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1. Introduction and the main results

In this paper we prove the following three remarkable quadratic series
formulae
∞∑
n=1

(−1)n

[
n2
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1

]
=

1

2
+
ζ(2)

2
+
5

8
ζ(3)−π

2 ln 2

4
,

∞∑
n=1

[
n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1

n

]
=

3

2
− ζ(2)

2
− 3

2
ζ(3),

and
∞∑
n=1

[
n2
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1 +
1

n

]
= −2

3
+
ζ(2)

2
+
ζ(3)

2
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These formulae are new in the literature. Their proofs are based on the
calculation of several linear series involving the tail of ζ(2). Other exercises
about the calculation of series, linear or quadratic, involving the tail of Rie-
mann zeta function values, as well as open problems can be found in [3] and
[4]. The main results of this paper are recorded in Theorem 1 and Lemma 4.

Theorem 1. Pearls of quadratic series.

The following identities hold:

(a)
∞∑
n=1

(−1)n

[
n2
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1

]
=

1

2
+
ζ(2)

2
+

5

8
ζ(3)− π2 ln 2

4
;

(b)

∞∑
n=1

[
n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1

n

]
=

3

2
− ζ(2)

2
− 3

2
ζ(3);

(c)

∞∑
n=1

[
n2
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1 +
1

n

]
= −2

3
+
ζ(2)

2
+
ζ(3)

2
.

The convergence of series in Theorem 1 is based on the behavior of the
sequence

rn := ζ(2)− 1− 1

22
− · · · − 1

n2
, n ≥ 1.

Using Cesàro-Stolz lemma, the 0
0 case, one can prove that

lim
n→∞

n

[
n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
− 1

]
= −1

2
.

This implies that, for large values of n, we have ζ(2) − 1 − 1
22

− · · · − 1
n2 ∼

1
n − 1

2n2 . Thus,

n2
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1 ∼ − 1

n
+

1

4n2
,

which shows that the series in part (a) behaves like the series
∞∑
n=1

(−1)n

n , hence

it is semiconvergent.
On the other hand,

n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1

n
∼ − 1

n2
+

1

4n3
,

which shows the series in part (b) converges.
For the general term of the series in part(c) we have

n2
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1 +
1

n
∼ 1

4n2
,
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which implies that the series converges. The series in part (c) of Theorem
1 should be viewed as the absolute convergence version of the series in part
(a).

Before we prove Theorem 1 we collect some results we need in our
analysis. Recall that, Abel’s summation formula ([2, p. 55], [3, Lemma A.1,
p. 258]) states that if (an)n≥1 and (bn)n≥1 are two sequences of real numbers

and An =
n∑

k=1

ak, then
n∑

k=1

akbk = Anbn+1 +
n∑

k=1

Ak(bk − bk+1). We will be

using the infinite version of this formula

∞∑
k=1

akbk = lim
n→∞

(Anbn+1) +

∞∑
k=1

Ak(bk − bk+1). (1)

The Dilogarithm function Li2(z) is defined, for |z| ≤ 1, by ([5, p. 176])

Li2(z) :=
∞∑
n=1

zn

n2
= −

∫ z

0

ln(1− t)

t
dt.

Lemma 2. The generating function of the sequence rn.

The following equality holds

∞∑
n=1

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
xn =

ζ(2)x− Li2(x)

1− x
, x ∈ [−1, 1).

Proof. We apply formula (1) with an = xn and bn = ζ(2)− 1− 1
22

− · · · − 1
n2

and we have, since bn − bn+1 =
1

(n+1)2
and An = x+ x2 + · · ·+ xn = x−xn+1

1−x ,

that
∞∑
n=1

rnx
n = lim

n→∞

x− xn+1

1− x

(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2

)

+

∞∑
n=1

x− xn+1

1− x
· 1

(n+ 1)2

=
1

1− x

∞∑
n=1

x− xn+1

(n+ 1)2

=
1

1− x

∞∑
n=0

x− xn+1

(n+ 1)2

=
ζ(2)x− Li2(x)

1− x
.

We used that

lim
n→∞

(
x− xn+1

)(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2

)
= 0.
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The previous limit follows since |x− xn+1| ≤ 2 and

lim
n→∞

(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2

)
= 0.

2
Remark 3. We mention that the generating function of the sequence(

ζ(k)− 1− 1

2k
− · · · − 1

nk

)
n≥1

, k > 2,

can be obtained similarly as in the proof of Lemma 2 (see [4, problem 3.3,
C, p. 76]).

Lemma 4. Gems involving the tail of ζ(2).

The following equalities hold:

(a)
∞∑
n=1

(
ζ(2)− 1− 1

22
− · · · − 1

n2
− 1

n

)
= 1− ζ(2);

(b)

∞∑
n=1

1

n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
= ζ(3);

(c)

∞∑
n=1

(−1)n
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
= −ζ(2)

4
;

(d)
∞∑
n=1

(−1)n

n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
= ζ(3)− π2

4
ln 2;

(e)

∞∑
n=1

[
n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
− 1 +

1

2n

]
=

1

4
.

Proof. (a) Use Abel’s summation formula with an = 1 and bn = ζ(2) − 1 −
1
22

− · · · − 1
n2 − 1

n , see [4, problem 2.46, p. 50].

(b) Use Abel’s summation formula with an = 1
n and bn = ζ(2) − 1 −

1
22

− · · · − 1
n2 , see [3, problem 3.20, p. 142].

(c) We give four distinct proofs of part (c) of Lemma 4.

The first proof. One proof follows directly from Lemma 2, with x = −1,

since Li2(−1) = − ζ(2)
2 .

The second proof. The second proof, which is left as an exercise to the
interested reader, is based on an application of formula (1) with an = (−1)n

and bn = ζ(2)− 1− 1
22

− · · · − 1
n2 .
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The third proof (Shifting the index of summation).
We have

S =

∞∑
n=1

(−1)n
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)

= −(ζ(2)− 1) +
∞∑
n=2

(−1)n
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)

=1− ζ(2) +

∞∑
m=1

(−1)m+1

(
ζ(2)− 1− 1

22
− · · · − 1

(m+ 1)2

)

= 1− ζ(2)−
∞∑

m=1

(−1)m
[(
ζ(2)− 1− 1

22
− · · · − 1

m2

)
− 1

(m+ 1)2

]

= 1− ζ(2)− S +

∞∑
m=1

(−1)m

(m+ 1)2

= −ζ(2)− S +
∞∑

m=0

(−1)m

(m+ 1)2

= −ζ(2)
2

− S,

and the result follows. We used that
∞∑

m=0

(−1)m

(m+1)2
= ζ(2)

2 .

The fourth proof. This proof is based on a direct computational tech-

nique. One can check using integration by parts that
∫ 1
0 x

k lnx dx = − 1
(k+1)2

,

k ≥ 0. It follows that

ζ(2)− 1− 1

22
− · · · − 1

n2
= −

∫ 1

0

xn

1− x
lnx dx. (2)

We have, based on formula (2), that

∞∑
n=1

(−1)n
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
= −

∞∑
n=1

(−1)n
∫ 1

0

xn lnx

1− x
dx

= −
∫ 1

0

lnx

1− x

( ∞∑
n=1

(−x)n
)
dx

=

∫ 1

0

x lnx

1− x2
dx

x2=t
=

1

4

∫ 1

0

ln t

1− t
dt
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=
1

4

∫ 1

0
ln t

( ∞∑
n=0

tn

)
dt

=
1

4

∞∑
n=0

∫ 1

0
tn ln tdt

= −1

4

∞∑
n=0

1

(n+ 1)2

= −ζ(2)
4
.

(d) We use that 1
k =

∫ 1
0 x

k−1dx and Lemma 2 and we have that

∞∑
n=1

(−1)n

n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)

=
∞∑
n=1

(−1)n
∫ 1

0
xn−1

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
dx

=

∫ 1

0

1

x

[ ∞∑
n=1

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
(−x)n

]
dx

Lemma2
= −

∫ 1

0

xζ(2) + Li2(−x)
x(1 + x)

dx

=

∫ 1

0

xζ(2) + Li2(−x)
1 + x

dx− ζ(2)−
∫ 1

0

Li2(−x)
x

dx.

(3)

On the other hand

∫ 1

0

Li2(−x)
x

dx =

∫ 1

0

( ∞∑
n=1

(−1)n
xn−1

n2

)
dx =

∞∑
n=1

(−1)n

n3
= −3

4
ζ(3). (4)

We calculate the first integral in (3) by parts, with f(x) = xζ(2) +

Li2(−x), f ′(x) = ζ(2) − ln(1+x)
x , g′(x) = 1

1+x , and g(x) = ln(1 + x), and we
have that
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∫ 1

0

xζ(2) + Li2(−x)
1 + x

dx = [xζ(2) + Li2(−x)] ln(1 + x)
∣∣1
0

−
∫ 1

0

(
ζ(2)− ln(1 + x)

x

)
ln(1 + x)dx

= [ζ(2) + Li2(−1)] ln 2− ζ(2)(2 ln 2− 1)

+

∫ 1

0

ln2(1 + x)

x
dx

=− 3

2
ζ(2) ln 2 + ζ(2) +

ζ(3)

4
. (5)

We used that Li2(−1) = − ζ(2)
2 and Ramanujan’s integral

∫ 1
0

ln2(1+x)
x dx = ζ(3)

4
(see [1, pp. 291–292]). Combining (3), (4) and (5) we have that part (d) of
Lemma 4 is proved.

(e) We apply formula (1), with an = n and bn = ζ(2) − 1 − 1
22

− · · · −
1
n2 − 1

n + 1
2n2 , and we have, since bn − bn+1 =

1
2n2(n+1)2

, that

∞∑
n=1

[
n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
− 1 +

1

2n

]

=
∞∑
n=1

n

(
ζ(2)− 1− 1

22
− · · · − 1

n2
− 1

n
+

1

2n2

)
= lim

n→∞

n(n+ 1)

2

(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2
− 1

n+ 1
+

1

2(n+ 1)2

)
+

1

4

∞∑
n=1

1

n(n+ 1)

=
1

4

∞∑
n=1

1

n(n+ 1)

=
1

4
,

since

lim
n→∞

n(n+ 1)

(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2
− 1

n+ 1
+

1

2(n+ 1)2

)
= 0.

The lemma is proved. 2
Remark 5. Using the generating function of the sequence(

ζ(3)− 1− 1

23
− · · · − 1

n3

)
n≥1

,
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one can calculate similarly as in the proof of part (d) of Lemma 4 the following
alternating series involving the tail of ζ(3)

∞∑
n=1

(−1)n

n

(
ζ(3)− 1− 1

23
− · · · − 1

n3

)
= −7

4
ζ(3) ln 2 +

19

16
ζ(4).

Now we are ready to prove Theorem 1.

Proof. (a) We need the following equality which can be proved by mathe-
matical induction

(−1)112 + (−1)222 + · · ·+ (−1)nn2 = (−1)n
n(n+ 1)

2
, n ≥ 1. (6)

Apply formula (1) with an = (−1)nn2 and bn =
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2−
1
n2 . We have, based on formula (6), that An = (−1)n n(n+1)

2 and a calculation
shows

bn − bn+1 = − 2n+ 1

n2(n+ 1)2
+

1

(n+ 1)4
+

2

(n+ 1)2
· rn+1.

We have

∞∑
n=1

(−1)n

[
n2
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1

]

=

∞∑
n=1

(−1)nn2

[(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1

n2

]

= lim
n→∞

(−1)n
n(n+ 1)

2

[(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2

)2

− 1

(n+ 1)2

]

+
∞∑
n=1

(−1)n
n(n+ 1)

2

[
− 2n+ 1

n2(n+ 1)2
+

1

(n+ 1)4
+

2

(n+ 1)2
· rn+1

]

= −1

2

∞∑
n=1

(−1)n
2n+ 1

n(n+ 1)
+

1

2

∞∑
n=1

(−1)n
n

(n+ 1)3

+
∞∑
n=1

(−1)n
n

n+ 1

(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2

)
.

(7)
We used that

lim
n→∞

n(n+ 1)

[(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2

)2

− 1

(n+ 1)2

]
= 0. (8)
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The preceding limit follows since

lim
n→∞

n(n+ 1)

[(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2

)2

− 1

(n+ 1)2

]

= lim
n→∞

n

(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2
− 1

n+ 1

)
· lim
n→∞

(n+ 1)

(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2
+

1

n+ 1

)
= 0 · 2
= 0,

since lim
n→∞

n
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
= 1.

An easy calculation shows that
∞∑
n=1

(−1)n
2n+ 1

n(n+ 1)
= −1 and

∞∑
n=1

(−1)n
n

(n+ 1)3
=
π2

12
− 3

4
ζ(3). (9)

On the other hand,
∞∑
n=1

(−1)n
n

n+ 1

(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2

)

=

∞∑
n=1

(−1)n
(
1− 1

n+ 1

)(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2

)

=
∞∑

m=2

(−1)m−1

(
1− 1

m

)(
ζ(2)− 1− 1

22
− · · · − 1

m2

)

=

∞∑
m=1

(−1)m−1

(
1− 1

m

)(
ζ(2)− 1− 1

22
− · · · − 1

m2

)

=
∞∑

m=1

(−1)m

m

(
ζ(2)− 1− 1

22
− · · · − 1

m2

)

−
∞∑

m=1

(−1)m
(
ζ(2)− 1− 1

22
− · · · − 1

m2

)
Lemma4, (c), (d)

= ζ(3)− π2

4
ln 2 +

ζ(2)

4
.

(10)

Combining (7), (9) and (10), part (a) of Theorem 1 is proved.

(b) Exactly as in the proof of part (a) of the theorem, we apply formula

(1) with an = n and bn =
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2− 1
n2 and we have, since

bn − bn+1 = − 2n+ 1

n2(n+ 1)2
+

1

(n+ 1)4
+

2

(n+ 1)2
· rn+1,
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that

∞∑
n=1

[
n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1

n

]

=
∞∑
n=1

n

[(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1

n2

]

= lim
n→∞

n(n+ 1)

2

[(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2

)2

− 1

(n+ 1)2

]

+
∞∑
n=1

n(n+ 1)

2

[
− 2n+ 1

n2(n+ 1)2
+

1

(n+ 1)4
+

2

(n+ 1)2
· rn+1

]
(8)
=

∞∑
n=1

n(n+ 1)

2

[
− 2n+ 1

n2(n+ 1)2
+

1

(n+ 1)4
+

2

(n+ 1)2
· rn+1

]

=
∞∑
n=1

[
− 2n+ 1

2n(n+ 1)
+

n

2(n+ 1)3
+

n

n+ 1
· rn+1

]

= −
∞∑
n=1

1

2n(n+ 1)
+

1

2

∞∑
n=1

n

(n+ 1)3
+

∞∑
n=1

(
rn+1 −

1

n+ 1

)

−
∞∑
n=1

1

n+ 1

(
ζ(2)− 1− 1

22
− · · · − 1

(n+ 1)2

)
.

It follows, based on parts (a) and (b) of Lemma 4, that

∞∑
n=1

[
n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1

n

]

= −1

2
+

1

2
(ζ(2)− ζ(3)) + [1− ζ(2)− (ζ(2)− 2)]− [ζ(3)− (ζ(2)− 1)]

=
3

2
− ζ(2)

2
− 3

2
ζ(3).

(c) Let S be the sum of the series. We apply formula (1), with

an = 1 and bn = n2
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1 +
1

n

and we have, since

bn − bn+1 = −(2n+ 1)r2n + 2rn +
1

n(n+ 1)2
,
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that

S =
∞∑
n=1

[
n2
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1 +
1

n

]

= lim
n→∞

n

[
(n+ 1)2r2n+1 − 1 +

1

n+ 1

]
+

∞∑
n=1

[
−(2n2 + n)r2n + 2nrn

]
+

∞∑
n=1

1

(n+ 1)2

=

∞∑
n=1

[
−(2n2 + n)r2n + 2nrn

]
+ ζ(2)− 1,

(11)

since lim
n→∞

n

[
(n+ 1)2

(
ζ(2)− 1− 1

22
− · · · − 1

(n+1)2

)2
− 1 + 1

n+1

]
= 0.

An easy calculation shows that

− (2n2 + n)

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

+ 2n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
= −2

[
n2
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1 +
1

n

]

−

[
n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1

n

]

+ 2

[
n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
− 1 +

1

2n

]
.

(12)
It follows, from (11) and (12), that

S = −2
∞∑
n=1

[
n2
(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1 +
1

n

]

−
∞∑
n=1

[
n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1

n

]

+ 2

∞∑
n=1

[
n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
− 1 +

1

2n

]
+ ζ(2)− 1

= −2S −
∞∑
n=1

[
n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1

n

]

+ 2

∞∑
n=1

[
n

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)
− 1 +

1

2n

]
+ ζ(2)− 1.
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Using part (b) of Theorem 1 and part (e) of Lemma 4 we have that

3S = −
(
3

2
− ζ(2)

2
− 3

2
ζ(3)

)
+

1

2
+ ζ(2)− 1 = −2 +

3

2
ζ(2) +

3

2
ζ(3),

and this implies that S = −2
3 + ζ(2)

2 + ζ(3)
2 . Part (c) of Theorem 1 is thus

proved. 2
Corollary 6. A quadratic series and Apéry’s constant.

The following equality holds
∞∑
n=1

[
(n2 + n)

(
ζ(2)− 1− 1

22
− · · · − 1

n2

)2

− 1

]
=

5

6
− ζ(3).

