦ Lj−1 (j ∈ N), where L0 is the identity oper-

ator on C [0, 1]. In particular, one has Ljer = (r + 1)−j er (r = 0, 1, 2, . . .).



U. Abel, V. Kushnirevych, A sequence of integrals 39

Furthermore, if we approximate a function f ∈ C [0, 1] by a polynomial p
such that |f (x)− p (x)| < ε for all x ∈ [0, 1], we conclude that

|(L (f − p)) (x)| ≤ 1

x

∫ x

0
ε dt = ε (0 < x ≤ 1) ,

and, by mathematical induction
∣∣(Lj (f − p)

)
(x)
∣∣ ≤ ε, for all x ∈ [0, 1]

and j ∈ N. Following the lines of Section 2 one can show the following
generalization of Eq. (1).

Theorem 1. Let n, k, j be positive integers. For continuous functions
f : [0, 1]→ R, the equality

lim
n→∞

nj

(lnn)k−1

∫
[0,1]k

(x1x2 · · ·xk)j−1 (1− x1x2 · · ·xk)n f ((1− x1x2 · · ·xk)n) dx

=
1

Γ (k)

∫ 1

0

(
Lj−1f

)
(x) dx

holds, where dx = dx1dx2 · · · dxk.

Popa’s result is the special case j = 1.

Acknowledgment. The authors are grateful to the anonymous referee
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paper.
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PROPOSED PROBLEMS

513. Find all differentiable functions f : R→ R which verify the identity

xf ′(x) + kf(−x) = x2 for all x ∈ R,

where k ≥ 1 is an integer.

Poposed by Vasile Pop and Ovidiu Furdui, Technical University of

Cluj-Napoca, Cluj-Napoca, Romania.

514. Evaluate the integral ∫ 1

0

logn x√
x(1− x)

dx,

where n is a positive integer.

Proposed by Mircea Ivan, Technical University of Cluj-Napoca,

Romania.

515. Let S = {(α, β, γ) ∈ (0, π/2)3 : α + β + γ = π}. On S we define the
real valued functions

a := a(α, β, γ) =

√
sin4 β + sin4 γ − 2 sin2 β sin2 γ cos 2α,

b := b(α, β, γ) =

√
sin4 α+ sin4 γ − 2 sin2 α sin2 γ cos 2β,

c := a(α, β, γ) =

√
sin4 α+ sin4 β − 2 sin2 α sin2 β cos 2γ.

Prove that the function f : S → S,

f(α, β, γ) =

(
arccos

(
b2 + c2 − a2

2bc

)
, arccos

(
a2 + c2 − b2

2ac

)
, arccos

(
a2 + b2 − c2

2ab

))
,

is well defined.
Is f injective? Is it surjective?

Proposed by Leonard Giugiuc, Colegiul Naţional Traian, Drobeta Tur-

nu Severin, Romania, and Abdilkadı̂r Altıntaş, Emirdağ, Afyonkarahisar,

Turkey.
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516. Let n ≥ 2 be an integer. Let v1, . . . , vn−1 be some orthonormal vectors
and let v be a unit vector in Rn. We regard v1, . . . , vn−1, v as column vectors,
i.e., as n× 1 matrices.

We consider the n× n matrix

A = v1 · vT1 + · · ·+ vn−1 · vTn−1 − v · vT .
If A is not invertible, prove that A2 = A and determine its rank.

Proposed by Marian Panţiruc, Gheorghe Asachi Tehnical University

of Iaşi, Romania.

517. Calculate the sum

S =
∞∑

p,q,r=1

3p+ r

5p+q+rr(p+ q)(q + r)(r + p)
.

Proposed by Vasile Pop, Technical University of Cluj-Napoca,

Cluj-Napoca, Romania.

518. Calculate the integral:∫ ∞
0

x2
√
x lnx

x4 + x2 + 1
dx.

Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu,

Romania.

519. Calculate
∞∑
n=1

(−1)nn2
(

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
− ln 2 +

1

4n
− 1

16n2

)
.

Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical

University of Cluj-Napoca, Cluj-Napoca, Romania.

520. Let (xn)n≥0 be a sequence with x0 ∈ (0, π/2) and

xn+1 =

{
sinxn n is even,

cosxn n is odd.

Prove that x2n → a and x2n+1 → b when n → ∞, where a and b are
two constants that are independent of the choice of x0.

Also determine if the series
∞∑
n=1

|x2n − a|α and
∞∑
n=1

|x2n+1 − b|α

are convergent for α > 0.

Proposed by Radu Strugariu, Gheorghe Asachi Tehnical University

of Iaşi, Romania.
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SOLUTIONS

496. Calculate the integral:∫ ∞
0

arctanx√
x4 + x2 + 1

dx.

Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu,

Romania.

Solution by the author. Put A =

∫ ∞
0

arctanx√
x4 + x2 + 1

dx.

We also consider the integral: B =

∫ ∞
0

arccotx√
x4 + x2 + 1

dx. We have

A+B =

∫ ∞
0

arctanx+ arccotx√
x4 + x2 + 1

dx =
π

2

∫ ∞
0

1√
x4 + x2 + 1

dx.

We are going to calculate the integral

C =

∫ ∞
0

1√
x4 + x2 + 1

dx.

We can write

C =

∫ ∞
0

1√
x4 + x2 + 1

dx =

∫ 1

0

1√
x4 + x2 + 1

dx+

∫ ∞
1

1√
x4 + x2 + 1

dx.

In the second integral we make the variable change x =
1

t
. We have

1√
x4 + x2 + 1

dx =
1√

1
t4

+ 1
t2

+ 1

(
− 1

t2

)
dt = − 1√

t4 + t2 + 1
dt.

Hence

∫ ∞
1

1√
x4 + x2 + 1

dx = −
∫ 0

1

1√
x4 + x2 + 1

dx =

∫ 1

0

1√
t4 + t2 + 1

dt.

It follows that C = 2

∫ 1

0

1√
t4 + t2 + 1

dt.

We will show that the integral C can also be expressed using the com-
plete elliptic integral of the first kind, which is defined by

K(k) =

∫ π
2

0

1√
1− k2 sin2 θ

dθ , with− 1 ≤ k ≤ 1.

More exactly, we will show that C = K

(
1

2

)
. To prove this, we write the

right-hand side as

K

(
1

2

)
=

∫ π
2

0

1√
1− 1

4 sin2 θ
dθ.
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Substitute t = tan
θ

2
. We have sin θ =

2t

1 + t2
and dt =

1

2
sec2

θ

2
dθ =

1 + t2

2
dθ, so dθ =

2

1 + t2
dt. It follows that

K

(
1

2

)
=

∫ 1

0

1√
1− 1

4
4t2

(1+t2)2

· 2

1 + t2
dt = 2

∫ 1

0

1√
t4 +2 +1

dt = C.

In the integral A we make the change of variable x =
1

t
. We have arctan x =

arctan t, and as seen above,
1√

x4 + x2 + 1
dx = − 1√

t4 + t2 + 1
dt. We get∫ ∞

0

arctan x√
x4 + x2 + 1

dx = −
∫ 0

∞

arctan t√
t4 + t2 + 1

dx,

i.e., A = B. Since A+B =
π

2
C =

π

2
K

(
1

2

)
, we get A =

π

4
K

(
1

2

)
. �

Note from the Editor. We received similar proofs from Daniel
Văcaru, from Piteşti, Romania and Sean Stewart, from Bomaderry, NSW,
Australia.