Proof. Add the series formulae in parts (b) and (c) of Theorem 1. 2
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The Hölder continuity of xa sin 1
x

Adrian Holhoş1)

Abstract. For a ∈ (0, 2], we prove that xa sin 1
x

is a Hölder continuous
function of order a

2
.

Keywords: Hölder continuous function, Lipschitz function.

MSC: Primary 26A16; Secondary 26A09.

1. Introduction

Let I be a nonempty subset of R. A function f : I → R is said to be
Hölder continuous of order α ∈ (0, 1] if there exists M ≥ 0 such that

|f(x)− f(y)| ≤M · |x− y|α, for every x, y ∈ I. (1)

In the particular case α = 1, the function f is called a Lipschitz function.
The number α from (1) is called a Hölder exponent and the number M

satisfying condition (1) is called a Hölder coefficient. The smallest Hölder co-
efficient is denoted |f |α. Let us remark that for a Hölder continuous function
f of order α, the Hölder coefficient

|f |α = sup
x,y∈I
x ̸=y

|f(x)− f(y)|
|x− y|α

is finite.
This notion is important in many areas of mathematics like Approxi-

mation Theory, Fourier series, Differential Equations and Potential Theory.
There are two names associated with this notion. Many mathematicians who
worked in the field of Approximation Theory and Fourier series (see for ex-
ample [8, p. 9] and [9, p. 42]), called a Hölder continuous function of order
α a “Lipschitz continuous function of order α”, after R. Lipschitz who used
this notion in a paper [5] from 1864 concerning Fourier series. In this case,
the space of all Lipschitz continuous functions of order α is denoted Lipα(I)
(see [7, p. 159]) and simply Lip(I), for all Lipschitz functions on I. Nowa-
days, the functions satisfying (1) are named after O. Hölder, who used the
condition (1) in his doctoral dissertation [3] presented to the University of
Tübingen in 1882 entitled “Contributions to potential theory”. The space
of Hölder continuous functions of order α on I is denoted C0,α(I) (see for
example [2]). For an integer k ≥ 1, the symbol Ck,α(I) denotes the space of
functions whose first kth derivatives are Hölder continuous of order α.

1)Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Ro-
mania, Adrian.Holhos@math.utcluj.ro
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The aim of this article is to study the Hölder continuity of the function
sa : [0,∞) → R defined by

sa(x) =

{
xa · sin 1

x
, x > 0,

0, x = 0,

where a ∈ (0, 2]. This function is a rich source of examples and counterex-
amples of many results in analysis (see [4]). We will add to the many inter-
esting properties of this function its Hölder continuity. We will prove that
for a ∈ (0, 2] the function sa is Hölder continuous of order a

2 on [0,∞). For
a = 2 the function s2 is a Lipschitz function. Indeed, using the Mean Value
Theorem and inequality sin t ≤ t (t ≥ 0) we have for every x, y ≥ 0

|s2(x)− s2(y)| = |x− y| ·
∣∣s′2(c)∣∣ ≤ ∣∣∣∣2c sin 1

c
− cos

1

c

∣∣∣∣ · |x− y| ≤ 3 · |x− y|.

The particular case a = 1 is also known (see [1] and also [6] and Example
1.1.8 from [2]). In [6] it is proved that

|s1(x)− s1(y)| ≤
√

2|x− y|, x, y ≥ 0.

Before presenting the proof of our result, let us remark that sa cannot
be Hölder continuous with a greater exponent than a

2 . Suppose sa is Hölder

continuous with the exponent b > a
2 . Let xn = 1

nπ and yn = 1
nπ+π

2
. Then

|sa(xn)− sa(yn)|
|xn − yn|b

=

1

(nπ+π
2 )

a(
1
nπ − 1

nπ+π
2

)b = 2bπb−a

(
1 +

1

2n

)b−a

· n2b−a

is unbounded, showing that the Hölder coefficient |sa|b cannot be finite.
The main result of this paper is Theorem 4, where we show that the

Hölder coefficient of the function sa, a ∈ (0, 2), is bounded by the constant

(a+1)(3π/2)(2−a)/2. To prove this, we first find the monotonicity intervals of
the function sa. The properties of sa related to these intervals are included
in the section Auxiliary results.

2. Auxiliary results

Lemma 1. For a ∈ (0, 2], the equation s′a
(
1
x

)
= 0 has a unique solution in

the interval (nπ, nπ + π), for every integer n ≥ 1, which will be denoted by
an. In addition, a tan an = an and an is located in the interval

(
nπ, nπ + π

2

)
.

Proof. For the integers n ≥ 1, the real numbers 1
nπ are the only positive roots

of the equation sa(x) = 0. By Rolle’s Theorem, the derivative s′a(x) has at

least one zero in the interval
(

1
nπ ,

1
nπ+π

)
, n ≥ 1. We will prove that it is
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unique. The expression of the derivative of sa is

s′a(x) = xa−1

(
a sin

1

x
− 1

x
· cos 1

x

)
.

The equation s′a (1/x) = 0 has only one solution in (nπ, nπ + π) if and only
if the equation

a sin t− t cos t = 0

has only one solution in the interval (nπ, nπ + π). With t = u + nπ, this is
true if and only if the function defined on (0, π) by

f(u) = a sinu− (u+ nπ) cosu

has only one root. For u ∈
(
π
2 , π

)
, the function f is positive, so it cannot

be zero in this subinterval. For u ∈
(
0, π2

)
, f is convex, because f ′′(u) =

(2− a) sinu+ (u+ nπ) cosu > 0. The derivative is

f ′(u) = (a− 1) cosu+ (u+ nπ) sinu.

We have two cases depending on the value of a. If a ≥ 1, then f ′(u) > 0
and because at the endpoints of the interval the function f has opposite
signs (f(0) = −nπ < 0 and f

(
π
2

)
= a > 0), there is a unique u0 ∈

(
0, π2

)
such that f(u0) = 0. If a ∈ (0, 1), then f ′(0) = a − 1 < 0 and because
f ′
(
π
2

)
= π

2 +nπ > 0, we deduce from the convexity of f that f ′(u) is negative

on some interval (0, u1) and positive on
(
u1,

π
2

)
, for some u1 ∈

(
0, π2

)
. This

means that f decreases on (0, u1) and because f(0) = −nπ we know that f
is negative on (0, u1). In the interval

(
u1,

π
2

)
, the function f increases from

negative values to positive values (because f(u1) < 0 and f
(
π
2

)
= a > 0)

and, since it is continuous, it has exactly one zero in the interval
(
u1,

π
2

)
denoted by u0.

We have proved that f(u) = 0 has only one solution in the interval(
0, π2

)
, denoted by u0. With an = u0 + nπ ∈

(
nπ, nπ + π

2

)
we have proved

that an is the only solution of the equation s′a (1/x) = 0 in the interval
(nπ, nπ + π) and that it verifies a sin an − an cos an = 0 which is equivalent
with a tan an = an. 2

The solutions of the equation s′a
(
1
x

)
= 0 form a strictly increasing

sequence of positive numbers denoted (an) (see Lemma 1). We consider the

intervals In =
[

1
an+1

, 1
an

]
, for n ≥ 1, and I0 =

[
1
a1
,∞
)
.

Lemma 2. We have

(0,∞) =
∞⋃
n=0

In, and sa(I0) ⊃ sa(I1) ⊃ sa(I2) ⊃ · · · .

Proof. To prove the inclusions sa(In+1) ⊂ sa(In), for n ≥ 1, let us evaluate
the extrema of sa. Consider bn = nπ + π

2 − an ∈
(
0, π2

)
. Using the relation
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a tan an = an we get

tan bn = tan
(π
2
− an

)
=

1

tan an
=

a

an
.

Now,

sa

(
1

an

)
=

1

aan
sin an =

1

aan
sin
(
nπ +

π

2
− bn

)
=

(−1)n cos bn
aan

.

Using the formula cosx = 1√
1+tan2 x

, for x = bn, we obtain

sa

(
1

an

)
=

(−1)n

aan

√
1 + a2

a2n

=
(−1)n√

a2an + a2a2a−2
n

.

The function sa is monotonic on each interval In and changes the mono-
tonicity on consecutive intervals. It remains to prove that |sa(1/an+2)| <
|sa(1/an)|, for every n ≥ 1. This holds true if the sequence

(
a2an + a2a2a−2

n

)
n≥1

is increasing. This is indeed true because the derivative of the function
g(t) = t2a + a2t2a−2 is positive on (a1,∞) ⊂ (π,∞), since

g′(t) = 2at2a−3
[
t2 + a(a− 1)

]
> 0, t > π.

Now, to prove that sa(I1) ⊂ sa(I0) it is sufficient to prove that sa

(
1
a2

)
<

sa
(
2
π

)
. But this is equivalent to g(a2) >

(
π
2

)2a
, which is true since g is

increasing and a2 > 2π. 2
Lemma 3. Let 0 ≤ x < y. Then, there exist ℓ ≥ 0 and v, w such that
v, w ∈ Iℓ and x ≤ v ≤ w ≤ y with the property that

sa(v) = sa(x) and sa(w) = sa(y).

Proof. Using Lemma 2, we know that for y ∈ (0,∞) there is some integer
j ≥ 0 such that y ∈ Ij . If 0 < x < y, then there is k ≥ j such that x ∈ Ik.
Because sa(Ik) ⊂ sa(Ij), there is some z ∈ Ij such that sa(z) = sa(x). Let
us remark that if j = 0 then z < 2

π . If x = 0, we can choose z = 1
(j+1)π ∈ Ij

which has the property that sa(z) = sa(x) = 0.
If z ≤ y, we choose v = z, w = y and ℓ = j and the Lemma is proved.
If z > y, we have two cases. The function sa is either increasing on Ij or

decreases on Ij (if j = 0 we can take instead of I0 the subinterval
[

1
a1
, 2π

]
⊂ I0

where z and y are located and where the function sa is increasing). Suppose
first that sa is increasing on Ij . We have sa(z) > sa(y). Because sa(Ij+1) ⊂
sa(Ij), there are v, w ∈ Ij+1 such that sa(v) = sa(z) and sa(w) = sa(y). We
deduce that sa(v) > sa(w). On the interval Ij+1 the function sa is decreasing.
So we must have v < w. We choose ℓ = j+1 and the Lemma is proved. If sa
is decreasing on Ij , then sa(z) < sa(y). Because sa(Ij+1) ⊂ sa(Ij), there are
v, w ∈ Ij+1 such that sa(v) = sa(z) and sa(w) = sa(y). On Ij+1 the function
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sa is increasing and so again we must have v < w. Choosing ℓ = j + 1 and
the Lemma is proved. 2

3. Main result

Theorem 4. Let a ∈ (0, 2). The inequality

|sa(x)− sa(y)| ≤ (a+ 1)

(
3π

2

) 2−a
2

· |x− y|
a
2 (2)

holds true for every x, y ≥ 0.

Proof. If x = y, then (2) is true. Let y > x ≥ 0. According to Lemma 3,
there exist ℓ ≥ 0 and v, w such that v, w ∈ Iℓ and x ≤ v ≤ w ≤ y with the
property that

sa(v) = sa(x) and sa(w) = sa(y).

If we prove that (2) is true for all v, w ∈ Iℓ then

|sa(y)− sa(x)| = |sa(w)− sa(v)| ≤ (a+ 1)

(
3π

2

) 2−a
2

· |w − v|
a
2

≤ (a+ 1)

(
3π

2

) 2−a
2

· |y − x|
a
2

and we are done.
Let w, v ∈ Iℓ. We can write

|sa(w)− sa(v)| =
∣∣∣∣∫ w

v
s′a(t) dt

∣∣∣∣ ≤ ∫ w

v
1 ·
∣∣s′a(t)∣∣ dt.

We use Hölder inequality∫ w

v
|f(x)| · |g(x)|dx ≤

(∫ w

v
|f(x)|p dx

) 1
p

·
(∫ w

v
|g(x)|q dx

) 1
q

,

which is true for two integrable functions f, g on the interval [v, w] and two
real numbers p, q > 1 such that 1

p + 1
q = 1. We apply this inequality for

p = 2/a > 1 and q = 2/(2− a) > 1. We have

|sa(w)− sa(v)| ≤
(∫ w

v
dt

)a
2

·
(∫ w

v

∣∣s′a(t)∣∣ 2
2−a dt

) 2−a
2

.

With the variable change u = 1
t this is equivalent with

|sa(w)− sa(v)| ≤ |w − v|
a
2 ·

(∫ 1
v

1
w

|s′a
(
1
u

)
|

2
2−a

u2
du

) 2−a
2

.
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It remains to prove that∣∣∣∣∣
∫ 1

v

1
w

|s′a
(
1
u

)
|

2
2−a

u2
du

∣∣∣∣∣
2−a
2

≤ (a+ 1)

(
3π

2

) 2−a
2

. (3)

Now, if ℓ ≥ 1 and v, w ∈ Iℓ, then

1

v
− 1

w
≤ aℓ+1 − aℓ <

3π

2
.

If v, w ∈ I0, then
1
v ,

1
w ∈ (0, a1) and we get the same upper bound

1

v
− 1

w
≤ a1 <

3π

2
.

On the other hand, s′a
(
1
u

)
= u2−a

(
a sinu

u − cosu
)
. Using the inequality∣∣∣∣asinuu − cosu

∣∣∣∣ ≤ ∣∣∣∣asinuu
∣∣∣∣+ |cosu| ≤ a+ 1, (4)

we deduce that∣∣∣∣∣
∫ 1

v

1
w

|s′a
(
1
u

)
|

2
2−a

u2
du

∣∣∣∣∣
2−a
2

≤

∣∣∣∣∣
∫ 1

v

1
w

∣∣∣∣asinuu − cosu

∣∣∣∣ 2
2−a

du

∣∣∣∣∣
2−a
2

≤ (a+ 1)

∣∣∣∣1v − 1

w

∣∣∣∣ 2−a
2

≤ (a+ 1)

(
3π

2

) 2−a
2

,

which proves (3). 2
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An implicitly defined sequence

Dumitru Popa1)

Abstract. We prove that if A ⊂ Rk is a compact, connected, Jordan mea-
surable set with λk (A) > 0, g : A → [0,∞) a continuous function with the
property that there exists x ∈ int (A) such that g (x) > 0, M ≥

∫
A
g (x) dx

and (an)n∈N ⊂ (0,∞) is such that lim
n→∞

an = ∞, then there exists n0 ∈ N

such that for every n ≥ n0 the equation an

∫
A
ln

(
1 + g(x)+u

an

)
dx = M

has a unique solution in the interval [0,∞), denoted by un, and moreover,

lim
n→∞

un =
M−

∫
A g(x)dx

λk(A)
, lim

n→∞
a2
n (un − s) =

∫
A[g(x)]2dx

2λk(A)
+

s
∫
A g(x)dx

λk(A)
+ s2

2
,

where s =
M−

∫
A g(x)dx

λk(A)
. Some applications are given.

Keywords: Multiple Riemann integral, limit of sequences of integrals,
implicitly defined sequence, asymptotic evaluation.

MSC: Primary 26B15, 40A05; Secondary 28A35.

1. Introduction

The main purpose of this paper is to prove the result stated in the
Abstract, see Theorem 7. We will use the multiple Riemann integral. For
details regarding the multiple Riemann integral we recommend the reader
the excellent treatment of this concept in [1]. If a ∈ Rk and δ > 0, B (a, δ) :={
x ∈ Rk | d (x, a) ≤ δ

}
, where d (x, a) =

√
(x1 − a1)

2 + · · ·+ (xk − ak)
2 is

the Euclidean distance; x = (x1, ..., xk), a = (a1, ..., ak). For a set A ⊂ Rk we
write int (A) to denote the interior of A; if A is Jordan measurable, λk (A)
denote its Jordan measure, see [1]; we recall that λk ([a1, b1]× · · · × [ak, bk]) =
(b1 − a1) · · · (bk − ak), for ai ≤ bi, i = 1, . . . , k. The notation and notions
used in this paper are standard.

2. Preliminary results

For the sake of the completeness we include the proofs of some results
regarding the multiple Riemann integral needed in the paper.

Proposition 1. Let A ⊂ Rk be a Jordan measurable set and f : A→ [0,∞)
a continuous function. If

∫
A f (x) dx = 0 then f (x) = 0, ∀x ∈ int (A).

Proof. Let us suppose that there exists a ∈ int (A) such that f (a) 6= 0, hence

f (a) > 0. Since f is continuous, for ε = f(a)
2 > 0 there exists δ1 > 0 such that

∀x ∈ A∩B (a, δ1) we have |f (x)− f (a)| ≤ f(a)
2 , −f(a)

2 ≤ f (x)−f (a) ≤ f(a)
2

and thus f (x) ≥ f(a)
2 . From the definition of the interior there exists δ2 > 0

1)Department of Mathematics, Ovidius University, Constanţa, Romania,
dpopa@univ-ovidius.ro
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such that B (a, δ2) ⊂ A (a ∈ int (A)). Then for δ = min (δ1, δ2) > 0 we have
B (a, δ) ⊂ B (a, δ1) ∩B (a, δ2) ⊂ A and hence

f (x) ≥ f (a)

2
, ∀x ∈ B (a, δ) . (1)

Since f takes its values in [0,∞),∫
B(a,δ)

f (x) dx ≤
∫
A
f (x) dx = 0.

From (1) by integration we have

f (a)

2
λk
(
B (a, δ)

)
=

∫
B(a,δ)

f (a)

2
dx ≤

∫
B(a,δ)

f (x) dx.