Sean Stewart uses a different substitution to get
∫ 1
0

1√
t4+t2+1

dt = 1
2K(12).

Namely, he takes x = tan θ instead of tan θ
2 . He gets∫ 1

0

1√
t4 + t2 + 1

dt =

∫ π
4

0

sec2 θ√
tan4 θ + tan2 θ + 1

dθ =

∫ π
4

0

sec2 θ√
sec4 θ − tan2 θ

dθ

=

∫ π
4

0

dθ√
1− sin2 θ cos2 θ

=

∫ π
4

0

dθ√
1− 1

4 sin2 2θ
.

Then, after the substitution θ 7→ θ/2, he gets∫ π
4

0

dθ√
1− 1

4 sin2 2θ
=

1

2

∫ π
2

0

dθ√
1− 1

4 sin2 θ
=

1

2
K
(1

2

)
.

497. Let n ≥ 4 and let a1, . . . , an be nonzero real numbers such that
1

a1
+

· · ·+ 1

an
= 0. Prove that(

1

a21
+ · · ·+ 1

a2n

)∑
i<j

(ai − aj)2 ≥ n3.

When do we have equality?

Proposed by Leonard Giugiuc, Traian National College, Drobeta

Turnu Severin, Romania.
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Solution by the author. We define the 3× n matrix

A =

 1 · · · 1
a1 · · · an
1
a1
· · · 1

an

 .

From

AAT =

 n
∑n

i=1 ai
∑n

i=1
1
ai∑n

i=1 ai
∑n

i=1 a
2
i n∑n

i=1
1
ai

n
∑n

i=1
1
a2i

 =

 n
∑n

i=1 ai 0∑n
i=1 ai

∑n
i=1 a

2
i n

0 n
∑n

i=1
1
a2i


it follows that

det(AAT ) =

(
n∑
i=1

1

a2i

)n n∑
i=1

a2i −

(
n∑
i=1

ai

)2
− n3

=

(
n∑
i=1

1

a2i

)∑
i<j

(ai − aj)2 − n3.

For every i < j < k we denote by Ai,j,k the 3× 3 matrix

Ai,j,k =

 1 a 1
ai aj ak
1
ai

1
aj

1
ak

 .

Then, by the Cauchy-Binet formula, we have(
n∑
i=1

1

a2i

)∑
i<j

(ai − aj)2 − n3 = det(AAT ) =
∑
i<j<k

detAi,j,k detATi,j,k

=
∑
i<j<k

det(Ai,j,k)
2.

It follows that
(∑n

i=1
1
a2i

)∑
i<j(ai− aj)2 ≥ n3 with equality iff detAi,j,k = 0

∀i, j, k, i < j < k.
But if we multiply the columns of Ai,j,k by ai, ai and ak, respectively,

and permute the rows we get a Vandermonde matrix. So we have

aiajak detAi,j,k = det

ai aj ak
a2i a2j a2k
1 1 1

 = det

 1 1 1
ai aj ak
a2i a2j a2k


= (aj − ai)(ak − ai)(ak − ai).

Hence the equality holds iff for every i < j < k the numbers ai, aj , ak
are not mutually distinct, i.e., iff |{a1, . . . , an}| ≤ 2. Since

∑n
i=1

1
an

= 0, some
of a1, . . . , an are positive and some negative, so there are a, b ∈ R, a > 0 > b,
and some 1 ≤ k ≤ n − 1 such that the sequence a1, . . . , an contains n − k



Solutions 45

copies of a and k copies of b. Then 0 =
∑n

i=1
1
ai

= n−k
a + k

b . It follows that

a = (n− k)c and b = −kc for some c > 0.
In conclusion, the equality holds if and only if there is some c > 0 and

some 1 ≤ k ≤ n− 1 such that the sequence a1, . . . , an contains n− k copies
of (n− k)c and k copies of −kc. �

Solution by Marian Cucoaneş, Eremia Grigorescu Technological High-
school, Mărăşesti, Vrancea, Romania. We may assume that a1 ≥ · · · ≥ an.
Since 1

a1
+ · · ·+ 1

an
= 0, not all ai have the same sign, so there is 1 ≤ k ≤ n−1

such that a1 ≥ · · · ≥ ak > 0 > ak+1 ≥ · · · ≥ an.
Let A = {1, . . . , k} and B = {k + 1, . . . , n}. As

∑
1≤i<j≤n(ai − aj)2 ≥∑

i∈A, j∈B(ai − aj)2, it suffices to prove that(
n∑
i=1

1

a2i

) ∑
i∈A, j∈B

(ai − aj)2 ≥ n3.

For j ∈ B we put bj = −aj , so that bj > 0 for j ∈ B. Then the
inequality from the hypothesis writes as 1

a1
+· · ·+ 1

ak
= 1

bk+1
+· · ·+ 1

bn
=: X > 0

and the inequality we want to prove writes as(
1

a21
+ · · ·+ 1

a2k
+

1

b2k+1

+ · · ·+ 1

b2n

) ∑
i∈A, j∈B

(ai + bj)
2 ≥ n3. (1)

We have ∑
i∈A, j∈B

(ai + bj)
2 =(n− k)(a21 + · · ·+ a2k) + k(b2k+1 + · · ·+ b2n)

+ 2(a1 + · · ·+ ak)(bk+1 + · · ·+ bn). (2)

Now the functions f, g, h : (0,∞) → R, f(x) = x2, g(x) = x−2, and h(x) =
x−1 are convex. We apply Jensen’s inequality for the functions f, g, h to the
numbers 1

a1
, . . . , 1

ak
∈ (0,∞). Since 1

a1
+ · · ·+ 1

ak
= X, we have

X2

k
= kf

(
X

k

)
≤ f

(
1

a1

)
+ · · ·+ f

(
1

ak

)
=

1

a21
+ · · ·+ 1

a2k
,

k3

X2
= kg

(
X

k

)
≤ g

(
1

a1

)
+ · · ·+ g

(
1

ak

)
= a21 + · · ·+ a2k,

k2

X
= kh

(
X

k

)
≤ h

(
1

a1

)
+ · · ·+ h

(
1

ak

)
= a1 + · · ·+ ak.

Similarly, when we apply Jensen’s inequality to 1
bk+1

, . . . , 1
bn

, with 1
bk+1

+ · · ·+
1
bn

= X, we get

1

b2k+1

+· · ·+ 1

b2n
≥ X2

n− k
, b2k+1+· · ·+b2n ≥

(n− k)3

X2
, bk+1+· · ·+bn ≥

(n− k)2

X
.
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It follows that

1

a21
+ · · ·+ 1

a2k
+

1

b2k+1

+ · · ·+ 1

b2n
≥ X2

k
+

X2

n− k
=

nX2

k(n− k)

and, by (2), we also have

∑
i∈A, j∈B

(ai + bj)
2 ≥ (n− k) · k

3

X2
+ k · (n− k)3

X2
+ 2 · k

2

X2
· (n− k)2

X2

=
k(n− k)

X2
(k2 + (n− k)2 + 2k(n− k)) =

k(n− k)

X2
· n2.

In conclusion, the right hand side of (1) is ≥ nX2

k(n−k) ·
k(n−k)
X2 · n2 = n3, as

claimed.
Since f, g, h are strictly convex, the equality in (2) holds iff a1 = · · · = ak

and bk+1 = · · · = bn, i.e., ak+1 = · · · = an. But if a1 = · · · = ak and
ak+1 = · · · = an, then

∑
1≤i<j≤n(ai − aj)2 =

∑
i∈A, j∈B(ai − aj)2, so in fact

the equality holds in the original inequality.

498. Let A,B ∈Mn(C) be two matrices such that

A2 −B2 − In =
1

3
(AB −BA).

Prove that:
(i) det(A2 −B2) = det(A−B) det(A+B) = 1.
(ii) (AB −BA)n = 0.

Proposed by Florin Stănescu, Şerban Cioculescu School, Găeşti,

Dâmboviţa, Romania.

Solution by the author. Let X = A + B, Y = A − B, so that A =
1
2(X + Y ) and B = 1

2(X − Y ). Then the relation from the statement writes
as

1

4
((X + Y )2 − (X − Y )2)− In =

1

12
((X + Y )(X − Y )− (X − Y )(X + Y )),

which implies that 2XY + Y X = 3In.
Now XY and Y X have the same characteristic polynomial, PXY (t) =

PY X(T ) =: P (T ) = (t − λ1) · · · (t − λn), with λ1, . . . , λn ∈ C. We have
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P (t) = det(tIn −XY ) and also

P (t) = det(tIn − Y X) = det(tIn − 3In + 2XY )

= det

(
(−2)

(
3− t

2
In −XY

))
= (−2)n det

(
3− t

2
In −XY

)
= (−2)nP

(
3− t

2

)
= (−2)n

n∏
i=1

(
3− t

2
− λi

)

=
n∏
i=1

(−2)

(
3− t

2
− λi

)
=

n∏
i=1

(t+ 2λi − 3).

Since P (t) =
∏n
i=1(t− λi) =

∏n
i=1(t+ 2λi− 3), we have that λ1, . . . , λn

are equal, in some order, to 3− 2λ1, . . . , 3− 2λn, i.e., there is a permutation
σ ∈ Sn such that λi = 3 − 2λσ(i), i.e., such that λi − 1 = (−2)(λσ(i) − 1)
∀1 ≤ i ≤ n.

Let N > 0 be an integer such that σN = 1. (Since σ ∈ Sn, we may take
N = |Sn| = n!.) Then for every 1 ≤ i ≤ n we have

λi − 1 = (−2)(λσ(i) − 1) = (−2)2(λσ2(i) − 1) = · · · = (−2)N (λσN (i) − 1)

= (−2)N (λi − 1).

Hence (1− (−2)N )(λi − 1) = 0 and so λi = 1.
Thus we proved that λ1 = · · · = λn = 1 and so P (t) = (t − 1)n. We

now prove our statements.
We clearly have

det(A−B) det(A+B) = det(A+B)(A−B) = detXY = λ1 · · ·λn = 1.

From A = 1
2(X + Y ), B = 1

2(X − Y ), and Y X = 3In − 2XY we get

AB −BA =
1

4
((X + Y )(X − Y )− (X − Y )(X + Y ))

=
1

2
(Y X −XY ) =

3

2
(In −XY ),

which implies that

A2 −B2 = In +
1

3
(AB −BA) = In +

1

2
(In −XY ) =

1

2
(3In −XY ).

It follows that

det(A2 −B2) = det
1

2
(3In −XY ) =

1

2n
det(3In −XY ) =

1

2n
PXY (3)

=
1

2n
(3− 1)n = 1,

which concludes the proof of (i).
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Next, we have

PAB−BA(t) = det(tIn − (AB −BA)) = det

(
tIn −

3

2
(In −XY )

)
= det

(
−3

2

)((
−2

3
t+ 1

)
In −XY

)
=

(
−3

2

)n
det

((
−2

3
t+ 1

)
In −XY

)
=

(
−3

2

)n
PXY

(
−2

3
t+ 1

)
=

(
−3

2

)n(
−2

3
t+ 1− 1

)n
= tn.

By the Cayley-Hamilton theorem, (AB −BA)n = 0. �

Generalization by Cornel Băeţica. Let A,B ∈ Mn(C) be two matrices
such that

A2 −B2 + u(AB −BA) = vIn,

where u, v are non-zero real numbers. Prove that:
(i) det(A2 −B2) = det(A−B) det(A+B) = vn.
(ii) (AB −BA)n = 0.

By using the same substitutions, that is, X = A + B and Y = A − B,
we get

(1− u)XY + (1 + u)Y X = 2vIn. (1)

If u = 1, then Y X = vIn. It follows that XY = vIn, and thus XY −
Y X = 0. The same conclusion holds for u = −1.

Suppose u 6= ±1. Then (1) is equivalent to

XY − u+ 1

u− 1
Y X =

2v

1− u
In.

Now note that u+1
u−1 6= −1, 0, 1.

In the following we show that if X,Y ∈Mn(C) are such that

XY − aY X = bIn, (2)

with a, b non-zero real numbers, a 6= ±1, then (XY − Y X)n = 0.
Let us denote the characteristic polynomial of a matrix M by PM (T ).

We have

PXY−Y X(T ) = det (TIn − (XY − Y X)) = det ((T − b)In − (a− 1)Y X))

= P(a−1)Y X(T − b) = P(a−1)XY (T − b)
= det ((T − b)In − (a− 1)XY )) = det (TIn − a(XY − Y X))

= Pa(XY−Y X)(T ) = anPXY−Y X(a−1T ).

Writing

PXY−Y X(T ) = a0 + a1T + · · ·+ an−1T
n−1 + Tn
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we get

a0 + a1T + · · ·+ an−1T
n−1 + Tn

= an(a0 + a1a
−1T + · · ·+ an−1a

−n+1Tn−1 + a−nTn).

This leads to an−iai = ai for all i = 0, 1, . . . , n − 1. Since an−i 6= 1 for
all i = 0, 1, . . . , n − 1 we obtain ai = 0 for all i = 0, 1, . . . , n − 1, and
thus PXY−Y X(T ) = Tn. In particular, by Cayley-Hamilton Theorem we get
(XY − Y X)n = 0. Since XY − Y X = 2(BA−AB) we get (AB −BA)n = 0
and (ii) is proved.

In order to show (i) notice that XY = vIn + u+1
2 (XY − Y X) and then

detX detY = det(XY ) =
(
u+1
2

)n
PXY−Y X

(
2v
u+1

)
= vn. On the other side,

det(A2 −B2) = det (vIn − u(AB −BA)) = unPAB−BA
(
v
u

)
= vn.

Remark. Note that in (2) we may assume that a, b are non-zero com-
plex numbers such that aj 6= 1 for all j = 1, . . . , n. Taking into account that
a = u+1

u−1 , it follows that the condition u, v are non-zero complex numbers and
u is not purely imaginary can replace in the problem the condition u, v are
non-zero real numbers.

499. Let a, b ≥ 0. Calculate

lim
n→∞

√
n

∫ π
2

0

√
a sin2n x+ b cos2n x dx.

Proposed by Ovidiu Furdui, Alina Sı̂ntămărian, Technical

University of Cluj-Napoca, Cluj-Napoca, Romania.

Solution by the authors. The limit equals
(√

a+
√
b
)√π

2
.

By making the substitution t = π
2 − x on the interval [π4 ,

π
2 ] we get

√
n

∫ π
2

0

√
a sin2n x+ b cos2n xdx =

√
n

∫ π
4

0

√
a sin2n x+ b cos2n xdx

+
√
n

∫ π
4

0

√
a cos2n x+ b sin2n xdx.