We get f(a)
2 λk

(
B (a, δ)

)
≤ 0, λk

(
B (a, δ)

)
= 0. If a = (a1, . . . , ak), from the

inclusion
[
a1 − δ√

k
, a1 +

δ√
k

]
×· · ·×

[
ak − δ√

k
, ak +

δ√
k

]
⊂ B (a, δ) we deduce

that

λk

([
a1 −

δ√
k
, a1 +

δ√
k

]
× · · · ×

[
ak −

δ√
k
, ak +

δ√
k

])
≤ λk

(
B (a, δ)

)
= 0

that is
(

2δ√
k

)k
≤ 0, which is false. 2

Proposition 2. Let A ⊂ Rk be a connected set, f : A → R a continuous
function, a, b ∈ A and f (a) ≤ c ≤ f (b). Then there exists ξ ∈ A such that
c = f (ξ).

Proof. Since A is connected and f is continuous, by a well-known result
f (A) ⊂ R is connected, and thus f (A) is an interval. Since f (a) , f (b) ∈
f (A), it follows that [f (a) , f (b)] ⊂ f (A) and from c ∈ [f (a) , f (b)] we
deduce that c ∈ f (A), that is, there exists ξ ∈ A such that c = f (ξ). 2

We need the mean value theorem for the multiple Riemann integral, see
[2, problem 6, page 190], or [3, page 167].

Theorem 3. Let A ⊂ Rk be a Jordan measurable, compact and connected
set, f : A → R a continuous function. Then there exists ξ ∈ A such that∫
A f (x) dx = f (ξ)λk (A).

Proof. If λk (A) = 0 then, as is well known,
∫
A f (x) dx = 0 and we can

take any ξ ∈ A. Let us suppose that λk (A) > 0. Since f is continuous, A
compact, from the Weierstrass theorem, there are a, b ∈ A such that f (a) =
m = inf

x∈A
f (x), f (b) =M = sup

x∈A
f (x). From the inequalities m ≤ f (x) ≤M ,

∀x ∈ A, by integration we get mλk (A) ≤
∫
A f (x) dx ≤Mλk (A), or

f (a) ≤
∫
A f (x) dx

λk (A)
≤ f (b) .
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From Proposition 2 there exists ξ ∈ A such that
∫
A f(x)dx

λk(A) = f (ξ). 2
The next proposition indicates a natural way to obtain asymptotic eval-

uations for multiple Riemann integrals. Its proof is modeled on the solution
to problem 3.28 in [5].

Proposition 4. Let c > 0 be a real number, f, g : [−c, c] → R two continuous
functions with the properties: f (0) = 0; g (t) = 0 if and only if t = 0, and

lim
t→0

f (t)

g (t)
= 0.

Let A ⊂ Rk be a Jordan measurable set with int (A) 6= ∅. If hn : A → R is
a sequence of continuous functions with the property that there exists n0 ∈ N
such that ∀n ≥ n0 there exists x ∈ int (A) such that hn (x) 6= 0 and lim

n→∞
hn =

0 uniformly on A, then

lim
n→∞

∫
A f (hn (x)) dx∫
A |g (hn (x))|dx

= 0.

Proof. Let ε > 0. From lim
t→0

f(t)
g(t) = 0 there exists ηε > 0 such that ∀t ∈ [−c, c]

with 0 < |t| < ηε we have
∣∣∣f(t)g(t)

∣∣∣ ≤ ε, that is, |f (t)| ≤ ε |g (t)|. Since for t = 0,

f (0) = g (0) = 0, we deduce that ∀t ∈ [−c, c] with |t| < ηε we have

|f (t)| ≤ ε |g (t)| . (2)

Let δε = min (ηε, c) > 0. Then by (2) we have

|f (t)| ≤ ε |g (t)| , ∀ |t| < δε. (3)

Since lim
n→∞

hn = 0 uniformly on A, for δε > 0 there exists nε ∈ N such that

|hn (x)| < δε, ∀n ≥ nε and ∀x ∈ A. (4)

Let n ≥ max (nε, n0). From (3) and (4) it follows that

|f (hn (x))| ≤ ε |g (hn (x))| , ∀x ∈ A

and, by integration,∫
A
|f (hn (x))| dx ≤ ε

∫
A
|g (hn (x))| dx.

Since
∣∣∫

A f (hn (x)) dx
∣∣ ≤ ∫A |f (hn (x))|dx, we get∣∣∣∣∫

A
f (hn (x)) dx

∣∣∣∣ ≤ ε

∫
A
|g (hn (x))| dx. (5)

If
∫
A |g (hn (x))| dx = 0, then we have by Proposition 1, g (hn (x)) = 0,

∀x ∈ int (A), and by the property of g, hn (x) = 0, ∀x ∈ int (A), which
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contradicts the hypothesis. Hence,
∫
A |g (hn (x))| dx > 0 and from (5) we

deduce that ∣∣∫
A f (hn (x)) dx

∣∣∫
A |g (hn (x))| dx

≤ ε,

which ends the proof. 2
We need later the following particular case of Proposition 4.

Corollary 5. Let A ⊂ Rk be a Jordan measurable set with int (A) 6= ∅, c > 0
a real number and φ : [−c, c] → R a twice differentiable function at 0.

(i) If hn : A→ R is a sequence of continuous functions with the property
that there exists n0 ∈ N such that ∀n ≥ n0 there exists x ∈ int (A) such that
hn (x) 6= 0 and lim

n→∞
hn = 0 uniformly on A, then

lim
n→∞

∫
A φ (hn (x)) dx− φ (0)λk (A)− φ′ (0)

∫
A hn (x) dx∫

A (hn (x))
2 dx

=
φ′′ (0)

2
.

(ii) If A is compact, (an)n∈N ⊂ (0,∞) is such that lim
n→∞

an = ∞, then

for every continuous function f : A → R with the property that there exists
x ∈ int (A) such that f (x) 6= 0, the following equality holds

lim
n→∞

an

[∫
A
anφ

(
f (x)

an

)
dx− anφ (0)λk (A)− φ′ (0)

∫
A
f (x) dx

]
=
φ′′ (0)

2

∫
A
[f (x)]2 dx.

Proof. (i) Since φ is twice differentiable at 0, lim
t→0

φ(t)−φ(0)−tφ′(0)−φ′′(0)t2
2

t2
= 0

and by Proposition 4

lim
n→∞

∫
A φ (hn (x)) dx− φ (0)

∫
A 1dx− φ′ (0)

∫
A hn (x) dx− φ′′(0)

∫
A(hn(x))

2dx

2∫
A (hn (x))

2 dx

= 0.

This is obviously equivalent to the desired statement.

(ii) We take in (i) hn (x) =
f(x)
an

. Let us note that since f is continuous
and A compact, by the Weierstrass theorem there exists M ≥ 0 such that
|f (x)| ≤ M , ∀x ∈ A. Then |hn (x)| ≤ M

an
, ∀x ∈ A. Since lim

n→∞
1
an

= 0, it

follows that lim
n→∞

hn = 0 uniformly on A. 2
We also need the following theorem of Pólya; for a proof, see [4, problem

127, page 81], or [5, problem 4.23(ii), page 176].

Theorem 6. Let fn : [a, b] → R be a sequence of increasing functions and
f : [a, b] → R a continuous function. If lim

n→∞
fn (x) = f (x), ∀x ∈ [a, b], then

lim
n→∞

fn = f uniformly on [a, b].
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3. The main result

Now we are ready to state and prove the main result of this paper.

Theorem 7. Let k ∈ N and A ⊂ Rk be a compact, connected, Jordan mea-
surable set with λk (A) > 0, g : A → [0,∞) a continuous function with the
property that there exists x ∈ int (A) such that g (x) > 0 andM ≥

∫
A g (x) dx.

Let also (an)n∈N ⊂ (0,∞) be such that lim
n→∞

an = ∞. Then there exists

n0 ∈ N such that for every n ≥ n0 the equation

an

∫
A
ln

(
1 +

g (x) + u

an

)
dx =M

has a unique solution in the interval [0,∞), denoted by un, and

lim
n→∞

un =
M −

∫
A g (x) dx

λk (A)
,

lim
n→∞

an (un − s) =

∫
A [g (x)]2 dx

2λk (A)
+
s
∫
A g (x) dx

λk (A)
+
s2

2

where s =
M−

∫
A g(x)dx

λk(A) .

Proof. For every n ∈ N let ψn : [0,∞) → R,

ψn (u) = an

∫
A
ln

(
1 +

g (x) + u

an

)
dx−M,

and note that ψn is continuous (as an integral with a parameter). We have

ψn (0) = an

∫
A
ln

(
1 +

g (x)

an

)
dx−M ≤

∫
A
g (x) dx−M ≤ 0

(we have used that ln(1 + t) ≤ t, ∀t ≥ 0, and the hypothesis). Let u ≥ 0.

From the inequalities t− t2

2 ≤ ln(1 + t) ≤ t, ∀t ≥ 0, we deduce that∫
A
(g (x) + u) dx− 1

2an

∫
A
(g (x) + u)2 dx ≤ an

∫
A
ln

(
1 +

g (x) + u

an

)
dx

≤
∫
A
(g (x) + u) dx, ∀n ∈ N.

Since lim
n→∞

1
an

= 0, from the squeeze theorem we deduce that

lim
n→∞

ψn (u) =

∫
A
(g (x) + u) dx−M = ψ (u) , (6)

where ψ : [0,∞) → R is defined by ψ (u) = uλk (A) +
∫
A g (x) dx −M . Let

us define v =
M−

∫
A g(x)dx

λk(A) + 1 > 0 and note that ψ (v) = λk (A) > 0. Then,
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since lim
n→∞

ψn (v) = ψ (v) > 0, there exists n0 ∈ N such that ∀n ≥ n0 we have

ψn (v) > 0. Let u1, u2 ∈ [0,∞) be such that ψn (u1) = ψn (u2), that is∫
A

[
ln

(
1 +

g (x) + u1
n

)
− ln

(
1 +

g (x) + u2
n

)]
dx = 0.

From the mean value theorem 3, there exists ξ ∈ A such that

ln

(
1 +

g (ξ) + u1
n

)
− ln

(
1 +

g (ξ) + u2
n

)
= 0

and hence u1 = u2. Thus ψn is continuous, injective and ψn (0) ≤ ψn (v). It
follows that the equation ψn(u) = 0 has a unique solution in [0,∞), denoted
by un. Moreover, un ∈ [0, v], ∀n ≥ n0. Remembering that each solution
verifies the equation, we get

ψn (un) = 0,∀n ≥ n0. (7)

Since by (6) lim
n→∞

ψn (u) = ψ (u), ∀u ∈ [0, v], all ψn are increasing (this is obvi-

ous) and ψ is continuous, from Pólya’s theorem 6 it follows that lim
n→∞

ψn = ψ

uniformly on [0, v]. Hence ∀ε > 0, ∃nε ∈ N such that ∀n ≥ nε and ∀u ∈ [0, v]
we have |ψn (u)− ψ (u)| < ε. Then for every n ≥ max (nε, n0) we have
|ψn (un)− ψ (un)| < ε. By (7) and the definition of the function ψ we get∣∣unλk (A) + ∫A g (x) dx−M

∣∣ < ε. This means that

lim
n→∞

un =
M −

∫
A g (x) dx

λk (A)
= s.

Let n ≥ n0. From the Lagrange formula, ψn (un)− ψn (s) = (un − s)ψ′
n (ξn)

for some ξn between un and s, which, by (7), becomes

ψn (s) = − (un − s)ψ′
n (ξn) . (8)

Then |ξn − s| ≤ |un − s| and since lim
n→∞

un = s, by the squeeze theorem

lim
n→∞

ξn = s. (9)

Differentiating under the integral we get ψ′
n (u) =

∫
A

1

1+
g(x)+u

an

dx,

∣∣ψ′
n (ξn)− λk (A)

∣∣ =

∣∣∣∣∣
∫
A

(
1

1 + g(x)+ξn
an

− 1

)
dx

∣∣∣∣∣ =
∫
A

g (x) + ξn
an + g (x) + ξn

dx

≤ 1

an

∫
A
(g (x) + ξn) dx =

1

an

∫
A
g (x) dx+

ξn
an
λk (A) ,

whence, by (9), lim
n→∞

1
an

= 0, and the squeeze theorem,

lim
n→∞

ψ′
n (ξn) = λk (A) > 0. (10)
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Hence there exists n1 ∈ N such that

ψ′
n (ξn) > 0,∀n ≥ n1. (11)

By the definition of s we have

ψn (s) = an

∫
A
ln

(
1 +

g (x) + s

an

)
dx−M

= an

∫
A
ln

(
1 +

g (x) + s

an

)
dx−

∫
A
(g (x) + s) dx.

From Corollary 5 (ii) applied for φ :
[
−1

2 ,
1
2

]
→ R, φ (t) = ln (1 + t) it follows

that

lim
n→∞

an

[∫
A
an ln

(
1 +

g (x) + s

an

)
dx−

∫
A
(g (x) + s) dx

]
= −1

2

∫
A
[g (x) + s]2 dx,

that is

lim
n→∞

anψn (s) = −1

2

∫
A
[g (x) + s]2 dx. (12)

From (8) and (11) we deduce that

an (un − s) = −anψn (s)

ψ′
n (ξn)

, ∀n ≥ n1,

and hence passing to the limit and using (10) and (12) we get

lim
n→∞

an (un − s) =

∫
A [g (x) + s]2 dx

2λk (A)
=

∫
A [g (x)]2 dx

2λk (A)
+
s
∫
A g (x) dx

λk (A)
+
s2

2
.

2
Corollary 8. Let k ∈ N and A ⊂ Rk be a compact, connected, Jordan
measurable set with λk (A) > 0 and g : A → [0,∞) a continuous function
with the property that there exists x ∈ int (A) such that g (x) > 0. Let also
(an)n∈N ⊂ (0,∞) be such that lim

n→∞
an = ∞ and M ≥

∫
A g (x) dx. Then there

exists n0 ∈ N such that for every n ≥ n0 the equation

an

∫
A
ln

(
t+

g (x)

an

)
dx =M

has a unique solution in the interval [1,∞), denoted by tn, and

lim
n→∞

an (tn − 1) = s,

lim
n→∞

an [an (tn − 1)− s] =

∫
A [g (x)]2 dx

2λk (A)
+
s
∫
A g (x) dx

λk (A)
+
s2

2
,

where s =
M−

∫
A g(x)dx

λk(A) .
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Proof. Let us note that for every n ∈ N the function ωn : [1,∞) → R,
ωn (t) = an

∫
A ln

(
t+ g(x)

an

)
dx is injective (use the mean value theorem) and

thus if the equation ωn (t) = M has a solution, this is unique. Now, the
relation (7) says that there exists n0 ∈ N such that for every n ≥ n0, un is

the solution of the equation ψn (u) = 0, or equivalently ωn

(
1 + un

an

)
= M .

Hence, there exists n0 ∈ N such that for every n ≥ n0, 1 +
un
an

is a solution

of the equation ωn (t) = M and so, the equation from the statement has
a unique solution, tn = 1 + un

an
, or an (tn − 1) = un, ∀n ≥ n0. Then, by

Theorem 7,

lim
n→∞

an (tn − 1) = lim
n→∞

un = s,

lim
n→∞

an [an (tn − 1)− s] = lim
n→∞

an (un − s)

=

∫
A [g (x)]2 dx

2λk (A)
+
s
∫
A g (x) dx

λk (A)
+
s2

2
.

2

4. Some applications

In the sequel we give some applications of Corollary 8.

Corollary 9. (i) Let (an)n∈N ⊂ (0,∞) be such that lim
n→∞

an = ∞, k ≥ 2 a

natural number and M ≥ k
2 . Then there exists n0 ∈ N such that for every

n ≥ n0 the equation

an

∫
[0,1]k

ln

(
t+

x1 + · · ·+ xk
an

)
dx1 · · · dxk =M

has a unique solution in [1,∞), denoted by tn, and

lim
n→∞

an (tn − 1) =M − k

2
,

lim
n→∞

an

[
an (tn − 1)−M +

k

2

]
=

3k2 + k

24
+
k

2

(
M − k

2

)
+

1

2

(
M − k

2

)2

.

(ii) Let (an)n∈N ⊂ (0,∞) be such that lim
n→∞

an = ∞, k ≥ 2 a natural number

and M ≥ 1
2k
. Then there exists n0 ∈ N such that for every n ≥ n0 the

equation

an

∫
[0,1]k

ln

(
t+

x1 · · ·xk
an

)
dx1 · · · dxk =M
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has a unique solution in [1,∞), denoted by tn, and

lim
n→∞

an (tn − 1) =M − 1

2k
,

lim
n→∞

an

[
an (tn − 1)−M +

1

2k

]
=

1

2 · 3k
+

2kM − 1

4k
+

1

2

(
M − 1

2k

)2

.

Proof. (i) Let g : [0, 1]k → [0,∞), g (x1, . . . , xk) = x1 + · · · + xk. We have∫
[0,1]k g (x1, . . . , xk) dx1 · · · dxk = k

2 ,
∫
[0,1]k g

2 (x1, . . . , xk) dx1 · · · dxk = 3k2+k
12 .