(1)

Let In =
√
n

∫ π
4

0

√
a sin2n x+ b cos2n xdx. We have

√
b
√
n

∫ π
4

0
cosn xdx ≤ In ≤

√
a
√
n

∫ π
4

0
sinn xdx+

√
b
√
n

∫ π
4

0
cosn xdx. (2)

On the other hand

0 ≤
√
n

∫ π
4

0
sinn xdx ≤

√
n · π

4
·

(√
2

2

)n
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and it follows that

lim
n→∞

√
n

∫ π
4

0
sinn x dx = 0. (3)

Also,

√
n

∫ π
4

0
cosn x dx =

√
n

∫ π
2

0
cosn x dx−

√
n

∫ π
2

π
4

cosn x dx.

We have

0 ≤
√
n

∫ π
2

π
4

cosn x dx ≤
√
n · π

4
·

(√
2

2

)n
and this implies that

lim
n→∞

√
n

∫ π
2

π
4

cosn x dx = 0.

On the other hand

lim
n→∞

√
n

∫ π
2

0
cosn xdx = lim

n→∞

√
n · 1

2
· B
(
n+ 1

2
,
1

2

)
=

1

2
lim
n→∞

√
n ·

Γ
(
n+1
2

)
· Γ
(
1
2

)
Γ
(
n+2
2

)
=

√
π

2
· lim
n→∞

√
n ·
(
n−1
2

)
!(

n
2

)
!

=

√
π

2
,

where the last limit follows based on Stirling’s formula. This implies that

lim
n→∞

√
n

∫ π
4

0
cosn x dx =

√
π

2
. (4)

Combining (2), (3) and (4) we get that

lim
n→∞

In = lim
n→∞

√
n

∫ π
4

0

√
a sin2n x+ b cos2n xdx =

√
b

√
π

2
. (5)

Similarly one can prove that

lim
n→∞

√
n

∫ π
4

0

√
a cos2n x+ b sin2n xdx =

√
a

√
π

2
. (6)

Combining (1), (5) and (6) one has that

lim
n→∞

√
n

∫ π
2

0

√
a sin2n x+ b cos2n x dx =

(√
a+
√
b
)√π

2
.

The problem is solved. �

Note from the Editor. We also received a solution from Seán Stewart,
from Bomaderry, NSW, Australia.
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500. Let C be a simplex in Rn with the vertices A1, . . . , An+1 and let M be
a point in the interior of C. For every 1 ≤ i < j ≤ n + 1 we denote by Ai,j
the point where hyperplane generated by M and A1, . . . , Âi, . . . , Âj , . . . , An
intersects the edge AiAj of C. We denote by D the convex hull of {Ai,j :
1 ≤ i < j ≤ n+ 1}.

Prove that the volume of D is ≤ (1− n+1
2n )V , where V is the volume of

C, and the equality is reached if and only if M is the centroid of C.

Proposed by Leonard Giugiuc, National College Traian, Drobeta

Turnu Severin, Costel Bălcău, University of Piteşti, and Constantin-

Nicolae Beli, IMAR, Bucureşti, Romania.

Solution by the authors. For convenience, for every i < j we denote
Aj,i = Ai,j so that Ai,j is defined for i 6= j.

Since M is in the interior of the simplex C, we have M = c1A1 + · · ·+
cn+1An+1, where c1, . . . , cn+1 > 0 and c1 + · · · + cn+1 = 1. Moreover, M is
the centroid of C iff c1 = · · · = cn+1 = 1

n+1 .

We claim that Ai,j =
ciAi+cjAj
ci+cj

. Indeed, A′i,j :=
ciAi+cjAj
ci+cj

is a convex

combination of Ai and Aj , so that A′i,j belongs to the edge AiAj . We also
have M = c1A1 + · · ·+ cn+1An+1 and c1 + · · ·+ cn+1 = 1, whence

A′i,j =
M −

∑
k 6=i,j ckAk

ci + cj
and

1−
∑

k 6=i,j ck

ci + cj
=
ci + cj
ci + cj

= 1.

Thus A′i,j is an affine combination of M and Ak with k 6= i, j. Therefore A′i,j
is on the hyperspace generated by M and Ak with k 6= i, j. By the definition
of Ai,j , we have Ai,j = A′i,j , as claimed.

The volume of D is equal to V −
∑n+1

i=1 Vi, where Vi is the volume of
the simplex with the vertices Ai and Ai,j , with j 6= i. For very j 6= i we have

Ai,j −Ai =
ciAi+cjAj
ci+cj

−Ai =
cj

ci+cj
(Aj −Ai), so Ai,j is on the edge AiAj with

|AiAi,j | = cj
ci+cj

|AiAj |. It follows that Vi =
∏
j 6=i

cj
ci+cj

V . Hence the volume

of D is

V −
n+1∑
i=1

∏
j 6=i

cj
ci + cj

V = (1− fn(c1, . . . , cn+1))V,

where fn(x1, . . . , xn+1) =
∑n+1

i=1

∏
j 6=i

xj
xi+xj

. We must prove that if

S = {(x1, . . . , xn+1) ∈ Rn : x1, . . . , xn+1 > 0, x1 + · · ·+ xn+1 = 1},
then min(x1,...,xn+1)∈S fn(x1, . . . , xn+1) = n+1

2n and the minimum is reached

only at (x1, . . . , xn+1) = ( 1
n+1 , . . . ,

1
n+1).

Since the map fn is homogeneous of degree 0, i.e., f(tx1, . . . , txn+1) =
f(x1, . . . , xn+1) for every t, x1, . . . , xn+1 > 0, our statement is equivalent
to minx1,...,xn+1>0 fn(x1, . . . , xn+1) = n+1

2n , with the minimum obtained only
when x1 = · · · = xn+1. We have to prove this for n ≥ 2, but we extend this
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result, minus the fact that the minimum is reached only when x1 = · · · =
xn+1, to n = 0 and 1. We will need these cases in an induction argument.

We have f0(x1) = 1 ∀x1 > 0 and f1(x1, x2) = x1
x1+x1

+ x2
x2+x1

= 1

∀x1, x2 > 0. Since 20

1 = 21

2 = 1, our statement for n = 0, 1 is trivial.
Suppose now that n ≥ 2. Note that if x1 = . . . = xn+1 = x then each

term
∏
j 6=i

xj
xi+xj

in the definition of fn(x1, . . . , xn+1) is equal to ( x
x+x)n = 1

2n ,

so fn(x, . . . , x) = n+1
2n .

First we prove that min(x1,...,xn+1)∈S f(x1, . . . , xn+1) exists. Note that

S is an open simplex of dimension n. For every 0 < ε < 1
n+1 we consider

Sε = {(x1, . . . , xn+1) ∈ Rn : x1, . . . , xn+1 ≥ ε, x1 + · · · + xn+1 = 1}. Then
Sε ⊂ S is a closed simplex of dimension n containing ( 1

n+1 , . . . ,
1

n+1). Since

Sε is a compact set and fn is continuous, min(x1,...,xn+1)∈Sε fn(x1, . . . , xn+1)

exists and it is at most fn( 1
n+1 , . . . ,

1
n+1) = n+1

2n .

We prove that there is ε > 0 small enough such that fn(x1, . . . , xn+1) >
n+1
2n for every (x1, . . . , xn+1) ∈ S \ Sε.

For every 0 ≤ m < n we define

δm =

(
(m+ 1)/2m

(n+ 1)/2n

) 1
n−m
− 1, so that (1 + δm)n−m =

(m+ 1)/2m

(n+ 1)/2n
.