From Corollary 8 we get

lim
n→∞

an

[
an (tn − 1)−M +

k

2

]
=

∫
A [g (x)]2 dx

2λk (A)
+
s
∫
A g (x) dx

λk (A)
+
s2

2

=
3k2 + k

24
+
k

2

(
M − k

2

)
+

1

2

(
M − k

2

)2

(ii) Let g : [0, 1]k → [0,∞), g (x1, . . . , xk) = x1 · · ·xk. We have∫
[0,1]k

(x1 · · ·xk) dx1 · · · dxk =

(∫ 1

0
xdx

)k

=
1

2k
,

∫
[0,1]k

(x1 · · ·xk)2 dx1 · · · dxk =

(∫ 1

0
x2dx

)k

=
1

3k
.

From Corollary 8 we get

lim
n→∞

an

[
an (tn − 1)−M +

1

2k

]
=

1

2 · 3k
+
M − 1

2k

2k
+

1

2

(
M − 1

2k

)2

.

2
Corollary 10. (i) Let (an)n∈N ⊂ (0,∞) be such that lim

n→∞
an = ∞ and

M ≥ 1
3 . Then there exists n0 ∈ N such that for every n ≥ n0 the equation

an
x

x+y≤1, x≥0, y≥0

ln

(
t+

x+ y

an

)
dxdy =M

has a unique solution in [1,∞), denoted by tn, and

lim
n→∞

an (tn − 1) = 2

(
M − 1

3

)
,

lim
n→∞

an

[
an (tn − 1)− 2M +

2

3

]
=

1

4
+

2

3

(
M − 1

3

)
+ 2

(
M − 1

3

)2

.
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(ii) Let (an)n∈N ⊂ (0,∞) be such that lim
n→∞

an = ∞ and M ≥ 2
3 . Then there

exists n0 ∈ N such that for every n ≥ n0 the equation

an
x

x2+y2≤1, x≥0, y≥0

ln

(
t+

x+ y

an

)
dxdy =M

has a unique solution in [1,∞), denoted by tn, and

lim
n→∞

an (tn − 1) =
4(3M − 2)

3π
,

lim
n→∞

an

[
an (tn − 1)− 4(3M − 2)

3π

]
=
π + 2

4π
+

32(3M − 2)

9π2
+

8(3M − 2)2

9π2
.

Proof. (i) Consider the function g : A → [0,∞) defined by g (x, y) = x + y
and the set A =

{
(x, y) ∈ R2 | x+ y ≤ 1, x, y ≥ 0

}
. For every k ∈ N we have

x
A

gk (x, y) dxdy =

∫ 1

0
dx

∫ 1−x

0
(x+ y)k dy =

1

k + 2
.

From Corollary 8 by some calculations we get the limits from the statement.
(ii) Now consider g : A → [0,∞) given by g (x, y) = x + y and the set

A =
{
(x, y) ∈ R2 | x2 + y2 ≤ 1, x, y ≥ 0

}
. We havex

A

g (x, y) dxdy =
x

[0,1]×[0,π2 ]

(ρ cos θ + ρ sin θ) ρdρdθ =
2

3
,

x
A

g2 (x, y) dxdy =
x

[0,1]×[0,π2 ]

(ρ cos θ + ρ sin θ)2 ρdρdθ =
π + 2

8
.

The limits from the statement follow from Corollary 8 by some calcu-
lations. 2

References

[1] N. Boboc, Analiză matematică, partea a II-a, curs tipărit, Bucureşti 1993.
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cureşti 2007.
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Finding the admissible values for the parameter of a
quadratic product-type inequality

Leonard Mihai Giugiuc1), Costel Bălcău2)

Abstract. We determine all the values of the real parameter k such that
the inequality (a2

1 + k)(a2
2 + k) · · · (a2

n + k) ≥ (1 + k)n holds for all real
numbers a1, a2, . . . , an satisfying a1 + a2 + · · ·+ an = n, where n ≥ 2 is a
given natural number. We prove that these values form an interval of the
type [kn,∞), where kn is a root of a (2n−3)rd degree polynomial equation.
Using the properties of the sequence (kn)n≥2, we obtain that there is no k
such that the considered inequality holds for all n ≥ 2. In particular, for
n = 3 and n = 4 we derive that the corresponding values kn are irrational
and the polynomials defining them are minimal. We estimate also the
values kn for n ≤ 20. Finally, we propose three open problems regarding
the irrationality, the minimal polynomial and the explicit formula (or a
recurrence relation) of kn.

Keywords: Jensen’s inequality, half convex function theorem, minimal
polynomial.

MSC: 26D07

1. Introduction

Various particular cases of the following inequality

n∏
i=1

(a2i + k) ≥ (1 + k)n, for all a1, . . . , an ∈ R such that

n∑
i=1

ai = n, (1)

have been proposed in magazines and related websites. For example, for
n = 4 and k = 3 we obtain the inequality proposed by Lascu and Zvonaru
[5], for n = 3 and k = 11/4 we obtain the inequality proposed in [7], and for
n = 5 and k = 39/25 we obtain the inequality proposed by Trăncănău [8].

In this paper, we are interested to find all the values of k for that the
inequality (1) holds, for any fixed n ≥ 2. We denote by Kn the set of these
values, i.e.

Kn =

{
k ∈ R :

n∏
i=1

(a2i + k) ≥ (1 + k)n ∀a1, . . . , an ∈ R with

n∑
i=1

ai = n

}
.

This set is called the admissible domain or the range of the parameter k.
For n = 2 by replacing a2 = 2− a1 the inequality (1) becomes

(a21 + k)
[
(2− a1)

2 + k
]
− (1 + k)2 ≥ 0 for all a1 ∈ R,

1)Traian National College, Drobeta-Turnu Severin, Romania,
leonardgiugiuc@yahoo.com

2)Department of Mathematics and Informatics, University of Piteşti, Piteşti, Romania,
costel.balcau@upit.ro
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which can be rearranged as

(a1 − 1)2
[
(a1 − 1)2 + 2k − 2

]
≥ 0 for all a1 ∈ R,

and hence
K2 = [1,∞). (2)

If k < 0 and n is odd, then the inequality (1) is false, since by taking
a1 = m, a2 = n−m and a3 = · · · = an = 0 we have

lim
m→∞

n∏
i=1

(a2i + k) = lim
m→∞

kn−2(m2 + k)
[
(n−m)2 + k

]
= −∞.

If k < 0 and n ≥ 4 is even, then the inequality (1) is also false, since by
taking a1 = m, a2 = a3 = (n−m)/2 and a4 = · · · = an = 0 we have

lim
m→∞

n∏
i=1

(a2i + k) = lim
m→∞

kn−3(m2 + k)

[
(n−m)2

4
+ k

]2
= −∞.

Thus Kn ⊆ [0,∞), for all n ≥ 2.
For any n ≥ 3 and k ∈ Kn, by taking an = 1 in (1) and dividing the

both sides by 1 + k > 0 it follows that k ∈ Kn−1. Therefore

Kn ⊆ Kn−1, for all n ≥ 3. (3)

From (3) and (2) we get

Kn ⊆ [1,∞), for all n ≥ 2. (4)

Consequently, for any k ∈ Kn we can rewrite the inequality (1) as

n∑
i=1

f(ai) ≥ nf

(
1

n

n∑
i=1

ai

)
, for all a1, . . . , an ∈ R with

n∑
i=1

ai = n, (5)

where
f(t) = ln(t2 + k), for all t ∈ R. (6)

We remark that the relation (5) has the form of the well-known Jensen’s
inequality, that is certainly valid for convex functions [4]. Unfortunately, the
function f is not convex on R.

However, after a few preparations we can apply the half convex function
theorem (HCF-Theorem) due by Ĉırtoaje [1, 2] to replace the inequality (5)
with a much simpler equivalent inequality. This goal is achieved in Section 2
and will lead us to prove that the range Kn is an interval [kn,∞), where kn
is defined by a polynomial equation. Also, we show that there is no k such
that the inequality (1) holds for all n ≥ 2.

We mention that the HCF-Theorem was extended by Ĉırtoaje and
Băieşu [2, 3]. Other properties of half convex functions were obtained by
Pavić [6].

In Section 3 we discuss the cases n = 3 and n = 4. For these particular
cases we obtain the minimal polynomials of the values kn, and hence we derive
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the irrationality of these values and we compute rational approximations for
them. Also, we estimate the values kn for n = 5, 6, . . . , 20. In the last section
we propose three open problems about kn for further research.

2. Main results

The following lemma ensures us that for finding the range set Kn it
suffices to consider only nonnegative numbers a1, a2, . . . , an in the inequality
(5) or, equivalently, in inequality (1).

Lemma 1. For any n ≥ 2 we have

Kn =

{
k ≥ 1 :

n∑
i=1

f(ai) ≥ nf(1) ∀a1, . . . , an ∈ [0, n] with

n∑
i=1

ai = n

}
,

(7)
where the function f is defined by (6).

Proof. The inclusion ”⊆” (left to right) is an obviously consequence of rela-
tions (4) and (5). Let us prove the reverse inclusion ”⊇” (right to left). Let
k ≥ 1 be an arbitrary element of the set from the right-hand side of (7). It
remains to prove that k verifies the inequality (5). Let a1, a2, . . . , an be real

numbers such that
n∑

i=1
ai = n. Then

n∑
i=1

|ai| = ns ≥ n, with s ≥ 1. Setting

bi =
|ai|
s

for i = 1, 2, . . . , n,

it follows that b1, . . . , bn ≥ 0 and
n∑

i=1
bi = n, so b1, . . . , bn ∈ [0, n], and hence

n∑
i=1

f(bi) ≥ nf(1). We derive that

n∑
i=1

f(ai) =

n∑
i=1

ln(a2i + k) =

n∑
i=1

ln(s2b2i + k) ≥
n∑

i=1

ln(b2i + k) =

n∑
i=1

f(bi).

Since
n∑

i=1
f(bi) ≥ nf(1) we get

n∑
i=1

f(ai) ≥ nf(1), so k verifies the inequality

(5), and therefore k ∈ Kn. 2
The form (7) of the set Kn allows us to apply the HCF-Theorem. In-

deed, by taking t ∈ [0, n] and using the second-order derivative,

f ′′(t) =
2(k − t2)

(t2 + k)2
,
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we obtain that the function f is convex on [0, 1] (since k ≥ 1). Now, according
to HCF-Theorem (see [1] or [2]) it follows that the inequality from the right-
hand side of (7) is equivalent to

(n− 1)f(t) + f (n− (n− 1)t) ≥ nf(1), for all t ∈
[
0,

n

n− 1

]
.

Therefore

Kn =

{
k ≥ 1 : min

t∈[0, n
n−1 ]

g(t) = g(1)

}
, (8)

where the function g is defined by

g(t) = (n− 1)f(t) + f (n− (n− 1)t)

= (n− 1) ln(t2 + k) + ln
[
(n− (n− 1)t)2 + k

]
,

for all t ∈
[
0, n

n−1

]
.

We will need to study the monotonicity of the function g. Its derivative
is

g′(t) =
2n(n− 1)(t− 1)

[
(n− 1)t2 − nt+ k

]
(t2 + k)

[
(n− (n− 1)t)2 + k

] , for all t ∈
[
0,

n

n− 1

]
.

We distinguish two cases.

(a) If k ≥ n2

4(n−1) , then the function g has t1 = 1 as unique critical point

and minimizer, and hence by (8) we obtain[
n2

4(n− 1)
,∞
)

⊆ Kn. (9)

(b) If k ∈
[
1, n2

4(n−1)

)
, then n ≥ 3 and we have two subcases.

(b1) If k = 1, then the function g has two critical points, namely t1 = 1
and t2 = 1

n−1 , with t2 < 1. Moreover, g is strictly decreasing on [0, t2] and

strictly increasing on
[
t2,

n
n−1

]
, so t1 = 1 is not a minimizer for g, and hence

by (8) we obtain

1 /∈ Kn, for all n ≥ 3. (10)

(b2) If k ∈
(
1, n2

4(n−1)

)
, then the function g has three critical points,

namely t1 = 1, t2 =
n−

√
n2−4(n−1)k

2(n−1) and t3 =
n+

√
n2−4(n−1)k

2(n−1) , with 0 < t2 <

t3 < 1. Moreover, g is strictly decreasing on [0, t2], strictly increasing on

[t2, t3], strictly decreasing on [t3, 1] and strictly increasing on
[
1, n

n−1

]
, so
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t1 = 1 is a minimizer for g if and only if g(t2) ≥ g(1). Therefore, by (8) we
obtain

Kn ∩
(
1,

n2

4(n− 1)

)
=

{
k : h(k) ≥ 0, k ∈

(
1,

n2

4(n− 1)

)}
, (11)

where the function h is defined by

h(k) = g(t2)− g(1)

= (n− 1) ln

(n−
√
n2 − 4(n− 1)k

2(n− 1)

)2

+ k

− n ln(1 + k)

+ ln

(n+
√
n2 − 4(n− 1)k

2

)2

+ k

 , (12)

for all k ∈
[
1, n2

4(n−1)

]
.

We have h(1) = u(n), where

u(x) = (x− 1) ln

(
1 +

1

(x− 1)2

)
+ ln[(x− 1)2 + 1]− x ln 2,

for all x ∈ [2,∞). But

u′(x) = ln

(
1 +

1

(x− 1)2

)
+

2(x− 2)

(x− 1)2 + 1
− ln 2,

u′′(x) = − 2x(x− 2)2

(x− 1) [(x− 1)2 + 1]2
,

so u′ is strictly decreasing on [2,∞), u′(2) = 0, u is strictly decreasing on
[2,∞), u(2) = 0. Hence u(n) < 0, that is we have

h(1) < 0. (13)

According to case (a) we have

h

(
n2

4(n− 1)

)
= g

(
n

2(n− 1)

)
− g(1) > 0. (14)

We study the monotonicity of the function h. If we denote

n−
√
n2 − 4(n− 1)k

2(n− 1)
= x, i.e. k = nx− (n− 1)x2, (15)

from k ∈
[
1, n2

4(n−1)

]
we get x ∈

[
1

n−1 ,
n

2(n−1)

]
, and from (12) we derive that

h(k) = v(x), (16)
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where the function v is defined by

v(x) = (n− 1) lnx+ ln[(n− (n− 1)x] + n ln[(n− (n− 2)x]

− n ln[1 + nx− (n− 1)x2], (17)

for all x ∈
[

1
n−1 ,

n
2(n−1)

]
. Since

v′(x) =
n(n− 1)(1− x)2[n− 2(n− 1)x]

x[n− (n− 1)x][n− (n− 2)x][1 + nx− (n− 1)x2]
, (18)

it follows that v is strictly increasing on
[

1
n−1 ,

n
2(n−1)

]
, so according to (16)

and (15) we can derive that

h is strictly increasing on

[
1,

n2

4(n− 1)

]
. (19)

From (13), (14) and (19) it follows that the equation h(k) = 0 has a unique
solution

kn ∈
(
1,

n2

4(n− 1)

)
, (20)

and using (11) we conclude that

Kn ∩
(
1,

n2

4(n− 1)

)
=

[
kn,

n2

4(n− 1)

)
. (21)

According to the above cases, from (9), (10) and (21) we obtain the
following main result.

Theorem 2. For any n ≥ 3 we have

Kn = [kn,∞), (22)

where kn is the unique solution in the interval
(
1, n2

4(n−1)

)
of the equation

h(k) = 0 and h is defined by (12).

The following result is a direct consequence of Theorem 2, relation (2)
and inclusion (3).

Corollary 3. For any n ≥ 3 we have kn ≥ kn−1.

Corollary 4. We have lim
n→∞

kn = ∞.

Proof. Obviously, 1√
n−1

∈
(

1
n−1 ,

n
2(n−1)

)
, for any n ≥ 3. According to (17),

the function v(x) can be rewritten as

v(x) = n ln
nx− (n− 2)x2

1 + nx− (n− 1)x2
+ ln

n− (n− 1)x

x
,
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for all x ∈
[

1
n−1 ,

n
2(n−1)

]
and n ≥ 3. Therefore

v

(
1√
n− 1

)
= n ln

(
1− n− 2

n
√
n− 1

)
+ ln(n

√
n− 1− n+ 1)

=
n− 2√
n− 1

 ln
(
1− n−2

n
√
n−1

)
n−2

n
√
n−1

+
ln(n

√
n− 1− n+ 1)

n−2√
n−1

 ,
and hence

lim
n→∞

v

(
1√
n− 1

)
= −∞.

Consequently, there exists n0 ≥ 3 such that

v

(
1√
n− 1

)
< 0, for all n ≥ n0.

Using (15) and (16) it follows that

n
1√
n− 1

− (n− 1)

(
1√
n− 1

)2

=
n√
n− 1

− 1 ∈
(
1,

n2

4(n− 1)

)
and

h

(
n√
n− 1

− 1

)
< 0, for all n ≥ n0,

so by (14) and (19) we derive that

kn ∈
(

n√
n− 1

− 1,
n2

4(n− 1)

)
, for all n ≥ n0.

Therefore we have lim
n→∞

kn = ∞. 2
Corollary 5. There is no real number k such that (1) holds for all n ≥ 2.

Proof. From Theorem 2, relation (2), Corollaries 3 and 4 we get⋂
n≥2

Kn =
⋂
n≥2

[kn,∞) = ∅.

It is clear that this relation is equivalent to the statement of the corollary. 2
Remark 6. According to (17), the equation v(x) = 0 can be rewritten in
the polynomial form p(x) = 0, where

p(x) = xn−1[(n− (n− 1)x][(n− (n− 2)x]n − [1 + nx− (n− 1)x2]n.