Note that for m ≥ 1 we have 2(m+1) > m+2 and m+1
2m > m+2

2m+1 . Hence

1

20
=

2

21
>

3

22
> · · · > n+ 1

2n
.

Consequently, n+1
2n < m+1

2m for 0 ≤ m < n. Hence for every 0 ≤ m < n we

have 1 < (m+1)/2m

(n+1)/2n < 2n−m, i.e., 1 < (1 + δm)n−m < 2n−m, so 0 < δm < 1.

We now define ε = δ0···δn
n+1 . Since 0 < δm < 1 ∀m, we have 0 < ε < 1

n+1 .

Assume that (x1, . . . , xn+1) ∈ S \ Sε. Then xi < ε for some i. By
reordering the variables, we may assume that 0 < x1 ≤ · · · ≤ xn+1 and so
x1 < ε. Since xn+1 is the largest term of the sum x1 + · · · + xn+1 = 1, we
have

xn+1 ≥
1

n+ 1
=

1

δ0 · · · δn
ε >

1

δ0 · · · δn
x1.

Hence

δ0 · · · δn >
x1
xn+1

=
x1
x2
· · · xn

xn+1
.

It follows that there is 0 ≤ m ≤ n− 1 with xm+1

xm+2
< δm.

If i ≤ m + 1 and j ≥ m + 2, then xi ≤ xm+1 and xj ≥ xm+2, so that
xi
xj
≤ xm+1

xm+2
< δm, which implies that

xj
xi+xj

= 1
1+xi/xj

> 1
1+δm

. Hence, if
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1 ≤ i ≤ m+ 1, then

∏
1≤j≤n+1,j 6=i

xj
xi + xj

=

 ∏
1≤j≤m+1,j 6=i

xj
xi + xj

 n+1∏
j=m+2

xj
xi + xj


>

 ∏
1≤j≤m+1,j 6=i

xj
xi + xj

( 1

1 + δm

)n−m
=

(n+ 1)/2n

(m+ 1)/2m

∏
1≤j≤m+1,j 6=i

xj
xi + xj

.

It follows that

fn(x1, . . . , xn+1) =

n+1∑
i=1

∏
1≤j≤n+1,j 6=i

xj
xi + xj

>

m+1∑
i=1

∏
1≤j≤n+1,j 6=i

xj
xi + xj

>
(n+ 1)/2n

(m+ 1)/2m

m+1∑
i=1

∏
1≤j≤m+1,j 6=i

xj
xi + xj

=
(n+ 1)/2n

(m+ 1)/2m
fm(x1, . . . , xm+1)

But, by the induction hypothesis, we have fm(x1, . . . , xm+1) ≥ m+1
2m ,

whence fn(x1, . . . , xn+1) >
(n+1)/2n

(m+1)/2m fm(x1, . . . , xm+1) ≥ n+1
2n , as claimed.

Since min(x1,...,xn+1)∈Sε fn(x1, . . . , xn+1) exists and it is at most n+1
2n

and fn(x1, . . . , xn+1) > n+1
2n ∀(x1, . . . , xn+1) ∈ S \ Sε, we conclude that

min(x1,...,xn+1)∈S fn(x1, . . . , xn+1) also exists and it is equal to the minimum
of fn on Sε. As seen above, since fn homogeneous of degree 0, this implies
that minx1,...,xn+1>0 fn(x1, . . . , xn+1) also exists and is equal to the minimum
of fn on S.

Let c1, . . . , cn+1 > 0 be such that

f(c1, . . . , cn+1) = min
(x1,...,xn+1)∈S

fn(x1, . . . , xn+1).

Then all partial derivatives of fn at (c1, . . . , cn+1) are zero. We claim that
c1 = · · · = cn+1. Assume the contrary. So, if l is an index for which it holds
cl = min{c1, . . . , cn+1}, then at least one of the inequalities ci ≥ cl is strict.

We show that dfn
dxl

(c1, . . . , cn+1) < 0, which will result in a contradiction.

If i 6= l, then d
dxl

xl
xi+xl

= xi
(xi+xl)2

and all the other factors of the product∏
j 6=i,l

xj
xi+xj

are independent of xl. It follows that

d

dxl

∏
j 6=i

xj
xi + xj

=
xi

(xi + xl)2

∏
j 6=i,l

xj
xi + xj

=

∏
j 6=l xj

(xi + xl)2
∏
j 6=i,l(xi + xj)

.
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If i 6= l, then d
dxl

xi
xl+xi

= − xl
(xl+xi)2

. It follows that

d

dxl

∏
j 6=l

xj
xl + xj

=
∑
i 6=l
− xi

(xl + xi)2

∏
j 6=l,i

xj
xl + xj

= −
∑
i 6=l

∏
j 6=l xj

(xi + xl)2
∏
j 6=i,l(xl + xj)

.

By adding the formulas above, we get

dfn
dxl

(x1, . . . , xn+1) =
∑
i 6=l

d

dxl

∏
j 6=i

xj
xi + xj

+
d

dxl

∏
j 6=l

xj
xl + xj

=
∑
i 6=l

∏
j 6=l xj

(xi + xl)2
∏
j 6=i,l(xi + xj)

−
∑
i 6=l

∏
j 6=l xj

(xi + xl)2
∏
j 6=i,l(xl + xj)

=
∏
j 6=l

xj
∑
i 6=l

(
1

(xi + xl)2
∏
j 6=i,l(xi + xj)

− 1

(xi + xl)2
∏
j 6=i,l(xl + xj)

)
.

But ci ≥ cl for every i 6= l and ci > cl for at least one value of i 6= l. It
follows that each term 1

(ci+cl)2
∏
j 6=i,l(ci+cj)

− 1
(ci+cl)2

∏
j 6=i,l(cl+cj)

is ≤ 0 and at

least one of them is < 0. Hence dfn
dxl

(c1, . . . , cn+1) < 0, as claimed.

In conclusion, for every c1, . . . , cn+1 > 0 with

fn(c1, . . . , cn+1) = min
x1,...,xn+1>0

fn(x1, . . . , xn+1)

we have c1 = · · · = cn+1 =: c and so
minx1,...,xn+1>0 fn(x1, . . . , xn+1) = fn(c, . . . , c) = n+1

2n . �

501. Let f : R → R be a differentiable function. Then f(x + y) − f(x) ≥
yf ′(x) ∀x, y ∈ R if and only if n(f(x+ 1/n)− f(x)) ≥ f ′(x) ∀x ∈ R and for
every positive integer n.

Proposed by Florin Stănescu, Şerban Cioculescu School, Găeşti,

Dâmboviţa, Romania.

Solution by the author. The “only if” part is trivial.
For the “if” part we prove that f is a convex function. Assuming

the contrary, we infer that there are a, b ∈ R and 0 < t < 1 such that
f(ta+ (1− t)b) > tf(a) + (1− t)f(b). We define the function

φ : [a, b]→ R, φ(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

Note that φ(a) = φ(b) = 0.
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We have

φ(ta+ (1− t)b) = f(ta+ (1− t)b)− f(a)− f(b)− f(a)

b− a
(ta+ (1− t)b− a)

= f(ta+ (1− t)b)− (tf(a) + (1− t)f(b)) > 0.