Obviously, the degree of p is equal to 2n. Moreover, by (17) and (18) we get
v(1) = v′(1) = v′′(1) = 0, so the polynomial p(x) is divisible by (x − 1)3.
Denote by q(x) the quotient of the division of p(x) by (x − 1)3. Then q is
an (2n − 3)th degree polynomial and according to (15), (16) and (20) we
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derive that the equation q(x) = 0 has a unique solution xn in the interval(
1

n−1 ,
n

2(n−1)

)
and

kn = nxn − (n− 1)x2n,
n−

√
n2 − 4(n− 1)kn
2(n− 1)

= xn.

Substituting x =
n−

√
n2−4(n−1)k

2(n−1) in the equation q(x) = 0 we obtain that

kn is the unique solution in the interval
(
1, n2

4(n−1)

)
of an (2n − 3)th degree

polynomial equation r(k) = 0.

In the next section we detail this procedure for n = 3 and for n = 4.

3. Particular cases

Firstly, we consider the case of n = 3. According to Remark 6 we get

p(x) = x2(3− 2x)(3− x)3 − (1 + 3x− 2x2)3

= 10x6 − 57x5 + 123x4 − 126x3 + 60x2 − 9x− 1

= (x− 1)3q(x),

where

q(x) = 10x3 − 27x2 + 12x+ 1.

We substitute x = 3−
√
9−8k
4 in the equation q(x) = 0 in two steps. We can

denote
√
9− 8k = 3− 4x = y.

By replacing x = 3−y
4 , the equation q(x) = 0 becomes

5y3 + 9y2 − 93y + 31 = 0,

then replacing y =
√
9− 8k we derive that k3 is the unique root in the interval(

1, 98
)
of the polynomial

r(k) = 25k3 + 42k2 − 63k − 16.

The numbers of the form (divisor of 16)/(divisor of 25) are not roots of the
polynomial r(k), so r(k) has not rational roots, and hence k3 is irrational and
r(k) is even the minimal polynomial (with integer coefficients) of the value
k3. The approximation of k3 with 4 exact decimal digits is

k3 ≈ 1.1099

(r(1.1099) < 0 < r(1.11)), so (22) implies that 1.11 ∈ K3 but 1.1099 /∈ K3.
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Next, we consider the case of n = 4. According to Remark 6, now we
get

p(x) = 16x3(4− 3x)(2− x)4 − (1 + 4x− 3x2)4

= −129x8 + 880x7 − 2420x6 + 3408x5 − 2550x4 + 912x3 − 84x2

− 16x− 1

= (x− 1)3q(x),

where

q(x) = −129x5 + 493x4 − 554x3 + 138x2 + 19x+ 1.

We substitute x = 2−
√
4−3k
3 in the equation q(x) = 0 in two steps. We can

denote
√
4− 3k = 2− 3x = y.

By replacing x = 2−y
3 , the equation q(x) = 0 becomes

43y5 + 63y4 − 562y3 − 338y2 + 2127y − 709 = 0,

then replacing y =
√
4− 3k we derive that k4 is the unique root in the interval(

1, 43
)
of the polynomial

r(k) = 1849k5 + 5107k4 + 42k3 − 9002k2 − 3923k − 729.

We have 729 = 36 and 1849 = 432. The numbers of the form (divisor
of 36)/(divisor of 432) are not roots of the polynomial r(k), so r(k) has
not rational roots, and hence k4 is irrational. Moreover, r(k) can not be
decomposed as a product of the form s(k)t(k) with s(k) and t(k) polynomials
of degree 2 and 3, respectively, having integer coefficients. It follows again
that r(k) is the minimal polynomial (with integer coefficients) of the value
k4. The approximation of k4 with 4 exact decimal digits is

k4 ≈ 1.2883

(r(1.2883) < 0 < r(1.2884)), so (22) implies that 1.2884 ∈ K4 but 1.2883 /∈
K4.

Remark 7. Using the bisection method, we obtain the following approxi-
mations of kn, n = 5, 6, . . . , 20, with 4 exact decimal digits:

k5 ≈ 1.4789, k6 ≈ 1.6709, k7 ≈ 1.8616, k8 ≈ 2.0499, k9 ≈ 2.2357,

k10 ≈ 2.4189, k11 ≈ 2.5997, k12 ≈ 2.7782, k13 ≈ 2.9545, k14 ≈ 3.1288,

k15 ≈ 3.3012, k16 ≈ 3.4719, k17 ≈ 3.6409, k18 ≈ 3.8084, k19 ≈ 3.9744,

k20 ≈ 4.1390.
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4. Conclusions and open problems

In this paper we showed that the range of the parameter k in inequality
(1) is an interval of the form [kn,∞), where kn verifies a certain polynomial
equation. Also, we obtained that k2 = 1, k3 and k4 are irrational and the
sequence (kn)n≥2 is increasing and tends to infinity.

At the end we propose three open problems.
Problem 1. Is the number kn irrational for every n ≥ 3?
Problem 2. Is the polynomial r(k) defined in Remark 6 the minimal

polynomial (with integer coefficients) of the value kn for any n ≥ 3?
Problem 3. Is there an explicit formula for the sequence (kn)n≥2, or

even a recurrence relation?
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[2] V. Ĉırtoaje, A. Băieşu, An extension of Jensen’s discrete inequality to half convex
functions, J. Inequal. Appl., Article ID 101 (2011).
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PROBLEMS

Authors should submit proposed problems to gmaproblems@rms.unibuc.ro.

Files should be in PDF or DVI format. Once a problem is accepted and considered

for publication, the author will be asked to submit the TeX file also. The referee

process will usually take between several weeks and two months. Solutions may also

be submitted to the same e-mail address. For this issue, solutions should arrive

before 15th of May 2021.

PROPOSED PROBLEMS

504. Let f : [0, 1] → R be a differentiable function with f ′ continuous on

[0, 1], such that |f ′(x)| ≤ 1 ∀x ∈ [0, 1]. Prove that if 2
∣∣∣∫ 1

0 f(x)dx
∣∣∣ ≤ 1 then

(n+ 2)
∣∣∣∫ 1

0 x
nf(x)dx

∣∣∣ ≤ 1 ∀n ≥ 1.

Proposed by Florin Stănescu, Şerban Cioculescu School, Găeşti,

Dâmboviţa, Romania.

505. Let n, p, q ∈ N such that 1 ≤ q < p < n. If there exists A ∈ Mn ({0, 1})
such that AAt has all the elements on the diagonal equal to p and all the
other elements equal to q, prove that:

a) p(p− 1) = q(n− 1);
b) AAt = AtA;
c) if n is even, then p− q is a perfect square.

Proposed by Vasile Pop and Mircea Rus, Technical University of

Cluj-Napoca, Cluj-Napoca, Romania.

506. Let N > 1 be a squarefree integer. For every integer k we denote
qN (k) = gcd(N, k). Prove that there is a finite subset S of the unit circle
such that for every polynomial f =

∑n
k=0 akX

k ∈ C[X] we have

µ(N)
n∑

k=0

µ(qN (k))ϕ(qN (k))ak =
∑
ζ∈S

f(ζ).

(Here µ and ϕ denote the Möbius function and Euler’s totient function, re-
spectively.)

Proposed by Marian Tetiva, Gheorghe Roşca Codreanu National Co-

llege, Bârlad, Romania.

507. Calculate the integral∫ ∞

1

lnx

x3 + x
√
x+ 1

dx.

Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu,

Romania.
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508. Let K be a field and let A,B ∈ Mn(K), with n ≥ 1, such that AB −
BA = c(A−B) for some c ∈ K \ {0}.

(i) Prove that if charK = 0 or charK > n, then A and B have the
same eigenvalues.

(ii) Prove that if 0 < charK ≤ n then (i) is no longer true.

Remark. The statement (i) is an extension of statement b) of problem
495, whose solution is published in the present issue of GMA.

Proposed by Constantin-Nicolae Beli, IMAR, Bucureşti, Romania.

509. Let m and n be positive integers and let A1, . . . , Am ∈ Mn(R). For
every i ∈ {1, . . . ,m} denote by λi1, . . . , λin ∈ C the eigenvalues of Ai.

Prove that there exist ε1, . . . , εm ∈ {−1, 1} such that the eigenvalues
µ1, . . . , µn ∈ C of the matrix ε1A1 + · · · + εmAm ∈ Mn(R) satisfy the in-
equality

n∑
j=1

µ2j ≥
m∑
i=1

n∑
j=1

λ2ij .

Proposed by Vasile Pop, Technical University of Cluj-Napoca,

Cluj-Napoca, Romania.

510. Prove that

∞∑
n=1

(
4n

2n

)
1

16nn2(2n+ 1)
= 4Li2

(
1−

√
2

2

)
+
π2

3
+ 4 log

(
1 +

√
2

4

)

− 2 log2

(
1 +

√
2

2

)
− log2(4) + 4

(√
2− 1

)
.

Here Li2(x) is the dilogarithm with integral representation given by

Li2(x) = −
∫ x

0

log(1− t)

t
dt.

Proposed by Seán M. Stewart, Bomaderry, NSW, Australia.

511. Find the best lower and upper bounds for
∑n

i=1 cos(∠Ai) over all convex
n-gons A1A2 . . . An.

Proposed by Leonard Giugiuc, Traian National College, Drobeta

Turnu Severin, and Florin Vişescu, Mihai Eminescu National College,

Bucureşti, Romania.
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512. Evaluate the series
∞∑
n=1

(
n

(
n

(
n

∞∑
k=n

1

k2
− 1

)
− 1

2

)
− 1

6

)
.

Proposed by Marian Tetiva, Gheorghe Roşca Codreanu National

College, Bârlad, Romania.

SOLUTIONS

489. Let m ≤ n be positive integers. For A ∈ Mm,n(C) and B ∈ Mn,m(C)
define the functions

fA,B : Mn(C) −→ Mm(C), fA,B(X) = A ·X ·B
fB,A : Mm(C) −→ Mn(C), fB,A(Y ) = B · Y ·A.

Prove that fA,B is surjective (onto) if and only if fB,A is injective (one-to-
one).

Proposed by Vasile Pop, Technical University of Cluj-Napoca, Ro-

mania.

Solution by the author. We prove the equivalence of the two properties

P1 : fA,B is surjective

P2 : fB,A is injective

via a third equivalent property:

P3 : rankA = rankB = m.

P1 ⇒ P3 Let C ∈ Mn(C) such that fA,B(C) = Im. Then

m = rank Im = rank(A · C ·B) ≤ min {rankA, rankB} ,
hence P3.

P3 ⇒ P1 Let D ∈ Mm(C). We have to show that the equation A ·X ·B =

D has solution X ∈ Mn(C).
First, consider the equation

A · Y = D, Y ∈ Mn,m(C). (1)

Writing D = [D1|D2| . . . |Dm] (Di is the i-th column of D), the equation (1)
is equivalent to m linear systems

A · Yi = Di (i = 1, 2, . . . ,m),

where {Yi : i = 1, 2, . . . ,m} are the columns of Y . As rankA = m, it follows
that rank [A|Di] = m for all i = 1, 2, . . . ,m, hence every linear system has
solution Yi ∈ Mm,1(C). Concluding, the equation (1) has solution.
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Next, for Y satisfying (1), consider the equation

X ·B = Y, X ∈ Mn(C), (2)

which is equivalent to Bt ·Xt = Y t. Since rankBt = m, it follows by the same
argument applied for (1) that there exists Z ∈ Mn(C) such that Bt ·Z = Y t,
hence X = Zt is a solution of (2).

Concluding,

A ·X ·B = A · Y = D.

P3 ⇒ P2 We have the equivalences

fB,A(Y1) = fB,A(Y2) ⇔ B · (Y1−Y2) ·A = On ⇔ B ·Y ·A = On, Y = Y1−Y2,

hence fB,A is injective if and only if the equation

B · Y ·A = On, Y ∈ Mm(C) (3)

has a unique solution Y = Om.
Consider first the equation

B · U = On, U = [U1|U2| . . . |Un] ∈ Mm,n(C) (4)

which is equivalent to n identical homogeneous linear systems

B · Ui = On,1, Ui ∈ Mm,1(C), i = 1, 2, . . . ,m.

Since the number of unknowns for each of the linear systems is the same as the
rank of B, it follows that the only solution is the trivial one, hence the only
solution to (4) is U = Om,n. Returning to (3), it follows that Y · A = Om,n,
hence

At · Z = On,m, Z = [Z1|Z2| . . . |Zm] = Y t ∈ Mm(C). (5)

Similarly, (5) is equivalent to m identical homogeneous linear systems

At · Zi = On,1, Zi ∈ Mm,1(C), i = 1, 2, . . . ,m,

each of them having only the trivial solution, since rankA = m, which is the
number of unknowns in each of the systems. Concluding, Z = Om, hence
Y = Om is the only solution of (3).

P2 ⇒ P3 Assume, by contradiction, that rankA 6= m, hence rankAt < m.

Using the same reasoning from the previous implication, it follows that (5)
has a non-trivial solution Z ∈ Mm(C), Z 6= Om, hence there exists Y = Zt ∈
Mm(C), Y 6= Om a non-trivial solution to (3):

B · Y ·A = B ·
(
At · Z

)t
= B ·Om,n = On.

This contradicts that fB,A is injective. Concluding, rankA = m.
Similarly, assuming next that rankB < m, then (4) has a non-trivial

solution U ∈ Mm,n(C), U 6= Om,n. Since rankAt = m, it follows (using the
same argument used in P3 ⇒ P1) that there exists Z ∈ Mm(C) such that
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At ·Z = U t and Z 6= Om since U 6= Om,n. Then again Y = Zt is a non-trivial
solution to (3):

B · Y ·A = B ·
(
At · Z

)t
= B · U = On

which contradicts that fB,A is injective. Concluding, rankB = m. �

Solution by Cornel Băeţica. Let r = rankA and s = rankB. There
exist invertible matrices U,Q ∈ Mm(C) and V, P ∈ Mn(C) such that

UAV =

(
Ir 0r,n−r

0m−r,r 0m−r,n−r

)
and PBQ =

(
Is 0s,m−s

0n−s,s 0n−s,m−s

)
.

It is easily seen that fA,B is surjective if and only if fUAV,PBQ is surjective,
and fB,A is injective if and only if fPBQ,UAV is injective. We have

fUAV,PBQ(X) =

(
Xr,s 0r,m−s

0m−r,s 0m−r,m−s

)
,

where Xr,s is the submatrix of X obtained by deleting the last n − r rows
and n− s columns, and

fPBQ,UAV (Y ) =

(
Ys,r 0s,n−r

0n−s,r 0n−s,n−r

)
,

where Ys,r is the submatrix of Y obtained by deleting the last m − s rows
and m− r columns.

Now it is obvious that fUAV,PBQ is surjective if and only if r = s = m,
and fPBQ,UAV is injective if and only if r = s = m. �

490. Let n ∈ N∗. Calculate

∫ 1

0

(
ln(1− x) + x+ x2

2 + · · ·+ xn

n

x

)2

dx.

Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical Uni-

versity of Cluj-Napoca, Cluj-Napoca, Romania.

Solution by the authors. The integral equals 2
n (H2n −Hn), where Hn =

1 + 1
2 + · · ·+ 1

n denotes the nth harmonic number.
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Let In be the integral we want to calculate. Since ln(1− x) + x+ x2

2 +

· · ·+ xn

n = −
∑∞

i=n+1
xi

i , we have

In =

∫ 1

0

(
−

∞∑
i=n+1

xi

i

)
·

(
−

∞∑
j=n+1

xj

j

)
x2

dx =
∞∑

i=n+1

∞∑
j=n+1

1

ij

∫ 1

0
xi+j−2dx

=

∞∑
i=n+1

∞∑
j=n+1

1

ij(i+ j − 1)
=

∞∑
i=n+1

1

i

∞∑
j=n+1

1

j(j + i− 1)

=

∞∑
i=n+1

1

i
· 1

i− 1

∞∑
j=n+1

(
1

j
− 1

j + i− 1

)

=

∞∑
i=n+1

1

i(i− 1)

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ i− 1

)
.

We calculate the preceding sum by observing that the series telescopes.
We have

1

i(i− 1)

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ i− 1

)
=

1
n+1 + · · ·+ 1

n+i−1

i− 1
−

1
n+1 + · · ·+ 1

n+i−1

i

=
1

n+1 + · · ·+ 1
n+i−1

i− 1
−

1
n+1 + · · ·+ 1

n+i

i
+

1

i(n+ i)

=
1

n+1 + · · ·+ 1
n+i−1

i− 1
−

1
n+1 + · · ·+ 1

n+i

i
+

1

n

(
1

i
− 1

n+ i

)
and it follows that

In =

∞∑
i=n+1

[
1

n+1 + · · ·+ 1
n+i−1

i− 1
−

1
n+1 + · · ·+ 1

n+i

i
+

1

n

(
1

i
− 1

n+ i

)]

=
1

n+1 + 1
n+2 + · · ·+ 1

n+n

n
+

1

n

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

)
=

2

n

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

)
=

2

n
(H2n −Hn) .

The problem is solved. �
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Solution by Burghelea Zaharia, Sibiu, România. The integral equals
2H̄2n
n , where H̄2n =

∑n
k=1

(−1)k−1

k denotes the nth alternating harmonic num-
ber. We will use the Taylor series expansion of the logarithm, ln(1 − x) =

−
∑∞

k=1
xk

k , in order to write the numerator of the integrand as
∑∞

k=n+1
xk

k .

But first we use integration by parts using (1− 1
x)

′ = 1
x2 . We use 1− 1

x , rather

than − 1
x , in order to avoid divergence issues. More precisely, the limits both

when x ↘ 0 and x ↗ 1 of (1 − 1
x)(ln(1 − x) +

∑n
k=1

xk

k )2 are zero. This

happens because limx↘0
1
x ln

2(1 − x) = 0 and limx↗1(1 − x) ln2(1 − x) = 0.
Putting

I :=

∫ 1

0

(
ln(1− x) + x+ x2

2 + · · ·+ xn

n

x

)
dx,

we have

I =

∫ 1

0

(
1− 1

x

)′
(
ln(1− x) +

n∑
k=1

xk

k

)2

dx

= −
∫ 1

0

(
1− 1

x

)
· 2

( ∞∑
k=n+1

xk

k

)′( ∞∑
k=n+1

xk

k

)
dx

= 2

∫ 1

0

(
1

x
− 1

) ∞∑
j=n

xj

( ∞∑
k=n+1

xk

k

)
dx

= 2
∞∑

k=n+1

1

k

∞∑
j=n

∫ 1

0
(xk+j−1 − xk+j)dx

= 2
∞∑

k=n+1

1

k

∞∑
j=n

(
1

k + j
− 1

k + j + 1

)

= 2

∞∑
k=n+1

1

k
· 1

k + n
=

2

n

∞∑
k=n+1

(
1

k
− 1

k + n

)
=

2

n

2n∑
i=n+1

1

i

=
2

n

(
2n∑
i=1

1

i
−

n∑
i=1

1

i

)
=

2(H2n −Hn)

n
=

2H̄2n

n
.
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Solution by Moti Levy, Rehovot, Israel. We use induction on n. Let In
be the integral we want to calculate. Then

In+1 =

∫ 1

0

(
ln (1− x) + x+ x2

2 + · · ·+ xn

n

x
+

xn

n+ 1

)2

dx

=

∫ 1

0

(
ln (1− x) + x+ x2

2 + · · ·+ xn

n

x

)2

dx

+ 2

∫ 1

0

xn

n+ 1

ln (1− x) + x+ x2

2 + · · ·+ xn

n

x
dx+

∫ 1

0

x2n

(n+ 1)2
dx

= In +
2

n+ 1

∫ 1

0
xn−1 ln (1− x) dx+

∫ 1

0

x2n

(n+ 1)2
dx

+
2

n+ 1

∫ 1

0

(
xn +

xn+1

2
+ · · ·+ x2n−1

n

)
dx

and ∫ 1

0
xn−1 ln (1− x) dx = −Hn

n
,

so

In+1 − In = − 2Hn

n (n+ 1)
+

1

(n+ 1)2 (2n+ 1)
+

2

n+ 1

n∑
k=1

1

k (k + n)
. (23)

But
n∑

k=1

1

k (k + n)
=

1

n

n∑
k=1

(
1

k
− 1

k + n

)
=

1

n
(2Hn −H2n) . (24)

Substituting (24) in (23) we get,

In+1 − In = − 2Hn

n (n+ 1)
+

1

(n+ 1)2 (2n+ 1)
+

4Hn

n (n+ 1)
− 2H2n

n (n+ 1)

=
2Hn

n (n+ 1)
− 2H2n

n (n+ 1)
+

1

(n+ 1)2 (2n+ 1)

=
2

n
Hn − 2

n+ 1
Hn − 2

n
H2n +

2

n+ 1
H2n +

1

(n+ 1)2 (2n+ 1)

=
2

n+ 1

(
H2n+2 −

1

2n+ 1
− 1

2n+ 2

)
− 2

n+ 1

(
Hn+1 −

1

n+ 1

)
− 2

n
H2n +

2

n
Hn +

1

(n+ 1)2 (2n+ 1)

=
2

n+ 1
(H2n+2 −Hn+1)−

2

n
(H2n −Hn) .
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Now we evaluate I1 =
∫ 1
0

(
ln(1−x)+x

x

)2
dx, and verify that it is equal to

2
1 (H2 −H1) = 1:

We have the following definite integrals:
∫ 1
0

ln(1−x)
x dx = −ζ (2) and∫ 1

0
ln2(1−x)

x2 dx = 2ζ (2), hence

I1 =

∫ 1

0

(
ln (1− x) + x

x

)2

dx =

∫ 1

0

(
1 +

2

x
ln (1− x) +

1

x2
ln2 (1− x)

)
dx

= 1.

We conclude by mathematical induction that

In =
2

n
(H2n −Hn) .

Note from the editor. Moti Levy uses, without reference, some

results that are not very well known. The relation
∫ 1
0 x

n−1 ln(1−x)dx = −Hn
n

can be deduced by partial integration. We note that xn−1 =
(
xn−1
n

)′
and

limx↗1(x− 1) ln(1− x) = 0, so∫ 1

0
xn−1 ln(1− x)dx =

xn − 1

n
ln(1− x)

∣∣∣∣1
0

−
∫ 1

0

xn − 1

n
· 1

x− 1
dx

= − 1

n

∫ 1

0
(1 + x+ · · ·+ xn−1)dx

= − 1

n

(
1 +

1

2
+ · · ·+ 1

n

)
.

The relation
∫ 1
0

ln(1−x)
x dx = −ζ(2) follows (after some discussion on conver-

gence) by integrating each term of the sum ln(1−x)
x = 1 + x

2 + x2

3 + · · · . Also∫ 1
0

ln2(1−x)
x2 dx = 2ζ(2) follows from

∫ 1
0

ln2(1−x)
x2 dx = −2

∫ 1
0

ln(1−x)
x dx, which is

proved by integration by parts. We have 1
x2 =

(
1− 1

x

)′
, limx↘0

1
x ln

2(1−x) =
0 and limx↗1(x− 1) ln2(1− x) = 0, so∫ 1

0

ln2(1− x)

x2
dx =

(
1− 1

x

)
ln2(1− x)

∣∣∣∣1
0

−
∫ 1

0

(
1− 1

x

)
2

x− 1
ln(1− x)dx

= −2

∫ 1

0

ln(1− x)

x
dx.

491. If the arithmetic mean of a, b, c, d ≥ 0 is 1, then their quadratic mean

q =
√

a2+b2+c2+d2

4 takes values in the interval [1, 2].

If q ∈ [1, 2] then we denote by M = Mq the largest possible value of
the geometric mean of four numbers a, b, c, d ≥ 0 with the arithmetic mean
1 and the quadratic mean q.
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Determine M in terms of q and prove that M + q ≥ 2.

Proposed by Leonard Giugiuc, Traian National College, Drobeta

Turnu Severin, Romania and Alexander Bogomolny, New Jersey, USA.

Solution by the authors. The quadratic mean q is ≥ than the arithmetic
mean 1. For the inequality q ≤ 2 note that if a, b, c, d ≥ 0 with a+b+c+d = 4
the a2 + b2 ≤ a2 + b2 + 2ab = (a + b)2 + 02. Then (a + b) + 0 + c + d = 4
and (a+ b)2 + 02 + c2 + d2 ≥ a2 + b2 + c2 + d2. Hence, by replacing a, b with
a+ b, 0, the sum a+ b+ c+d = 4 is preserved, but a2+ b2+ c2+d2 increases.
We repeat the procedure for the variables a and c and then for a and d. We
get that a2 + b2 + c2 + d2, and so q, is maximal when b = c = d = 0 and so

a = 4. Thus the maximal value of q is
√

42+02+02+02

4 = 2.

Let t =
√

q2−1
3 , so that q =

√
1 + 3t2. Then q ∈ [1, 2] is equivalent to

t ∈ [0, 1]. We have a+ b+ c+ d = 4 and a2 + b2 + c2 + d2 = 4q2 = 4(1+ 3t2).
It follows that ab+ ac+ ad+ bc+ bd+ cd = 1

2(4
2 − 4(1 + 3t2)) = 6(1− t2).

Lemma. With the notation above, the maximal value of abcd is (1 −
t)3(1 + 3t) and it is attained when (a, b, c, d) is a permutation of (1 − t, 1 −
t, 1− t, 1 + 3t).

Proof. First note that if a = b = c = 1 − t and d = 1 + 3t, then
a+b+c+d

4 = 1 and
√

a2+b2+c2+d2

4 =
√

4+12t2

4 =
√
1 + 3t2 = q. So a, b, c, d

satisfy the required properties and abcd = (1− t)3(1 + 3t).
If t = 1, then ab+ac+ad+ bc+ bd+ cd = 6(1− t2) = 0, so all products

ab, ac, ad, bc, bd, cd must be 0. Hence all but one of a, b, c, d are 0. It follows
that the maximal value of abcd is 0 = (1− t)3(1 + 3t), as claimed.

Assume that t < 1. Then (1 − t)2(1 + 3t) > 0, so we are looking for a
positive maximal value of abcd, which holds when a, b, c, d > 0.

Let P ∈ R[X], P (x) = (x− a)(x− b)(x− c)(x− d). We have

P (x) = x4−4x3+6(1−t2)−mx+p, wherem = abc+abd+acd+bcd, p = abcd.

Let f : (0,∞) → R, f(x) = P (x)
x = x3−4x2+6(1− t2)x−m+px−1. By

Rolle’s theorem, since P , so f , has four positive roots, f ′ has at least three

positive roots. (Here we count multiplicities of the roots.) But f ′(x) = g(x)
x2 ,

where
g(x) = 3x4 − 8x3 + 6(1− t2)x2 − p.

It follows that g has at least three positive roots. Since the product of all
roots is −p < 0, the fourth root is negative. We denote by x1 the negative
root of g and by x2 ≤ x3 ≤ x4 the positive ones. We have

g′(x) = 12x3−24x2+12(1−t2)x = 12x(x2−2x+1−t2) = 12x(x−1−t)(x−1+t)

with the positive solutions 1 + t and 1 − t. It follows that x1 < 0 < x2 ≤
1− t ≤ x3 ≤ 1 + t ≤ x4.
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If we take x = 1 − t, then x − x1, x − x2 ≥ 0 and x − x3, x − x4 ≤ 0.
Hence g(x) = 3(x− x1)(x− x2)(x− x3)(x− x4) ≥ 0. We have

0 ≤ g(1− t) = 3(1− t)4−8(1− t)3+6(1− t2)(1− t)2−p = (1− t)3(1+3t)−p

so abcd = p ≤ (1− t)3(1 + 3t). This proves that max abcd = (1− t)3(1 + 3t),
with equality when (a, b, c, d) = (1− t, 1− t, 1− t, 1+3t) or the permutations.

�
Hence for every t ∈ [0, 1] we have M = 4

√
(1− t)3(1 + 3t). It follows

thatM+q = h(t), where h : [0, 1] → R, h(t) = 4
√

(1− t)3(1 + 3t)+
√
1 + 3t2.

Now h is continuous on [0, 1] and differentiable on [0, 1). Since ((1− t)3(1 +
3t))′ = −12t(1− t)2, we get

g′(t) =
−12t(1− t)2

4 4
√
(1− t)9(1 + 3t)3

+
6t

2
√
1 + 3t2

=
−3t

4
√
(1− t)(1 + 3t)3

+
3t√

1 + 3t2

=
3t

√
1 + 3t 4

√
(1− t)(1 + 3t)3

( 4
√

(1− t)(1 + 3t)3 −
√
1 + 3t).

For every t ∈ (0, 1) the sign of h′(t) coincides with that of (1− t)(1 + 3t)3 −
(1 + 3t)2)2 = −4t(9t3 − 3t− 2), so with that of −(9t3 − 3t− 2).

Let Q(t) = 9t3 − 3t − 2. We have Q′(t) = 3(9t2 − 1). Then Q′(t) < 0
for t ∈ (0, 1/3) and Q′(t) > 0 for t ∈ (1/3, 1). It follows that Q is decreasing
on [0, 1/3] and incresing on [1/3, 1]. Since Q(0) = −2 < 0 and Q(1) = 4 > 0,
there is a unique t0 ∈ [0, 1] with Q(t0) = 0. More precisely, t0 ∈ (1/3, 1) and
we have Q(t) < 0 for t ∈ (0, t0) and Q(t) > 0 for t ∈ (t0, 1). Form this we
conclude that h′(t) > 0 for t ∈ (0, t0) and h

′(t) > 0 for t ∈ (t0, 1). It follows
that h is strictly increasing on [0, t0] and strictly decreasing on [t0, 1]. Then
we have mint∈[0,1] h(t) = min{h(0), h(1)} = 2. (We have h(0) = h(1) = 2.)
Hence Mq + q ≤ 2, with equality if and only if t ∈ {0, 1}, i.e., if and only if
q ∈ {1, 2}. �

492. Let V be a vector space over F2 = Z/2Z and let f : V → R ∪ {∞}
satisfying f(x) = ∞ iff x = 0 and

f(x+ y) ≥ min{f(x), f(y)} ∀x, y ∈ V.

For every c ∈ V we define gc : V → R∪{∞} by gc(x) = f(x)+f(x+ c).
(i) Prove that gc satisfies the same inequality as f , viz.,

gc(x+ y) ≥ min{gc(x), gc(y)} ∀x, y ∈ V.

Equivalently, if x, y, z, t ∈ V with x+ y = z + t then

f(x+ z) + f(x+ t) ≥ min{f(x) + f(y), f(z) + f(t)}.

For any a, b ∈ V we define ha,b : V → R ∪ {∞} by formula
ha,b(x) = f(x) + f(x+ a) + f(x+ b).
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(ii) If x, y, a, b ∈ V such that f(x) ≤ f(y) prove that

hx,x+a+b(y) ≥ min{ha,b(x), ha,b(y)}.

Let k : V 2 → R ∪ {∞}, k(x, y) = f(x) + f(y) + f(x+ y).
(iii) If a, b, x, y ∈ V prove that

ha,b(x+ y) ≥ min{ha,b(x), ha,b(y), k(x, y)}
and

k(x, y) ≥ min{ha,b(x), ha,b(y), ha,b(x+ y)}.
Conclude that none of the four numbers ha,b(x), ha,b(y), ha,b(x + y) and
k(x, y) is strictly smaller than all remaining three numbers.

(iv) If a, b, x, y, z ∈ V prove that

max{hy,z(x), hz,x(y), hx,y(z)} ≥ min{ha,b(x), ha,b(y), ha,b(z)}.

Proposed by Constantin-Nicolae Beli, IMAR, Bucureşti, Romania.

Solution by the author. First note that 2x = 0 ∀x ∈ V , as V is an
F2-vector space.

We also have the following property, called the domination principle:

If f(x) < f(y) then f(x+ y) = f(x).

Indeed, we have f(x+ y) ≥ min{f(x), f(y)} and x = (x+ y) + y, so f(x) ≥
min{f(x + y), f(y)}. But f(x) < f(y), so the first inequality implies f(x +
y) ≥ f(x) and the second one implies f(x) ≥ f(x+y). Hence f(x+y) = f(x).

(i) Note that gc(x+c) = f(x+c)+f(x+c+c) = f(x+c)+f(x) = gc(x).
Letm = min{gc(x), gc(y)}. We must prove that gc(x+y) ≥ m. Suppose

that gc(x+ y) < m.
Without loss of generality, we can assume that f(x) ≤ f(y). Then

f(x + y) ≥ min{f(x), f(y)} = f(x). Since also f(x + y) + f(x + y + c) =
gc(x+y) < gc(x) = f(x)+f(x+c), we must have f(x+y+c) < f(x+c). Since
(x+ y+ c)+ (x+ c), by the domination principle, we get f(x+ y+ c) = f(y).
We have gc(x)+gc(y) ≥ 2m, i.e., (f(x)+f(y))+(f(x+c)+f(y+c)) ≥ 2m. It
follows that at least one of the sums f(x)+f(y) and f(x+c)+f(y+c) is ≥ m.
If f(x)+f(y) ≥ m then gc(x+y) = f(x+y)+f(x+y+c) ≥ f(x)+f(y) ≥ m
and we are done.

Assume now that f(x+c)+f(y+c) ≥ m. Let x′ = x+c, y′ = y+c. We
have gc(x

′) = gc(x) and gc(y
′) = gc(y), so min{gc(x′), gc(y′)} = m. Since also

f(x′) + f(y′) ≥ m, by the same reasoning as above, we have gc(x
′ + y′) ≥ m.

But x′ + y′ = (x+ c) + (y + c) = x+ y, so gc(x+ y) ≥ m, as claimed.
For the equivalence with the second claim, note that we have a bijection

α : V 3 → {(x, y, z, t) ∈ V 4 | x+y = z+ t} given by (x, y, c) 7→ (x, x+c, y, y+
c). Its inverse is β : {(x, y, z, t) ∈ V 4 | x + y = z + t} → V 3, given by
(x, y, z, t) 7→ (x, z, x + y). (We have β ◦ α(x, y, c) = (x, y, x + (x + c)) =
(x, y, c) and α ◦ β(x, y, z, t) = (x, x + (x + y), z, z + (x + y)) = (x, y, z, t),
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since z + (x + y) = z + (z + t) = t.) So {(x, y, z, t) ∈ V 4 | x + y = z + t} =
{(x, x+c, y, y+c) | x, y, c ∈ V } Therefore the statement f(x+z)+f(x+ t) ≥
min{f(x) + f(y), f(z) + f(t)} ∀x, y, z, t ∈ V with x+ y = z + t is equivalent
to f(x + y) + f(x + (y + c)) ≥ min{f(x) + f(x + c), f(y) + f(y + c)}, i.e.,
gc(x+ y) ≥ min{gc(x), gc(y)} ∀x, y, c ∈ V .

(ii) We have hx,x+a+b(y) = f(y) + f(x+ y) + f(x+ y + a+ b).
Let x′ = x+a, y′ = x+b, z′ = y+a, t′ = y+b. We have x′+y′ = z′+t′,

so by (i) we have f(x′+z′)+f(x′+t′) ≥ min{f(x′)+f(y′), f(z′)+f(t′)}. But
x′+z′ = (x+a)+(y+a) = x+y and x′+ t′ = (x+a)+(y+b) = x+y+a+b.
Hence

f(x+ y) + f(x+ y + a+ b) ≥ min{f(x+ a) + f(x+ b), f(y + a) + f(y + b)}.

Thus f(x+y)+f(x+y+a+b) ≥ f(x+a)+f(x+b) or f(x+y)+f(x+y+a+b) ≥
f(y + a) + f(y + b). In the first case, since also f(y) ≥ f(x), we have
f(y) + f(x + y) + f(x + y + a + b) ≥ f(x) + f(x + a) + f(x + b), i.e.,
hx,x+a+b(y) ≥ ha,b(y). In the second case we have f(y) + f(x + y) + f(x +
y + a+ b) ≥ f(y) + f(y + a) + f(y + b), i.e., hx,x+a+b(y) ≥ ha,b(x). In both
cases we get the claimed inequality.

(iii) We denote m = min{ha,b(x), ha,b(y), k(x, y)}. We must prove that
ha,b(x+ y) ≥ m. Suppose that ha,b(x+ y) < m.

Note that ha,b(x) = ga(x) + f(x + b). By (i) we have ga(x + y) ≥
min{ga(x), ga(y)}. Without loss of generality, we may assume that ga(x) ≤
ga(y), which implies ga(x+ y) ≥ ga(x). But we also have ga(x+ y) + f(x+
y + b) = ha,b(x + y) < m ≤ ha,b(x) = ga(x) + f(x + b). It follows that
f(x + y + b) < f(x + b). By the domination principle, this implies that
f(x+ y + b) = f(x+ y + b+ x+ b) = f(y).

Next we see that k(x, y) ≥ m > ha,b(x+y), i.e., f(x)+f(y)+f(x+y) >
f(x + y) + f(x + y + a) + f(x + y + b) = f(x + y) + f(x + y + a) + f(y).
It follows that f(x) > f(x + y + a). By the domination principle, we get
f(x+ y + a) = f(x+ y + a+ x) = f(y + a).

In conclusion, ha,b(x + y) = f(x + y) + f(x + y + a) + f(x + y + b) =
f(x + y) + f(y + a) + f(y) = ga(y) + f(x + y). Now x + y = (x + b) +
(y + b), so f(x + y) ≥ min{f(x + b), f(y + b)}. If f(x + y) ≥ f(y + b),
then ha,b(x + y) = ga(y) + f(x + y) ≥ ga(y) + f(y + b) = ha,b(y) ≥ m and
we are done. If f(x + y) ≥ f(x + b), then we also have ga(y) ≥ ga(x), so
ha,b(x + y) = ga(y) + f(x + y) ≥ ga(x) + f(x + b) = ha,b(x) ≥ m and again
we are done.

For the second inequality, let m = min{ha,b(x), ha,b(y), ha,b(x+y)}. We
must prove that f(x) + f(y) + f(x+ y) = k(x, y) ≥ m.

Without loss of generality, we may assume that f(x) ≤ f(y). Then
f(x+ y) ≥ min{f(x), f(y)} = f(x). Since f(x) ≤ f(y) and f(x) ≤ f(x+ y),
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by (ii) we get

f(y)+ f(x+ y)+ f(x+ y+ a+ b) = hx,x+a+b(y) ≥ min{ha,b(x), ha,b(y)} ≥ m

and

f(x+y)+f(y)+f(y+a+b) = hx,x+a+b(x+y) ≥ min{ha,b(x), ha,b(x+y)} ≥ m.

Now (x + y + a + b) + (y + a + b) = x, so that f(x) ≥ min{f(x + y +
a+ b), f(y + a+ b)}, i.e., f(x) ≥ f(x+ y + a+ b) or f(x) ≥ f(y + a+ b). In
the first case we have k(x, y) = f(x) + f(y) + f(x+ y) ≥ f(y) + f(x+ y) +
f(x+ y+ a+ b) ≥ m. In the second case, k(x, y) = f(x) + f(y) + f(x+ y) ≥
f(x+ y) + f(y) + f(y + a+ b) ≥ m. In both cases we are done.

For the last statement, we have already proved that each of ha,b(x+ y)
and k(x, y) is greater than or equal to the minimum of the remaining three
terms of the sequence ha,b(x), ha,b(y), ha,b(x+y) and k(x, y) is. For ha,b(y) let
x′ = x, y′ = x+ y. Then x′ + y′ = y and k(x′, y′) = f(x)+ f(x+ y)+ f(y) =
k(x, y). Therefore the first inequality of (iii), applied to the pair (x′, y′),
yields

ha,b(y) ≥ min{ha,b(x), ha,b(x+ y), k(x, y)}.
The similar inequality for ha,b(x) follows by permuting x and y.

(iv) Let m = min{ha,b(x), ha,b(y), ha,b(z)}. We must prove that at least
one of hy,z(x), hz,x(y) and hx,y(z) is ≥ m.

Without loss of generality, we may assume that f(x) ≤ f(y), f(z). By
(ii) we have

f(y)+ f(x+ y)+ f(x+ y+ a+ b) = hx,x+a+b(y) ≥ min{ha,b(x), ha,b(y)} ≥ m

and

f(z)+ f(x+ z)+ f(x+ z+ a+ b) = hx,x+a+b(z) ≥ min{ha,b(x), ha,b(z)} ≥ m

But (x+ y+ a+ b)+ (x+ z+ a+ b) = y+ z, so f(y+ z) ≥ min{f(x+ y+ a+
b), f(x+ z+a+ b)}. Then we have f(y+ z) ≥ f(x+y+a+ b), which implies
hz,x(y) = f(y)+f(y+z)+f(x+y) ≥ f(y)+f(x+y)+f(x+y+a+b) ≥ m, or
f(y+z) ≥ f(x+z+a+b), which implies hx,y(z) = f(z)+f(x+z)+f(y+z) ≥
f(z) + f(x+ z) + f(x+ z + a+ b) ≥ m. In both cases we are done. �

493. (a) Calculate

lim
n→∞

n

∫ ∞

0

sinx

e(n+1)x − enx
dx.

(b) Let k > −1 be a real number. Calculate

lim
n→∞

nk+1

∫ ∞

0

xk sinx

e(n+1)x − enx
dx.

Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical Uni-

versity of Cluj-Napoca, Romania.
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Solution by the authors. (a) The limit equals 1. We will be using in our
calculations the formula∫ ∞

0
e−ax sin bxdx =

b

a2 + b2
, a, b ∈ R, a > 0, (25)

which can be proved using integration by parts twice.
We have∫ ∞

0

sinx

e(n+1)x − enx
dx =

∫ ∞

0

sinxe−(n+1)x

1− e−x
dx

=

∫ ∞

0
sinx e−(n+1)x

( ∞∑
i=0

e−ix

)
dx

(∗)
=

∞∑
i=0

∫ ∞

0
sinx e−(n+1+i)xdx

(25)
=

∞∑
i=0

1

(n+ 1 + i)2 + 1

=

∞∑
j=n+1

1

j2 + 1
.

It follows, based on Cesàro-Stolz lemma (the 0
0 case), that

lim
n→∞

n

∫ ∞

0

sinx

e(n+1)x − enx
dx = lim

n→∞

∞∑
j=n+1

1
j2+1

1
n

= lim
n→∞

− 1
(n+1)2+1

1
n+1 − 1

n

= 1.

Observation. The justification of (*) is as follows:∣∣∣∣ ∫ ∞

0
sinx e−(n+1)x

( ∞∑
i=0

e−ix

)
dx−

∫ ∞

0
sinx e−(n+1)x

(
N∑
i=0

e−ix

)
dx

∣∣∣∣
=

∣∣∣∣ ∫ ∞

0
sinx e−(n+1)x

( ∞∑
i=N+1

e−ix

)
dx

∣∣∣∣≤ ∞∑
i=N+1

∫ ∞

0
| sinx|e−(n+1+i)xdx

≤
∞∑

i=N+1

∫ ∞

0
xe−(n+1+i)xdx =

∞∑
i=N+1

1

(n+ 1 + i)2
.

Passing to the limit, as N → ∞, in the previous equality one has that∫ ∞

0
sinx e−(n+1)x

( ∞∑
i=0

e−ix

)
dx =

∞∑
i=0

∫ ∞

0
sinx e−(n+1+i)xdx.
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(b) The limit equals Γ(k + 1), where Γ denotes the Gamma function.
We have

nk+1

∫ ∞

0

xk sinx

e(n+1)x − enx
dx = nk+1

∫ ∞

0

xk sinx e−(n+1)x

1− e−x
dx

e−x=t
= −nk+1

∫ 1

0

(− ln t)k sin(ln t)tn

1− t
dt

tn=y
=

∫ 1

0
(− ln y)k+1 ·

sin
(
ln n

√
y
)

ln n
√
y

· n
√
y ·

1
n

1− n
√
y
dy.

Let fn(y) = (− ln y)k+1 · sin(ln n
√
y)

ln n
√
y · n

√
y ·

1
n

1− n
√
y , y ∈ (0, 1).

We have that lim
n→∞

fn(y) = (− ln y)k, y ∈ (0, 1), and

|fn(y)| =
∣∣∣∣ (− ln y)k+1 ·

sin
(
ln n

√
y
)

ln n
√
y

· n
√
y ·

1
n

1− n
√
y

∣∣∣∣≤ (− ln y)k+1

1− y
,

since
∣∣ sinx

x

∣∣ ≤ 1, ∀x ∈ R, and
1
n

1− n
√
y ≤ 1

1−y , for all n ∈ N∗. The last

inequality follows from the fact that the function g : [0, 1] → R, g(x) = x
1−yx

is an increasing function when y ∈ (0, 1).
Since∫ 1

0

(− ln y)k+1

1− y
dy

y=e−t

=

∫ ∞

0

tk+1e−t

1− e−t
dt =

∫ ∞

0
tk+1e−t

∞∑
i=0

e−it dt

=
∞∑
i=0

∫ ∞

0
tk+1e−(i+1)t dt

(i+1)t=x
=

∞∑
i=0

1

(i+ 1)k+2

∫ ∞

0
xk+1e−x dx = Γ(k + 2)ζ(k + 2),

we have that the positive function y → (− ln y)k+1

1−y is integrable over the

interval [0, 1].
It follows, based on the Lebesgue Dominated Convergence Theorem,

that

lim
n→∞

nk+1

∫ ∞

0

xk sinx

e(n+1)x − enx
dx = lim

n→∞

∫ 1

0
(− ln y)k+1 sin

(
ln n

√
y
)

ln n
√
y

·
1
n

n
√
y

1− n
√
y
dy

= (−1)k
∫ 1

0
(ln y)kdy

y=e−t

=

∫ ∞

0
tke−tdt

= Γ(k + 1).

�
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Remark. We mention that a solution of part (a) of the problem follows
from the solution of part (b), however we provided another solution of part
(a) which does not use the Lebesgue Dominated Convergence Theorem.

Solution by Moti Levy, Rehovot, Israel. We first solve (b). We make
the change of variable u = nx and we get

nk+1

∫ ∞

0

xk sinx

e(n+1)x − enx
dx =

∫ ∞

0

uk

eu
·

sin
(
u
n

)(
e

u
n − 1

)du.
Define a sequence of functions:

fn (u) :=
uk

eu
·
sin
(
u
n

)
e

u
n − 1

.

We have limy→0
sin y
ey−1 = 1 and for every y > 0 we have ey−1 > y > | sin y|, so∣∣∣ sin y

ey−1

∣∣∣ < 1. It follows that limn→∞ fn(u) = f(u) uniformly on every interval

[r,R] ⊂ (0,∞) and |fn(u)| < f(u) for every u ∈ (0,∞), where f(u) = sinu
eu−1 .

It follows that

lim
n→∞

∫ R

r
fn(u)du =

∫ R

r
f(u)du = Γ(k + 1, R)− Γ(k + 1, r),∣∣∣∣∫ r

0
fn(u)du

∣∣∣∣ ≤ ∫ r

0
f(u)du = Γ(k + 1, r),∣∣∣∣∫ ∞

R
fn(u)du

∣∣∣∣ ≤ ∫ ∞

R
f(u)du = Γ(k + 1)− Γ(k + 1, r).

Here Γ(k+1, t) is the incomplete Gamma function, Γ(k+1, t) =
∫ t
0 u

ke−udu.
Let ε > 0. Since limr↘0 Γ(k + 1, r) = 0 and limR→∞ Γ(k + 1, R) =

Γ(k + 1), there are rε, Rε ∈ (0,∞), with rε < Rε, such that Γ(k + 1, rε) <
ε
8

and Γ(k + 1)− Γ(k + 1, Rε) <
ε
8 .

Since limn→∞
∫ Rε

rε
fn(u)du = Γ(k + 1, Rε) − Γ(k + 1, rε), there is some

integer Nε > 0 such that for every n ≥ Nε we have

∣∣∣∣∫ Rε

rε

fn(u)du− (Γ(k + 1, Rε)− Γ(k + 1, rε))

∣∣∣∣ < ε

2
.
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Then for every n ≥ Nε we have∣∣∣∣∫ ∞

0
fn(u)du− Γ(k + 1)

∣∣∣∣ =
∣∣∣∣∣
(∫ rε

0
+

∫ Rε

rε

+

∫ ∞

Rε

)
fn(u)du− (Γ(k + 1, Rε)

− Γ(k + 1, rε))− Γ(k + 1, rε)− (Γ(k + 1)

− Γ(k + 1, Rε))

∣∣∣∣∣
≤
∣∣∣∣∫ Rε

rε

fn(u)du− (Γ(k + 1, Rε)− Γ(k + 1, rε))

∣∣∣∣
+

∣∣∣∣∫ rε

0
fn(u)du

∣∣∣∣+ ∣∣∣∣∫ ∞

Rε

fn(u)du

∣∣∣∣
+ Γ(k + 1, rε) + (Γ(k + 1)− Γ(k + 1, Rε)).

Since
∣∣∣∫ Rε

rε
fn(u)du− (Γ(k + 1, Rε)− Γ(k + 1, rε))

∣∣∣ < ε
2 ,
∣∣∫ rε

0 fn(u)du
∣∣

≤ Γ(k + 1, rε) and
∣∣∣∫∞

Rε
fn(u)du

∣∣∣ ≤ Γ(k + 1)− Γ(k + 1, Rε), we get∣∣∣∣∫ ∞

0
fn(u)du− Γ(k + 1)

∣∣∣∣ < ε

2
+ 2Γ(k + 1, rε) + 2(Γ(k + 1)− Γ(k + 1, Rε))

<
ε

2
+ 2 · ε

8
+ 2 · ε

8
= ε.

In conclusion, our limit is Γ(k + 1).

When we take k = 0 in (b), we obviously get that the limit from (a) is
Γ(0 + 1) = 1. �

Notes from the Editor.
1. The solution we received from Moti Levy was somewhat incomplete

in the sense that the improperness of the integral at infinity and (if −1 <
k < 0) at 0 was not addressed rigorously. Therefore we had to make some
adjustments.

2. We received a solution for part (a) from Daniel Văcaru, from Piteşti,
Romania. He wrote the integrand as a sum of simple fractions, sinx

e(n+1)x−enx =

−
∑n

k=1
sinx
ekx

+ sinx
ex−1 . By using formulas 3.893 1 and 3.911 2 in I. S. Gradshteyn

and I. M. Ryzhik, Table of integrals, series, and products. Transl. from the
Russian by Scripta Technica, Inc. 5th ed. Boston, MA: Academic Press, Inc.
(1994), he concludes that∫ ∞

0

sinx

e(n+1)x − enx
dx = −

n∑
k=1

1

k2 + 1
+
π

2
cothπ − 1

2
,
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whose limit as n→ ∞ is 0. (See Gradshteyn and Ryzhik 1421 4 or 1.445 2.)
Then, by Cesàro-Stolz, he concludes that the limit is equal to

lim
n→∞

1
(n+1)2+1

1
n − 1

n+1

= 1.

3. We also received a lengthy solution from Neil Greuber, from Newport
News, Virginia, USA, but only in the case when k is an integer. His proof
involved the Laplace transformation and polygamma functions.

494. Let n ≥ 3 and let a1, . . . , an be nonnegative real numbers such that
a21 + · · ·+ a2n = n− 1.

(i) Prove that a1 + · · ·+ an − a1 · · · an ≤ n− 1.
(ii) Prove that if k < 1 then the inequality a1+· · ·+an−ka1 · · · an ≤ n−1

is not always true.

Proposed by Leonard Giugiuc, Traian National College, Drobeta

Turnu Severin, Romania and Alexander Bogomolny, New Jersey, USA.

Solution by the authors. For (i) we prove a stronger result, where the
condition that a1, . . . , an ≥ 0 from the hypothesis is removed.

Moreover, if we renounce the hypothesis that a1, . . . , an ≥ 0, then (ii)
can be replaced by the following stronger result:

(ii’) Prove that if k 6= 1 then the inequality a1 + · · ·+ an − ka1 · · · an ≤
n− 1 is not always true.

We may assume, without loss of generality, that a1 ≥ · · · ≥ an. We
have two cases.

Case 1. an − a1 · · · an ≤ 0. It follows that a1 + · · · + an − a1 · · · an ≤
a1 + · · ·+ an−1. But(

a1 + · · ·+ an−1

n− 1

)2

≤
a21 + · · ·+ a2n−1

n− 1
≤ a21 + · · ·+ a2n

n− 1
= 1.

It follows that |a1 + · · ·+ an−1| ≤ n− 1, so that a1 + · · ·+ an−1 ≤ n− 1 and
we are done.

In order that the equality holds, one needs that a21 + · · · + a2n−1 =

a21 + · · ·+ a2n, that is, an = 0 and a1 = · · · = an−1 = 1. So we have equality
when and only when, up to a permutation, (a1, . . . , an) = (1, . . . , 1, 0).

Case 2. an − a1 · · · an > 0. We have

n−1

√
a21 · · · a2n−1 ≤

a21 + · · ·+ a2n−1

n− 1
≤ a21 + · · ·+ a2n

n− 1
= 1,

so that |a1 · · · an−1| ≤ 1, which in turn implies that 1−a1 · · · an−1 ≥ 0. Since
an(1− a1 · · · an−1) > 0, we must have 1− a1 · · · an−1 > 0 and so an > 0. We
conclude that it holds a1, . . . , an > 0.
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We have
(
a1+···+an

n

)2 ≤ a21+···+a2n
n = n−1

n , so a1 + · · ·+ an ≤
√
n(n− 1),

with equality if and only if a1 = · · · = an =
√

n−1
n .

If a1 + · · · + an ≤ n − 1, then we have the strict inequality a1 + · · · +
an − a1 · · · an < n− 1 and we are done.

So from now on we restrict ourselves to the case when a1 + · · · + an ∈(
n− 1,

√
n(n− 1)

]
.

We consider first the case when a1 = · · · = an−1 = x and an = y,
with x ≥ y > 0. The relation a21 + · · · + a2n = n − 1 writes as (n − 1)x2 +

y2 = n − 1, so y =
√

(n− 1)(1− x2). We have 0 < y2 ≤ x2, so that from

(n − 1)x2 < (n − 1)x2 + y2 = n − 1 ≤ nx2 we deduce x ∈
[√

n−1
n , 1

)
. We

also have a1 + · · · + an = (n − 1)x + y = f(x), where f : [
√

n−1
n , 1) → R,

f(x) = (n− 1)x+
√

(n− 1)(1− x2).

We prove that f is decreasing. For every x ∈ (
√

n−1
n , 1) we have

f ′(x) = n − 1 − x
√
n−1√

1−x2
. Then the relation f ′(x) < 0 is equivalent to√

(n− 1)(1− x2) < x, i.e., (n− 1)(1− x2) < x2, or x2 > n−1
n , which follows

from x >
√

n−1
n .

Since f(
√

n−1
n ) =

√
n(n− 1) and f(1) = n− 1 and f is decreasing, we

have a bijection f :
[√

n−1
n , 1

)
→
(
n− 1,

√
n(n− 1)

]
.

Now we come back to the general case, where a1 ≥ · · · ≥ an > 0 and

a1+ · · ·+an ∈ (n−1,
√
n(n− 1)]. Then there is a unique x ∈ [

√
n−1
n , 1) with

a1+ · · ·+an = f(x) = (n−1)x+y, with x ≥ y > 0 such that (n−1)x2+y2 =

(n − 1), i.e., y =
√

(n− 1)(1− x2). From a1 + · · · + an = (n − 1)x + y and
a21 + · · ·+ a2n = (n− 1)x2 + y2 we get

∑
i<j

aiaj =
1

2
(((n−1)x+y)2−((n−1)x2+y2)) =

(n− 2)(n− 1)

2
x2+(n−1)xy.

Let P (t) = (t− a1) · · · (t− an). We have

P (t) =tn − ((n− 1)x+ y)tn−1 +

(
(n− 2)(n− 1)

2
x2 + (n− 1)xy

)
tn−2

+Q(t) + (−1)np,

where Q(t) is a polynomial of degree n− 3 divisible by t and p = a1 · · · an.
The function g : (0,∞) → R, g(t) = P (t)

t , has n roots (counting multi-

plicities), so g(n−3) has at least 3 roots. Since Q(t)
t is a polynomial of degree
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n− 4, its derivative of order n− 3 is 0. We get

g(n−3)(t) =
(n− 1)!

2
t2 − (n− 2)!((n− 1)x+ y)t

+ (n− 3)!

(
(n− 2)(n− 1)

2
x2 + (n− 1)xy

)
− (n− 3)!

tn−2
p

=
(n− 3)!

2tn−2
h(t),

where h : (0,∞) → R is defined by

h(t) =(n− 1)(n− 2)tn − 2(n− 2)((n− 1)x+ y)tn−1

+ ((n− 2)(n− 1)x2 + 2(n− 1)xy)tn−2 − 2p.

We have

h′(t)

(n− 1)(n− 2)tn−3
= nt2 − 2

(
(n− 1)x+ y

)
t+ (n− 2)x2 + 2xy

= (t− x)(nt− (n− 2)x− 2y).

The last expression has the roots x and x′ = (n−2)x+y
n . Since x ≥ y, we

have x ≥ x′. We have h′(t) > 0 for t ∈ (0, x′) or (x′,∞) and h′(t) < 0
for t ∈ (x′, x). Hence h is increasing on (0, x′] and [x,∞) and decreasing
on [x′, x]. If t1 ≤ t2 ≤ t3 are three roots of h then, by Rolle’s theorem,
t1 ≤ x′ ≤ t2 ≤ x ≤ t3. Since t2 ∈ [x′, x] and h is increasing on [x′, x], we have
0 = h(t2) ≥ h(x). By computation we find that h(x) = 2xn−1y − 2p, so that
p ≥ xn−1y. The equality holds when (a1, . . . , an) = (x, . . . , x, y).

Consequently, the maximum of a1 + · · · + an − a1 · · · an where a1 ≥
· · · ≥ an > 0, a21 + · · · + an = n − 1 and a1 + · · · + an = (n − 1)x + y is
(n− 1)x+ y − xn−1y and it is reached for (a1, . . . , an) = (x, . . . , x, y).

Recall that x ∈ [
√

n−1
n , 1). We prove that (n − 1)x + y − xn−1y =

(n− 1)x+ (1− xn−1)
√

(n− 1)(1− x2) < n− 1. This writes as

(1− xn−1)
√

(n− 1)(1− x2) < (n− 1)(1− x).

By dividing by
√
n− 1(1− x) > 0, the last inequality becomes

(1 + x+ · · ·+ xn−2)
√

1− x2 <
√
n− 1.

As
√

n−1
n ≤ x < 1, we find 1+ x+ · · ·+ xn−2 < 1+ · · ·+1 = n− 1 and

√
1− x2 ≤

√
1
n , whence

(1 + x+ · · ·+ xn−2)
√
1− x2 <

n− 1√
n

<
√
n− 1.

Hence in all cases a1+ · · ·+an−a1 · · · an ≤ n−1 and the equality holds
only in Case 1, namely, iff (a1, . . . , an) is a permutation of (1, . . . , 1, 0).
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(ii) Let k < 1. We first take, as before, a1 = · · · = an−1 = x and

an =
√
(n− 1)(1− x2) for some x ∈ (0, 1) and we prove that, for x close

enough to 1, a1 + · · ·+ an − ka1 · · · an > n− 1, i.e., that

(n− 1)x+
√
(n− 1)(1− x2)− kxn−1

√
(n− 1)(1− x2) > n− 1.

This is equivalent to

(n− 1)x+
√
(n− 1)(1− x2)− (n− 1)

xn−1
√
(n− 1)(1− x2)

> k.

It suffices to prove that

lim
x↗1

(n− 1)x+
√
(n− 1)(1− x2)− (n− 1)

xn−1
√
(n− 1)(1− x2)

= 1.

This follows from

(n− 1)x+
√
(n− 1)(1− x2)− (n− 1)

xn−1
√
(n− 1)(1− x2)

=
1

xn−1
− (n− 1)(1− x)√

(n− 1)(1− x2)

=
1

xn−1
−

√
n− 1

xn−1

√
1− x

1 + x

and limx↗1

(
1

xn−1 −
√
n−1

xn−1

√
1−x
1+x

)
= 1.

For the proof of (ii’), when we renounce the hypothesis that a1, . . . , an ≥
0, the case when k < 1 was handled above. Assume now that k > 0. We
take a1 = · · · = an−1 = x and an = −

√
(n− 1)(1− x2) and we prove that

a1 + · · · + an + ka1 · · · an > n − 1 if x is close enough to 1. The inequality
writes as (n− 1)x−

√
(n− 1)(1− x2)+ kxn−1

√
(n− 1)(1− x2) > n− 1 and

it is equivalent to
(n−1)+

√
(n−1)(1−x2)−(n−1)x

xn−1
√

(n−1)(1−x2)
< k. Again, this will follow from

limx↗1
(n−1)+

√
(n−1)(1−x2)−(n−1)x

xn−1
√

(n−1)(1−x2)
= 1, which is clear by observing that

(n− 1) +
√
(n− 1)(1− x2)− (n− 1)x

xn−1
√
(n− 1)(1− x2)

=
1

xn−1
+

√
n− 1

xn−1

√
1− x

1 + x

and limx↗1

(
1

xn−1 +
√
n−1

xn−1

√
1−x
1+x

)
= 1. �

Notes from the editor.
1. The fact that x is a root of h′(t)

(n−1)(n−2)tn−3 , which is a key part

of the proof, is not by accident. One arrives from P (t) to h′(t)
(n−1)(n−2)tn−3 via

n−2 derivations and some multiplications and divisions by monomials. In the
process, the coefficients of Q(t) and p vanish, so the outcome depends only on
the first two coefficients of P (t), i.e., on

∑
i ai and

∑
i<j aiaj or, equivalently,

on
∑

i ai and
∑

i a
2
i . We have

∑
i ai = (n−1)x+y and

∑
i a

2
i = (n−1)x2+y2.
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An obvious choice of a1, . . . , an with these properties is a1 = · · · = an−1 = x,
an = y, in which case we have P (t) = (t − x)n−1(t − y). Since x is a root
of P (t) of multiplicity n− 1, after n− 2 derivations and multiplications and
some divisions by monomials it will still be a root off multiplicity 1. This is

why x is a root of h′(t)
(n−1)(n−2)tn−3 .

2. We also received a solution from Costel Sava. He, too, proves the
stronger version of the result, where a, . . . , an are not necessarily nonnegative.
The proof goes on similar lines as the authors’, except that he considers the
cases when a1 · · · an ≤ 0 (which is contained in the authors’ Case 1) and
a1 · · · an ≥ 0. In the difficult case when a1, . . . , an ≥ 0 Costel Sava uses a
result by Vasile Ĉırtoaje, called Equal Variables Theorem (see V. Ĉırtoaje,
The equal variables method, J. Inequal. Pure Appl. Math. 8, No. 1, Art.
15, 2007). If a1 ≥ · · · ≥ an ≥ 0, a1+ · · ·+an is fixed and a21+ · · ·+a2n = n−1,
then Ĉırtoaje’s theorem implies that the product a1 · · · an is minimal when
either an = 0 or a1 = · · · = an−1 ≥ an.

Ĉırtoaje’s result is more general and involves convexity methods. The
authors’ proof is a nontrivial generalization of the solution in the case n = 3.

In this proof one goes from P to h′(t)
(n−1)(n−2)tn−3 by dividing P (t) by t, then

one takes the derivative n− 3 times, then one multiplies by 2tn−2

(n−3)! , then one

takes the derivative once more and finally one divides by (n− 1)(n− 2)tn−3.

If n = 3 then h′(t)
(n−1)(n−2)tn−3 is simply P ′(t).

495. Let n ≥ 2 and A,B ∈ Mn(C) such that

A ·B −B ·A = c(A−B) (1)

for some c ∈ C∗.
a) For n = 2, give an example of distinct matrices A and B that satisfy

the above condition.
b) Prove that A and B have the same eigenvalues.

Proposed by Vasile Pop, Technical University of Cluj-Napoca, Ro-

mania, and Mihai Opincariu, Avram Iancu National College, Brad, Roma-

nia.

Solution by the authors. a) Let A =

(
0 1
0 c

)
and B =

(
0 0
0 c

)
. Then

A ·B −B ·A =

(
0 c
0 0

)
,

A−B =

(
0 1
0 0

)
,

A ·B −B ·A = c(A−B).
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b) Let x be a variable. We have the equivalences

(1) ⇔ (A− xIn)(B − xIn)− (B − xIn)(A− xIn) = c((A− xIn)− (B − xIn))

⇔ (A− xIn)(B − xIn − cIn) = (B − xIn)(A− xIn − cIn) (2)

By taking determinants in (2), we get

fA(x) · fB(x+ c) = fB(x) · fA(x+ c),

where by fX we denote the characteristic polynomial of the matrix M . We
prove that fA = fB, which is enough to conclude the proof.

More generally, we claim that if P and Q are unitary polynomials of
the same degree (m ≥ 0) that satisfy

P (x) ·Q(x+ c) = Q(x) · P (x+ c) for all x ∈ C, (3)

then P = Q. We prove this by induction on m. The statement is obviously
true for m = 0 (P = Q = 1).

For the inductive step, we assume it to be true for m − 1 and prove it
for m. Let P and Q be unitary polynomials of degree m ≥ 0 that satisfy (3)
and let x0 ∈ C be a root of P such that x0 + c is not a root of P (otherwise,
if x0 + c is a root of P for every root x0 of P , then by induction x0 +Nc is a
root of P for all nonnegative integers N , meaning that P = 0 by having an
infinite number of roots, which contradicts the assumptions on P ).

Using (3) for x := x0, it follows that

0 = P (x0) ·Q(x0 + c) = Q(x0) · P (x0 + c)︸ ︷︷ ︸
̸=0

,

hence x0 is a root of Q. Writing

P (x) = (x− x0)P1(x),

Q(x) = (x− x0)Q1(x),

it follows by (3) that for all x ∈ C it holds

(x−x0)(x+ c−x0) ·P1(x) ·Q1(x+ c) = (x−x0)(x+ c−x0) ·Q1(x) ·P1(x+ c).

It follows that

P1(x) ·Q1(x+ c) = Q1(x) · P1(x+ c) = 0 for all x ∈ C,
which is the same as (3) but for the unitary polynomials P1 and Q1 of degree
m − 1. By the hypothesis of the induction, it follows that P1 = Q1, hence
P = Q, which concludes the argument and the proof.

We also received a solution from Daniel Văcaru, from Piteşti, Romania.
The example he produced for a) is

A =

(
c c+ 1
0 0

)
, B =

(
c− c+1

c a c+ 1− (c+1)2

c a
a c+1

c a

)
.
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For b) he denotes by P and Q the characteristic polynomials of A and
B and obtains the same relation P (X)Q(X + c) = P (X + c)Q(X) from

the authors’ solution, which also writes as P (X+c)
Q(X+c) = P (X)

Q(X) . Since P and Q

are monic of the same degree, if P 6= Q, then we have a partial fraction
decomposition

P (X)

Q(X)
= 1 +

r∑
i=1

αi

(X − ai)βi
.

Since the translation X 7→ X + c leaves the fraction P
Q invariant, the set of

poles P = {ai}i∈{1,r} is invariant by this translation. But this is impossible,

as P is a finite set. Hence P = Q.

Solution by Cornel Băeţica. b) Let X = A−B. Then (1) is equivalent
to

XA−AX = cX. (4)

In the following we show that A and X are simultaneously triangular-
izable. In order to do this, let us first notice that

XiA−AXi = ciXi (5)

for all integers i ≥ 1. The proof goes by induction on i. If we assume that
Xi−1A − AXi−1 = c(i − 1)Xi−1, then, by multiplying with X on the left
we get XiA −XAXi−1 = c(i − 1)Xi. On the other side, if we multiply (4)
by Xi−1 on the right we get XAXi−1 − AXi = cXi. By adding these two
relations we obtain XiA−AXi = ciXi.

Since Tr(XiA) = Tr(AXi), from (5) we have that Tr(Xi) = 0 for all
i ≥ 1, and by a well known result we conclude that X is nilpotent.

Now let V be the vector space over C generated by the matrices:
A,X, . . . ,Xn−1. With respect to the usual bracket we have [A,A] = 0,
[Xi, A] = ciXi, and [Xi, Xj ] = 0. This shows that V is a finitely dimensional
Lie algebra. Moreover, [V, V ] ⊆ C[X] and if V1 = [V, V ] we get [V1, V1] = 0.
It follows that V is solvable, and by Lie’s theorem A and X are simultane-
ously triangularizable, hence A and B are simultaneously triangularizable,
and from (1) we get that A and B have the same eigenvalues. �

Remarks. (i) Let f be a polynomial with complex coefficients. By a
similar reasoning one can show that two matrices A,X ∈ Mn(C) that satisfy

XA−AX = f(X)

are simultaneously triangularizable.

(ii) The above proof relies on two results:
1) Tr(Xi) = 0 for 1 ≤ i ≤ n implies that X is nilpotent, and
2) Lie’s theorem.

Since 1) and 2) hold for algebraically closed fields of characteristic 0
or p > n, we get that A and X are simultaneously triangularizable over
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algebraically closed fields of characteristic 0 or p > n. In particular, the
conclusion of our problem holds for fields of characteristic 0 or p > n.