Let M = maxx∈[a,b] φ(x), which exists because φ is continuous and [a, b]
is compact. We obviously have M ≥ φ(ta + (1 − t)b) > 0. Define the set
A = {x ∈ [a, b] : φ(x) = M}. Then A is closed and ∅ 6= A ⊆ [a, b]. Hence
A is a non-empty compact set and so it has a maximum, say, maxA = m.
From φ(m) = M > 0 = φ(a) = φ(b) it follows that m 6= a, b, i.e., m ∈ (a, b).
Then φ(m) = maxx∈[a,b] f(x) implies f ′(m) = 0.

Since m < b, there is an integer n > 0 such that m + 1/n ≤ b and so
m + 1/n ∈ [a, b]. If we put h = 1/n, then m + h ∈ [a, b] and the inequality
n(f(m + 1/n) − f(m)) ≥ f ′(m), from the hypothesis, writes as f(m + h) −
f(m) ≥ hf ′(m).

Note that f(x) = φ(x) + f(a) + f(b)−f(a)
b−a (x− a) entails f ′(x) = φ′(x) +

f(b)−f(a)
b−a . Therefore the inequality f(m+ h)− f(m) ≥ hf ′(m) writes as(
φ(m+ h) + f(a) +

f(b)− f(a)

b− a
(m+ h− a)

)
−
(
φ(m) + f(a) +

f(b)− f(a)

b− a
(m− a)

)
≥ h

(
φ′(m) +

f(b)− f(a)

b− a

)
,

which is equivalent to φ(m + h) − φ(m) ≥ hφ′(m) = 0. In other words
φ(m+ h) ≥ φ(m) = M = maxx∈[a,b] φ(x), which implies that φ(m+ h) = M ,
that is m+ h ∈ A. But this contradicts the fact that m = maxA.

Hence f is convex, which implies that one has f(x+ y)− f(x) ≥ yf ′(x)
for all x, y ∈ R. �

502. Let m ≥ 0 be an integer. Evaluate the series
∞∑
k=1

(xm log x)(k+m)

k!
, x > 1,

where f (i) is the derivative of order i of f .

Proposed by Mircea Ivan, Technical University of Cluj-Napoca,

Romania.

Solution by the author. In order to calculate the required derivatives

(xm log x)(k+m), k = 1, 2, . . ., one can proceed with the Leibniz formula for
the higher derivative of a product, which is quite laborious. We provide here
a straightforward method.

Fix k ≥ 1. For m = 0, we have

(log x)(k) = (−1)k−1(k − 1)! · x−k.
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For m ≥ 1, we obtain the recurrence relation:

(xm log x)(k+m) =
(
(xm log x)′

)(k+m−1)
=
(
mxm−1 log x+ xm−1

)(k+m−1)
= m ·

(
xm−1 log x

)(k+m−1)
+ 0,

hence,

(xm log x)(k+m) = m! · (log x)(k) = m! · (−1)k−1(k − 1)! · x−k.
Now it is easy to find the answer:
∞∑
k=1

(xm log x)(k+m)

k!
= m! ·

∞∑
k=1

(−1)k−1

k
x−k

x−1∈(0,1)
====== m! · log

(
1 + x−1

)
= m! · log

1 + x

x
.

Note. As pointed out by Mircea Rus, the derivative (xm log x)(m+1)

can be calculated by using the Leibniz formula for (fg)(n). Then, with the

help of some binomial formula, one gets (xm log x)(m+1) = m!x−1. From here

we get (xm log x)(k+m) = m!(x−1)(k−1) = m! · (−1)k−1(k − 1)! · x−k.

Solution by Mircea Rus, Technical University of Cluj-Napoca, Romania.
Let f(x) = xm log x (x > 1) and fix x. Then

S :=
∞∑
k=1

(xm log x)(k+m)

k!
=

( ∞∑
k=1

f (k)(x)

k!

)(m)

= (f(x+ 1)− f(x))(m)

where we used the power series expansion of the function f around x:

f(y) =

∞∑
k=0

f (k)(x)

k!
(y − x)k, y ∈ (0, 2x)

with y := x+ 1 ∈ (0, 2x) (it is an elementary task to show that the radius of
convergence is x).

It remains to compute (xm log x)(m) for arbitrary x > 1 and m ∈ N.

Denote gm(x) = (xm log x)(m). Then g0(x) = log x and

gm(x) =
(
(xm log x)′

)(m−1)
=
(
mxm−1 log x+ xm−1

)(m−1)
= m · gm−1(x) + (m− 1)! (m ≥ 1),

hence
gm(x)

m!
=
gm−1(x)

(m− 1)!
+

1

m
(m ≥ 1),

which leads to

gm(x)

m!
=
g0(x)

0!
+

(
1 +

1

2
+ · · ·+ 1

m

)
= log x+Hm.
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Concluding,

S = gm(x+ 1)− gm(x) = m! · log
x+ 1

x
.

Note from the Editor. We also received solutions from Seán Stewart
from Bomaderry, NSW, Australia, Brian Bradie from Christopher Newport
University Newport News, VA, USA, Ulrich Abel from Technische Hochschule
Mittelhessen, Germany, and Daniel Văcaru from Piteşti, Romania. Their
solutions are similar to the author’s, in the sense that they first prove explicit
formulas for the derivatives of xm log x. In the solutions by Bradie, Abel and
Văcaru, they first calculate

(xm log x)(m) =

m∑
k=0

(
m

k

)
(xm)(m− k)(log x)(k)

= m! log x+

m∑
k=1

(
m

k

)
m!

k!
xk

(−1)k−1(k − 1)!

xk
= m! log x+ C,

where C is a constant. From here one gets (xm log x)(k+m) = m! (−1)
k−1(k−1)!
xk

∀k ≥ 1 and so our sum writes as m!
∑∞

k=1
(−1)k−1

kxk
= m! log

(
1 + 1

x

)
.

Alternatively, as in Abel’s proof, one may consider the function f(z) =

(zm log z)(m) = m! log z+C, which is analytic in the open disk with center x
and radius x > 1, and our sum writes as

∞∑
k=1

f (k)(x)

k!
=

∞∑
k=0

f (k)(x)

k!
1k − f(x) = f(x+ 1)− f(x)

= m!(log(x+ 1)− log x) = m! log

(
1 +

1

x

)
.

503. The Poincaré half-space model of the non-Euclidean n-dimensional
space is the upper half-space Hn = {(x, y) : x ∈ Rn−1, y > 0}. We regard
the elements x ∈ Rn−1 as a column vector, i.e., as an element ofMn−1,1(R).

Then the group of positively oriented isometries of Hn is made of the
functions fα,A,a : Hn → Hn, with α > 0, A ∈ O+(n− 1) and a ∈ Rn−1, given
by (x, y) 7→ α(Ax + a, y) and the functions gα,A,r,a : Hn → Hn, with α > 0,

A ∈ O−(n− 1), r, a ∈ Rn−1, given by (x, y) 7→ α
(

A(x−r)
|x−r|2+y2 + b, y

|x−r|2+y2

)
.

Give a direct proof of the fact that if G is the set of all fα,A,a and gα,A,r,a
then (G, ◦) is a group.

Here ◦ denotes functional composition. Recall that the orthogonal
group O(n − 1) = {A ∈ Mn−1(R) : ATA = In−1} has a decomposition
O(n − 1) = O+(n − 1) ∪ O−(n − 1), where O±(n − 1) = {A ∈ O(n − 1) :
detA = ±1}.
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If x = (x1, . . . , xn−1)
T ∈ Rn−1, then |x| denotes its Euclidean length,

|x|2 = x21 + · · ·+ x2n−1.

Proposed by Constantin-Nicolae Beli, IMAR, Bucureşti, Romania.

Solution by the author. We show that the composition of two functions
f, g ∈ G is always in G. We have four cases, corresponding to f and g being
of the type fα,A,a or gα,A,t,a.

I. f = fα,A,a, g = fβ,B,b. We have fβ,B,b(x, y) = (βBx+ βb, βy) and

fα,A,afβ,B,b(x, y) = fα,A,a(βBx+ βb, βy) = α
(
A(βBx+ βb) + a, βy

)
= αβ(ABx+Ab+ β−1a, y),

so that fα,A,afβ,B,b = fαβ,AB,Ab+β−1a ∈ G. (From A,B ∈ O+(n − 1) we get

AB ∈ O+(n− 1).)
II. f = fα,A,a, g = gβ,B,s,b. With the help of the explicit formula

gβ,B,s,b(x, y) = (β B(x−s)
|x−s|2+y2 + βb, β y

|x−s|2+y2 ) we obtain

fα,A,agβ,B,s,b(x, y) = fα,A,a

(
β

B(x− s)
|x− s|2 + y2

+ βb, β
y

|x− s|2 + y2

)
= α

(
A
(
β

B(x− s)
|x− s|2 + y2

+ βb
)

+ a, β
y

|x− s|2 + y2

)
= αβ

(
AB(x− s)
|x− s|2 + y2

+Ab+ β−1a,
y

|x− s|2 + y2

)
.

Thus fα,A,agβ,B,s,b(x, y) = gαβ,AB,s,Ab+β−1b ∈ G. (We have A ∈ O+(n − 1)

and B ∈ O−(n− 1), so that AB ∈ O−(n− 1).)
III. f = gα,A,r,a, g = fβ,B,b. We have fβ,B,b(x, y) = (x′, y′), where we

put x′ = βBx+ βb, y′ = βy, so

gα,A,r,afβ,B,b(x, y) = gα,A,r,a(x
′, y′) = α

(
A(x′ − r)
|x′ − r|2 + y′2

+ a,
y′

|x′ − r|2 + y′2

)
.

But x′ − r = βBx + βb − r = βB(x − t), where t = β−1B−1r − B−1b, so
that A(x′ − r) = βAB(x− t) and

|x′ − r|2 + y′2 = |βB(x− t)|2 + (βy)2 = β2(|x− t|2 + y2).

(From B ∈ O(n − 1) we get |βB(x − t)|2 = β2|B(x − t)|2 = β2|x − t|2.) In
follows that

gα,A,r,afβ,B,b(x, y) = α

(
βAB(x− t)

β2(|x− t|2 + y2)
+ a,

βy

β2(|x− t|2 + y2)

)
=
α

β

(
AB(x− t)
|x− t|2 + y2

+ βa,
y

|x− t|2 + y2

)
.

So gα,A,r,afβ,B,b = gα
β
,AB,t,βa = gα

β
,AB,β−1B−1r−B−1b,βa ∈ G. (We have used

that A ∈ O−(n− 1) and B ∈ O+(n− 1) imply AB ∈ O−(n− 1).)
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IV. f = gα,A,r,a, g = gβ,B,s,b. We have

gα,A,r,agβ,B,s,b(x, y) = gα,A,r,a(x
′, y′)

= α
(
A(x′ − r)(|x′ − r|2 + y′2)−1 + a, y′(|x′ − r|2 + y′2)−1

)
,

where

(x′, y′) = gβ,B,s,b(x, y) =

(
β

B(x− s)
|x− s|2 + y2

+ βb, β
y

|x− s|2 + y2

)
.

We have x′−r = β B(x−s)
|x−s|2+y2 +βb−r = β

(
B(x−s)
|x−s|2+y2 + c

)
= βB(x−s)+(|x−s|2+y2)c

|x−s|2+y2 ,

where c = b− β−1r. We have two subcases:

(a) c = 0, i.e., r = βb. Then x′ − r = β B(x−s)
|x−s|2+y2 , so that

|x′ − r|2 + y′2 =
∣∣β B(x− s)
|x− s|2 + y2

∣∣2 +
(
β

y

|x− s|2 + y2
)2

=
β2(

|x− s|2 + y2
)2 (|B(x− s)|2 + y2

)
=

β2

|x− s|2 + y2
.

(We have B ∈ O(n− 1) and therefore |B(x− s)|2 + y2 = |x− s|2 + y2.)

It follows that gα,A,r,agβ,B,s,b(x, y) = α
(

A(x′−r)
|x′−r|2+y′2 + a, y′

|x′−r|2+y′2

)
writes

as

α

(
Aβ

B(x− s)
|x− s|2 + y2

(
β2

|x− s|2 + y2

)−1
+ a, β

y

|x− s|2 + y2

(
β2

|x− s|2 + y2

)−1)
= α

(
β−1AB(x− s) + a, β−1y

)
=
α

β
(ABx−ABs+ βa, y).

Thus gα,A,r,agβ,B,s,b(x, y) = fα
β
,AB,βa−ABs ∈ G. (From A,B ∈ O−(n − 1) it

follows that AB ∈ O+(n− 1).)
(b) c 6= 0, i.e., r 6= βb. Now we het

|x′ − r|2 + y′2 =

∣∣∣∣βB(x− s) + (|x− s|2 + y2)c

|x− s|2 + y2

∣∣∣∣2 +

(
β

y

|x− s|2 + y2

)2

=
β2

(|x− s|2 + y2)2
(∣∣B(x− s) + (|x− s|2 + y2)c

∣∣2 + y2
)
.

We consider the following scalar product 〈·, ·〉 : Rn−1 × Rn−1 → R: if u =
(u1, . . . , un−1)

T , v = (v1, . . . , vn−1)
T ∈ Rn−1 then 〈u, v〉 = uT v = vTu =

u1v1 + · · ·+ un−1vn−1. We have |u+ v|2 = |u|2 + |v|2 + 2〈u, v〉. Moreover, if
C ∈ Mn−1(R) then 〈Cu, v〉 = 〈u,CT v〉. We also use the fact B ∈ O(n− 1),
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so |B(x− s)| = |x− s|. We get

∣∣B(x− s) +
(
|x− s|2 + y2

)
c
∣∣2 + y2

= |B(x− s)|2 +
(
|x− s|2 + y2

)2|c|2 + 2
(
|x− s|2 + y2

)
〈B(x− s), c〉+ y2

= |x− s|2 +
(
|x− s|2 + y2

)2|c|2 + 2
(
|x− s|2 + y2

)
〈x− s,BT c〉|+ y2

=
(
|x− s|2 + y2

) (
1 +

(
|x− s|2 + y2

)
|c|2 + 2〈x− s,BT c〉

)
= |c|2

(
|x− s|2 + y2

)( 1

|c|2
+ |x− s|2 + y2 + 2〈|x− s, B

T c

|c|2
〉
)
.

But BT ∈ O(n− 1), so |BT c|c|2 |
2 = |BT c|2

|c|4 = |c|2
|c|4 = 1

|c|2 . Hence

1

|c|2
+ |x− s|2 + y2 + 2〈x− s, B

T c

|c|2
〉 = |x− s|2 + |B

T c

|c|2
|2 + 2〈x− s, B

T c

|c|2
〉+ y2

= |x− s+
BT c

|c|2
|2 + y2 = |x− t|2 + y2,

where t = s− BT c
|c|2 . In conclusion,

|x′ − r|2 + y′2 =
β2

(|x− s|2 + y2)2
(|B(x− s) + (|x− s|2 + y2)c|2 + y2)

=
β2

(|x− s|2 + y2)2
|c|2(|x− s|2 + y2)(|x− t|2 + y2)

=
β2|c|2(|x− t|2 + y2)

|x− s|2 + y2
.

It follows that

x′ − r
|x′ − r|2 + y2

= β
B(x− s) +

(
|x− s|2 + y2

)
c

|x− s|2 + y2

(
β2|c|2(|x− t|2 + y2)

|x− s|2 + y2

)−1
= β−1|c|−2

B(x− s) +
(
|x− s|2 + y2

)
c

|x− t|2 + y2
.

But x − s = x − t − BT c
|c|2 and, again, |BT c|c|2 |

2 = 1
|c|2 . It follows that we have

|x− s|2 = |x− t|2 +
∣∣BT c
|c|2
∣∣2− 2〈x− t, BT c|c|2 〉 = |x− t|2 + 1

|c|2 − 2〈B(x− t), c
|c|2 〉.
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Therefore

B(x− s) +
(
|x− s|2 + y2

)
c

= B
(
x− t− BT c

|c|2
)

+

(
|x− t|2 +

1

|c|2
− 2〈B(x− t), c

|c|2
〉+ y2

)
c

= B(x− t)− BBT c

|c|2
+
(
|x− t|2 + y2

)
c+

c

|c|2
− 2〈B(x− t), c

|c|2
〉c

= B(x− t) + (|x− t|2 + y2)c− 2〈B(x− t), c

|c|2
〉c.

(We have BBT = In−1, so −BBT c
|c|2 and c

|c|2 cancel each other.)

We regard 〈B(x − t), c
|c|2 〉 =

(
c
|c|2
)T
B(x − t) ∈ R as a 1 × 1 matrix,

which can be multiplied to the right by the (n − 1) × 1 matrix c. With

〈B(x−t), c
|c|2 〉c = c( c

|c|2 )TB(x−t) = cT c
|c|2B(x−t) we can rewrite the expression

B(x− s) + (|x− s|2 + y2)c as

B(x−t)+(|x−t|2+y2)c−2
cT c

|c|2
B(x−t) = (In−1−2

cT c

|c|2
)B(x−t)+(|x−t|2+y2)c.

Hence

x′ − r
|x′ − r|2 + y2

= β−1|c|−2
(
In−1 − 2 c

T c
|c|2
)
B(x− t) +

(
|x− t|2 + y2

)
c

|x− t|2 + y2

= β−1|c|−2
(
In−1 − 2 c

T c
|c|2
)
B(x− t)

|x− t|2 + y2
+ β−1|c|−2c.

We also have

y′
(
|x′ − r|2 + y2

)−1
=

βy

|x− s|2 + y2

(
β2|c|2

(
|x− t|2 + y2

)
|x− s|2 + y2

)−1
= β−1|c|−2 y

|x− t|2 + y2
.

Then α−1gα,A,r,agβ,B,s,b(x, y) =
(

A(x′−r)
|x′−r|2+y′2 + a, y′

|x′−r|2+y′2

)
writes as

β−1|c|−2
A

(In−1 − 2 c
T c
|c|2
)
B(x− t)

|x− t|2 + y2
+ c

+ a,
y

|x− t|2 + y2


= β−1|c|−2

A(In−1 − 2 c
T c
|c|2
)
B(x− t)

|x− t|2 + y2
+ c+ β|c|2a, y

|x− t|2 + y2

 .
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Thus gα,A,r,agβ,B,s,b(x, y) = g
αβ−1|c|−2,A(In−1−2 c

T c
|c|2

)B,t,c+β|c|2a. To prove

that this function belongs to G, one needs to show that A(In−1 − 2 c
T c
|c|2 )B ∈

O−(n−1). As A,B ∈ O−(n−1), this is equivalent to In−1−2 c
T c
|c|2 ∈ O

−(n−1).

If C := cT c
|c|2 , then C = CT and C2 = cT (ccT )c

|c|4 . With ccT = |c|2, we obtain

C2 = cT c
|c|2 = C. It follows that (In−1 − 2C)T (In−1 − 2C) = (In−1 − 2C)2 =

In−1 − 4C + 4C2 = In−1 and In−1 − 2 c
T c
|c|2 = In−1 − 2C ∈ O(n− 1).

To compute the determinant of In−1 − 2 c
T c
|c|2 we use a well known result

which states that if C is a k × l matrix and D is an l × k matrix then
X lPCD(X) = XkPDC(X). We take X = 1 and we get PCD(1) = PDC(1),
i.e., det(Ik−CD) = det(Il−DC). We take the matrices C = c

|c|2 and D = 2cT

of sizes (n− 1)× 1 and 1× (n− 1), respectively, and get det(In−1 − 2 cc
T

|c|2 ) =

det(I1 − 2 c
T c
|c|2 ). But the right side is a 1 × 1 matrix, i.e., a number, so its

determinant is itself. Hence det(In−1 − 2 cc
T

|c|2 ) = 1 − 2 c
T c
|c|2 = 1 − 2 |c|

2

|c|2 = −1,

which shows that In−1 − 2 cc
T

|c|2 ∈ O
−(n− 1).

Alternatively, we note that
(
In−1 − 2 cc

T

|c|2
)
c = c − 2 cc

T c
|c|2 = c − 2c = −c.

(We have cT c = |c|2.) On the other hand, if u ∈ Rn−1 = Mn−1,1(R) is

orthogonal on c, then 〈c, u〉 = cTu = 0, so (In−1 − 2 cc
T

|c|2 )u = u − 2 cc
Tu
|c|2 =

u− 0 = u. Thus In−1 − 2 cc
T

|c|2 coincides with the symmetry with respect to c,

which is known to belong to O−(n− 1).
The identity map can be written as f1,In−1,0 ∈ G. To conclude the proof

we must prove that for every f ∈ G there is g ∈ G with fg = gf = f1,In−1,0.
We consider the two possible cases for f .

If f = fα,A,a, then we look for an inverse of the type g = fβ,B,b. By case
I, we have fα,A,afβ,B,b = fαβ,AB,Ab+β−1a. So in order that fβ,B,b is a right

inverse of fα,A,a we need that αβ = 1, AB = In−1 and Ab + β−1a = 0, i.e.,
that (β,B, b) = (α−1, A−1,−αA−1a). (The third coordinate follows from
Ab = −β−1a = −αa.) But if (β,B, b) = (α−1, A−1,−αA−1a), then also
(α,A, a) = (β−1, B−1,−βB−1b) and so fα,A,a is a right inverse of fβ,B,b.

Thus f−1α,A,a = fα−1,A−1,−αA−1a.
If f = gα,A,r,a, then we are looking for an inverse g = gβ,B,s,b. In

order that we are in case IV, we need that r = βb. Then gα,A,r,agβ,B,s,b =
gα
β
,AB,βa−ABs. Hence in order that gβ,B,s,b is a right inverse of gα,A,r,a one

needs that r = βb and (αβ , AB, βa−ABs) = (1, In−1, 0). This is equivalent to

(β,B, s, b) = (α,A−1, αa, α−1r). (The formulas for s and b follow from αa =
βa = ABs = s and r = βb = αb.) But if (β,B, s, b) = (α,A−1, αa, α−1r),
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then we also have (α,A, r, a) = (β,B−1, βb, β−1s), so that gα,A,r,a is a right

inverse of gβ,B,s,b. Thus g−1α,A,r,a = gα,A−1,αa,α−1r. �


