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Abstract. A complete power series expansion for the simple pendulum
angle function is given, about the initial time t = 0. Its coefficients are
expressed as trigonometric polynomials of the initial angle θ0.
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The pendulum motion is a delight for the Grandfather clock and Physics
enthusiasts [2, 3, 4, 5], but not so much for the Math ones. We set out to
rectify this. The simple gravity pendulum is a weight attached at one end of a
massless rod of length l and swinging freely from the other end, which is kept
fixed. The idealized motion, free of air resistance, is planar and perpetual, a
result of a uniform gravitational field g on the weight (identified with a mass
point).

We are interested in the angle function θ(t) measuring (in radians) the
signed angle formed by the rod and the vertical direction at time t. For
definiteness, we assume that at time t = 0 the pendulum reaches its angular
amplitude θ0, 0 < θ0 < π, at which instance its velocity vanishes, θ′(0) = 0.
The motion is periodic with period T > 0, and clearly T/4 is the first instance
when θ vanishes.

The well-known initial value non-linear second order differential equa-
tion governing the angle function θ(t),

θ′′(t) +
g

l
sin θ(t) = 0, θ(0) = θ0, θ′(0) = 0, (1)

1)Department of Mathematics, University of North Texas, Denton, TX 76203,
anghel@unt.edu
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is easily deduced by applying Newton’s second law of dynamics to the angular
length lθ(t), which is subject to only one force, the tangential component
g sin θ(t) of gravity, acting against the motion.

Multiplying Equation (1) by 2θ′(t) leads to the first integral of motion,(
θ′(t)

)2
=

2g

l
(cos θ(t)− cos θ0). (2)

Even Equation (2) can be derived by physical considerations, pertain-
ing to the conservation of the gravitational potential energy and the kinetic
energy associated to an infinitesimal vertical drop of the pendulum weight
[5].

The immediate conclusion of Equation (2) is that the exact expression of
θ(t) is an elliptic integral, and as such not expressible in terms of elementary
functions. Also, by locally inverting θ, Equation (2) yields the value for the
period T of the motion as the improper elliptic integral

T = 4

√
l

2g

∫ θ0

0

1√
cos θ − cos θ0

dθ. (3)

A noteworthy and fast converging equivalent expression of T [3] is given via
Gauss’ arithmetic-geometric mean of 1 and cos(θ0/2), by

T = 2π

√
l

g

1

agm(1, cos(θ0/2))
. (4)

As a consequence of well-known existence and uniqueness results for the solu-
tions of initial value differential equations, θ(t) is analytic in a neighborhood
of t = 0. What is then its power series expansion about t = 0?

We mention in passing a Fourier series expansion for θ(t) [7],

θ(t) = 8

∞∑
l=0

(−1)l

2l + 1

ql+1/2

1 + q2l+1
cos

(
(2l + 1)

2π

T
t

)
, (5)

where q = exp

(
−K ′(sin(θ0/2))

K(sin(θ0/2))

)
, and K is the elliptic integral function

K(k) =

∫ π
2

0

1√
1− k2 sin2 u

du, −1 < k < 1.

Also, in [1] a hybrid power series expansion is presented for t, as a function

of
sin(θ/2)

sin(θ0/2)
.

The power series expansion for θ(t) about t = 0 is necessarily compli-
cated. Just look at the Faà di Bruno’s recursive expression for the derivatives



N. Anghel, Power Series Expansion for the Pendulum 3

θ(n)(0), given by formulas [6]

θ(n+2)(0) = −g

l

∑ n!

m1!m2! · · ·mn!
· sin(m1+m2+···+mn)(θ0) ·

n∏
j=1

(
θ(j)(0)

j!

)mj

,

where the sum is to be performed over all n-tuples of non-negative integers
satisfying 1 ·m1+2 ·m2+ · · ·+n ·mn = n. Fortunately, there is a way around
this difficulty provided by the following lemma.

Lemma 1. For any positive integer n and any real number t,

θ(2n)(t) =
(g
l

)n n∑
j=1

anj sin(jθ(t)), (6)

where anj, j = 1, 2, . . . n, are constants depending on θ0, given by the recur-
rence relations

an+1,j = −(j − 1)(2j − 1)

2
an,j−1 + 2j2 cos θ0 · anj −

(j + 1)(2j + 1)

2
an,j+1

a11 = −1, j = 1, . . . , n+ 1.
(7)

In (7) it is understood that anj = 0, if j /∈ {1, 2, . . . , n}.

Proof. The verification of (6) goes obviously by induction on n, the case n = 1
reducing to the starting point of our discussion, provided by the differential
equation (1).

Assuming now (6) true for some fixed value of n and any t, two differ-
entiations of it yield

θ(2n+1)(t) =
(g
l

)n n∑
j=1

janj cos(jθ(t)) · θ′(t),

θ(2n+2)(t) =−
(g
l

)n n∑
j=1

j2anj sin(jθ(t)) ·
(
θ′(t)

)2
+
(g
l

)n n∑
j=1

janj cos(jθ(t)) · θ′′(t).

Replacing (θ′(t))2 and θ′′(t) in the expression of θ(2n+2)(t) above by
their values (2) and (1) respectively, and leaving out t for an easier read,
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further gives

θ2(n+1) =
(g
l

)n+1
n∑

j=1

(−2j2)anj sin(jθ) · (cos θ − cos θ0)

+
(g
l

)n+1
n∑

j=1

(−j)anj cos(jθ) · sin θ

=
(g
l

)n+1
n∑

j=1

(−j2)anj(sin(j + 1)θ + sin(j − 1)θ)

+
(g
l

)n+1
n∑

j=1

(−j)anj
sin(j + 1)θ − sin(j − 1)θ

2

+
(g
l

)n+1
n∑

j=1

(2j2) cos θ0 · anj sin(jθ)

=
(g
l

)n+1
n+1∑
j=2

−
(
(j − 1)2 +

j − 1

2

)
an,j−1 sin(jθ)

+
(g
l

)n+1
n−1∑
j=1

−
(
(j + 1)2 − j + 1

2

)
an,j+1 sin(jθ)

+
(g
l

)n+1
n∑

j=1

(2j2) cos θ0 · anj sin(jθ)

=
(g
l

)n+1
n+1∑
j=1

an+1,j sin(jθ),

as claimed. 2
The recurrence relations (7) appear to be difficult to put in closed form,

in general, however two particular cases are manageable, that is

ann = (−1)n
(n− 1)! (2n− 1)!!

2n−1
,

an,n−1 = (−1)n−1n! (2n− 1)!!

3 · 2n−2
cos θ0, n = 2, 3, . . . ,

(8)

where the double factorial stands for the product of all odd positive inte-
gers up to the indicated one. Equations (8) can be derived by iterating the
recursions

ann =− (n− 1)(2n− 1)

2
an−1,n−1 and

an,n−1 =− (n− 2)(2n− 3)

2
an−1,n−2 + 2(n− 1)2 cos θ0 · an−1,n−1,
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respectively.
The values of anj for n = 1, 2, 3 and 4 are as follows:

a11 = −1, a21 = −2 cos θ0, a22 =
3

2
, a31 = −2 cos(2θ0)−

13

2
,

a32 = 15 cos θ0, a33 = −15

2
, a41 = −2 cos(3θ0)− 60 cos θ0,

a42 = 63 cos(2θ0) + 126, a43 = −210 cos θ0, a44 =
315

4
.

(9)

The finer structure of the constants anj is fully revealed by the following

Proposition 2. For any j = 1, 2, . . . , n and p = 0, 1, . . . ,

[
n− j

2

]
, there are

constants cn,j,n−j−2p independent of θ0, such that

anj =

[n−j
2 ]∑

p=0

cn,j,n−j−2p · cos(n− j − 2p)θ0, (10)

where [·] denotes integer part.

Moreover, for j = 1, 2, . . . , n + 1 and p = 0, 1, 2, . . . ,

[
n+ 1− j

2

]
, we

have recursively, starting with c1,1,0 = −1,

cn+1,j,n+1−j−2p =

{
en,j,p, if p 6= n−j

2

en,j,p + j2cn,j,0, if p = n−j
2 ,

(11)

where en,j,p is short-hand for

en,j,p =− (j − 1)(2j − 1)

2
cn,j−1,n+1−j−2p + j2cn,j,n−j−2p

+ j2cn,j,n−j−2(p−1) −
(j + 1)(2j + 1)

2
cn,j+1,n+1−j−2p.

(12)

In (12), for j /∈ {1, 2, . . . , n} or k /∈
{
n− j, n− j − 2, . . . , n− j − 2

[
n− j

2

]}
,

cn,j,k is to be taken 0.

Proof. The proof, again by induction on n, rests on a careful implementation
of Equation (7). Indeed, if Equation (10) is assumed to hold true for some n
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and every j ∈ {1, 2, . . . , n}, then Equation (7) becomes

an+1,j =− (j − 1)(2j − 1)

2

[n−j+1
2 ]∑

p=0

cn,j−1,n−j+1−2p · cos(n− j + 1− 2p)θ0

+ 2j2
[n−j

2 ]∑
p=0

cn,j,n−j−2p · cos(n− j − 2p)θ0 · cos θ0

− (j + 1)(2j + 1)

2

[n−j−1
2 ]∑

p=0

cn,j+1,n−j−1−2p · cos(n− j − 1− 2p)θ0,

for j = 1, 2, . . . , n + 1. Keeping in mind when cn,j,k vanishes automatically,
we further have

an+1,j =

[n+1−j
2 ]∑

p=0

−(j − 1)(2j − 1)

2
cn,j−1,n+1−j−2p · cos(n+ 1− j − 2p)θ0

+

[n+1−j
2 ]∑

p=0

j2cn,j,n−j−2p ·
(
cos(n+ 1− j − 2p)θ0

+cos(n+ 1− j − 2(p+ 1)
)
θ0

−
[n−j−1

2 ]∑
p=0

(j + 1)(2j + 1)

2
cn,j+1,n+1−j−2(p+1) cos(n+ 1− j − 2(p+ 1))θ0,



N. Anghel, Power Series Expansion for the Pendulum 7

or equivalently

an+1,j =

[n+1−j
2 ]∑

p=0

−(j − 1)(2j − 1)

2
cn,j−1,n+1−j−2p · cos(n+ 1− j − 2p)θ0

+

[n+1−j
2 ]∑

p=0

j2cn,j,n−j−2p · cos(n+ 1− j − 2p)θ0

+

[n+1−j
2 ]+1∑
p=0

j2cn,j,n−j−2(p−1) · cos(n+ 1− j − 2p)θ0

+

[n+1−j
2 ]∑

p=0

−(j + 1)(2j + 1)

2
cn,j+1,n+1−j−2p · cos(n+ 1− j − 2p)θ0

=

[n+1−j
2 ]∑

p=0

cn+1,j,n+1−j−2p · cos(n+ 1− j − 2p)θ0.

2
We list here for further use all the values of cn,j,n−j−2p for n = 1, 2, 3

and 4, which can be easily read from Equations (9):

c1,1,0 = −1, c2,1,1 = −2, c2,2,0 =
3

2
, c3,1,2 = −2, c3,1,0 = −13

2
,

c3,2,1 = 15, c3,3,0 = −15

2
, c4,1,3 = −2, c4,1,1 = −60,

c4,2,2 = 63, c4,2,0 = 126, c4,3,1 = −210, c4,4,0 =
315

4
.

(13)

We are now in a position to state and prove the main result of our paper,
from which the power series expansion for the simple pendulum angle function
about t = 0 follows immediately.

Theorem 3. All the derivatives at t = 0 of the simple pendulum angle func-
tion θ(t) are trigonometric polynomials of the pendulum amplitude θ0. Pre-
cisely, for n = 1, 2, . . . ,

θ(2n)(0) =
(g
l

)n [n−1
2 ]∑

p=0

1

2

n−2p∑
j=1

cn,j,n−j−2p −
p∑

j=1

cn,j,n+j−2p

+

n−p∑
j=n−2p

cn,j,−n+j+2p

 · sin(n− 2p)θ0,

θ(2n−1)(0) =0.

(14)
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Consequently, Equations (14), (11), and (12) provide a recursive way of gen-
erating the power series expansion of the simple pendulum function θ(t) about
t = 0, given by

θ(t) = θ0 +

∞∑
n=1

θ(2n)(0)

(2n)!
t2n. (15)

In particular,

θ(t) = θ0 +
1

2!

g

l
(− sin θ0) t

2 +
1

4!

(g
l

)2(1

2
sin(2θ0)

)
t4

+
1

6!

(g
l

)3
(− sin(3θ0) + 2 sin θ0) t

6

+
1

8!

(g
l

)4(17

4
sin(4θ0)− 8 sin(2θ0)

)
t8 +O(t10).

(16)

Proof. The vanishing of θ(2n−1)(0) follows immediately from the initial con-

dition θ′(0) = 0 and the expression of θ(2n+1)(t) appearing in the proof of

Lemma 1. As for θ(2n)(0), from Equations (6) and (10) we have

θ(2n)(0) =
(g
l

)n n∑
j=1

[n−j
2 ]∑

p=0

cn,j,n−j−2p · cos(n− j − 2p)θ0 · sin(jθ0)

=
(g
l

)n n∑
j=1

[n−j
2 ]∑

p=0

cn,j,n−j−2p
sin(n− 2p)θ0 + sin(2j + 2p− n)θ0

2

=
(g
l

)n n∑
j=1

[n−j
2 ]∑

p=0

1

2
cn,j,n−j−2p · sin(n− 2p)θ0

+
(g
l

)n n∑
j=1

[n−j
2 ]∑

p=0

1

2
cn,j,n−j−2p · sin(2j + 2p− n)θ0.

Now, a careful reverse in order of summation gives

(g
l

)n n∑
j=1

[n−j
2 ]∑

p=0

1

2
cn,j,n−j−2p · sin(n− 2p)θ0

=
(g
l

)n [n−1
2 ]∑

p=0

n−2p∑
j=1

1

2
cn,j,n−j−2p · sin(n− 2p)θ0.
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Further,

(g
l

)n n∑
j=1

[n−j
2 ]∑

p=0

1

2
cn,j,n−j−2p · sin(2j + 2p− n)θ0

=
(g
l

)n ∑
1≤j≤n,0≤p≤[n−j

2 ]
2(j+p)<n

1

2
cn,j,n−j−2p · sin(2j + 2p− n)θ0

+
(g
l

)n ∑
1≤j≤n,0≤p≤[n−j

2 ]
2(j+p)>n

1

2
cn,j,n−j−2p · sin(2j + 2p− n)θ0.

In order to reverse the order of summation in the last two double sums above
we need to perform suitable changes of variables. Namely (j, p) 7→ (j′, p′),
j′ = j, p′ = j + p, yields(g

l

)n ∑
1≤j≤n,0≤p≤[n−j

2 ]
2(j+p)<n

1

2
cn,j,n−j−2p · sin(2j + 2p− n)θ0

=
(g
l

)n [n−1
2 ]∑

p=0

p∑
j=1

1

2
cn,j,n+j−2p · sin(n− 2p)θ0,

while (j, p) 7→ (j′, p′), j′ = j, p′ = n− j − p, yields(g
l

)n ∑
1≤j≤n,0≤p≤[n−j

2 ]
2(j+p)>n

1

2
cn,j,n−j−2p · sin(2j + 2p− n)θ0

=
(g
l

)n [n−1
2 ]∑

p=0

n−p∑
j=n−2p

1

2
cn,j,−n+j+2p · sin(n− 2p)θ0.

Putting all these results together provides the desired expression (14) of

θ(2n)(0).
Lastly the order 9 power series expansion of θ(t) about t = 0 given by

(16) follows easily from Equations (15), (14), and (13). 2
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The classical SIR model in epidemiology

Aurelian Gheondea1)

Abstract. This is a survey note in which we describe the classical SIR
model in mathematical epidemiology, a bit of qualitative analysis, its Euler
discretisation, and some simulations.

Keywords: Dynamical systems, SIR model, bifurcation, mathematical
epidemiolgoy.

MSC: Primary 92B05; Secondary 34A30, 39A05.

1. Introduction

The interest for mathematical models that describe the dynamical evo-
lution of infectious diseases is rather old. The first mathematical model was
obtained by Daniel Bernoulli [1] in 1760 and it describes the evolution of an
epidemic of small pox. One of the most important steps in establishing math-
ematical epidemiology was made by the physician R. Ross [7], the recipient of
the Nobel Prize for medicine in 1902 for his contributions for the study and
understanding malaria. Ross pushed forward his investigations on malaria
by mathematically formalising his research. There are, of course, many em-
pirical models obtained by collecting statistical data on epidemics over the
time and for different geographical regions. The most reliable mathematical
model, that is still in use, was obtained by W.O. Kermack and A.G. McK-
endrick [6] in 1927. For a comprehensive and pertinent presentation of the
mathematical and statistical models in epidemiology we recommend the sur-
vey article of H.W. Hethcote [3]

There are, basically, two types of models that are used in epidemiology,
the mathematical models, mainly dynamical models, and statistical models.
These two types of models are complementary one to each other: the math-
ematical models make the skeletal structure of any scientific approach to the
study of contagious diseases while the statistical models make the muscular
structure that make the connections to the real data. Since these models are

1)Department of Mathematics, Bilkent University, 06800 Bilkent, Ankara, Turkey, and
Institutul de Matematică al Academiei Române, C.P. 1-764, 014700 Bucureşti, România,
aurelian@fen.bilkent.edu.tr and A.Gheondea@imar.ro
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rather general, they apply not only to contagious diseases of human beings
but also to animals and they are of remarkable efficiency in the study of the
dynamics of various ecosystems.

The SIR model, that we describe in this note, is usually presented in
most of the dynamical systems courses, e.g. see the textbook of M. Hirsh,
S. Smale, and R.L. Devaney [4]. However, although these mathematical
models look rather simple, they pose difficult problems to mathematicians
and hence they are subjects of active research, e.g. see T. Harko, F.S.N. Lobo,
and M.K. Mak [2]. A final satisfactory answer on explicit solutions is not yet
available.

2. The Classical SIR Model

2.1. Compartments Models. The dynamical system models that are in
use in epidemiology for the evolution of infectious diseases are based on the
idea of transfer between compartments. We consider a population that lives
in a clearly specified area (a village or a city, a metropolitan area, a county,
a country, etc.) with a stable number of individuals N (we ignore births,
deaths and migrations), relatively homogeneous, in which the interactions
between the individuals are happening continuously. This population is split
in compartments denoted by M , E, S, I, and R, with the following defini-
tions:

• M is the number of babies that have passive immunity, inherited nat-
urally from their mother, but that lasts a limited number of months.

• S is the number of individuals that are susceptible to be infected,
having no immunity.

• E is the number of individuals that are in the latent period of infec-
tion, that are infected but not yet contagious.

• I is the number of infected individuals that are contagious as well.
• R is the number of those individuals that have been infected but have
been cured, are no more infectious and got immunity, or died.

The transfer between compartments can be done only in the following
ways:

• From the compartment M an individual can pass only to the com-
partment S.

• From the compartment S an individual can pass only to the com-
partment E where stays for a relatively constant interval of time.

• From the compartment E an individual can pass only to the com-
partment I of infected people.

• From compartment I and individual can pass only to the compart-
ment R either cured and getting immunity or dies.

M ⇒ S ⇒ E ⇒ I ⇒ R
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This model is called MSEIR and is considered the most comprehensive.

2.2. The SIR Model. W.O. Kermack and A.G. McKendrick [6] published a
simplified dynamical system model called SIR, with only three compartments,
S, I, and R, and it is considered as the classical mathematical model in
studying epidemics. In this model we have only two possible transfers:

• From compartment S to the compartment I;
• From compartment I to the compartment R.

S ⇒ I ⇒ R

The SIR model is obtained by the following assumptions:

(sir1) The dynamical system evolves in continuous time and the functions
S, I, and R are functions of time t indefinitely differentiable on the
interval [0,∞);

(sir2) β, the infection rate, is the parameter that controls the transfer be-
tween the compartments S and I and has the significance of the
average number of contacts that are infected, in the time unit;

(sir3) γ, the recovery rate, is the transfer rate between the compartments
I and R, that represents both the rate of cure and of death, without
making a difference between these, with the significance that 1/γ is
the interval of time in which an individual remains infected.

Both β and γ have interpretation as probability rates and hence take
values in [0, 1] only. From the assumption that the number of individuals in
the designated area remains constant N we have

S(t) + I(t) +R(t) = N, t ∈ [0,∞), (1)

which, by differentiation yields

S′(t) + I ′(t) +R′(t) = 0, t ∈ [0,∞). (2)

Then, from the definitions of the parameters β in (sir2), of γ in (sir3), and
(2) we get the following system of ordinary differential equations (ODE) of
order 1 

dS(t)
d t = −β S(t)

N I(t),

I(t)
d t = β S(t)

N I(t)− γ(t),

R(t)
d t = γI(t).

(3)

It is more convenient to normalise the functions S, I, and R in the
following way:

s(t) =
S(t)

N
, i(t) =

I(t)

N
, r(t) =

R(t)

N
, (4)
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where N is the total number of individuals, and then, from (1) we get

s(t) + i(t) + r(t) = 1, t ∈ [0,∞), (5)

and hence, by taking derivatives, we get

s′(t) + i′(t) + r′(t) = 0, t ∈ [0,∞). (6)

Then the system (3) becomes
d s(t)
d t = −βs(t)i(t),

d i(t)
d t = βs(t)i(t)− γi(t),

d r(t)
d t = γi(t).

(7)

We usually associate to the system of first order differential equations (7) the
initial conditions s(0) = s0, i(0) = i0, and r(0) = r0 and in this case we talk
about an Initial Value Problem (IVP). The three equations from (7) are not
independent, for example the third is obtained from the first and the second,
by using (5) and its consequence s′(t) + i′(t) + r′(t) = 0.

2.3. Bifurcation. The SIR model is not linear. As simple as it may look
at the first glance, explicit analytical solutions are not known yet: some
parametric solutions as well as other equivalent representations have been
recently obtained by T. Harko, F.S.N. Lobo, and M.K. Mak [2]. For the
moment, we can draw some qualitative conclusions. The functions s, i, and r
take only nonnegative values and hence, from the first and the third equation
in (7) it follows that s′(t) is always nonpositive, hence s is nonincreasing, while
r′(t) is always nonnegative, hence r is nondecreasing. The behaviour of the
function i is different. Since the second equation from (7) can be written as

d i(t)

d t
=
(
βs(t)− γ

)
i(t), t ∈ [0,∞), (8)

it follows that the function i increases as long as the function βs−γ is positive
and decreases as long as the same function βs− γ is negative. In particular,
we first have to look at the initial condition t = 0, that is, at the number
βs0 − γ, and see whether it is positive or negative. Equivalently, letting

ρ =
s0β

γ
, (9)

called the reproduction number, we see that the monotonicity of the function i
depends on how ρ stays with respect to the value 1. The reproduction number
ρ plays one of the most important role in understanding the evolution of a
contagious disease in a population.

Mathematically, a dynamical system has a bifurcation if, for a small
change of a certain parameter, that is called the bifurcation parameter, we
may have a change of the qualitative behaviour of the evolution of the system.
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In the case of the SIR model (7), it is the reproduction number ρ that makes
the bifurcation parameter, in the following sense:

• If ρ > 1 then the function i, that describes the normalised function of
infected people, increases from the initial value i0 to a certain maxi-
mal value and then decreases, and we say that we have an epidemic.

• If ρ < 1 then the function i decreases from the initial value i0 to
values close to 0 and, in this case, we do not have an epidemic.

2.4. The Susceptibles and Recovered Equations. In this subsection,
we follow closely the article [2]. Firstly, let us observe that, following the
brief qualitative analysis in the previous subsection, we see that the solution
function s does not vanish on (0,∞) hence we can perform divisions with
this function. We can interpret the first ODE in (7) as

i(t) = − 1

β

s′(t)

s(t)
, (10)

and, by differentiation the first ODE in (7) with respect to time we get

s′′(t) = −βs′(t) i(t)− βs(t) i′(t),

from which, solving for i′(t) and taking into account of (10) we get

i′(t) = − 1

β

[
s′′(t)

s(t)
−
(
s′(t)

s(t)

)2]
. (11)

From the second ODE in (7) and (11), taking into account once more of
(10) we get the second order nonlinear ODE of the function s, counting the
susceptible individuals

s′′(t) = s′2(t)− γs(t)s′(t) + βs2(t)s′(t). (12)

In a similar way, one obtains the second order nonlinear ODE of the
function r, counting the recovered individuals,

r′′(t) = βs0e
β
γ
(r0−r(t))

r′(t)− γr′(t). (13)

Both second order ODE (12) and (13) are highly nonlinear and explicit
solutions for them are not known.

2.5. Euler Discretisation. Since explicit compact solutions for the func-
tions s, i, and r are not available, in order to get both qualitative and quan-
titative information from the SIR model one usually performs an Euler dis-
cretisation of the system (7). The Euler method of discretisation means that
we make a sampling of the interval [0,∞) in intervals of equal length ∆T
and, instead of functions, we work with sequences (sn)n, (in)n, and (rn)n,
with initial values s0, i0, and r0.
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Let us briefly describe the Euler’s method of discretisation: one consid-
ers a differentiable function y : [0,∞) → R and the length of the sampling
interval ∆T and let slopen−1 have the meaning of a discretised derivative

slopen−1 =
yn − yn−1

∆T
, n ≥ 1,

hence, we get the sequence (yn)n, with initial value y0, and first order recur-
rence relation:

yn = yn−1 + slopen−1∆T, n ≥ 1. (14)

Applying the Euler’s discretisation method to the SIR model, from (7)
and (14) we get the following system, valid for all integer n ≥ 1,

sn = sn−1 − β sn−1 in−1∆T,

in = in−1 + βsn−1 in−1∆T − γ in−1∆T,

rn = rn−1 + γin−1∆T,

(15)

which is called a system with difference equations and to which we associate
the initial values s0, i0, and r0.

From the quantitative point of view, numerical calculations, simula-
tions, and real data, there is a significant advantage of replacing the original
system of differential equations (7) with the system of difference equations
(15).

2.6. Simulations. Based on the system with finite differences (15) we made
a few simulation with MATLAB for ∆T = 1 and for an interval of time of
100 days, for the functions s of susceptible individuals, i of infected inviduals,
and r of those recovered, normalised by number of total individuals.

We first have a simulation of the discrete SIR model (15) for the sim-
ple case with fixed parameters β and γ, and hence for a fixed reproduction
number ρ > 1. This is the classical evolution of an epidemic, in which the
function i, of infected people, increases up to a maximal value and then de-
creases down to zero. For this simulation, we have to keep in mind that
no exterior intervention is performed and the epidemic is free to evolve, see
Figure 1 for β = 0.3, γ = 1/23, i(0) = 1/27000, and r(0) = 0.

Epidemiologists call this scenario herd immunity in which case individ-
uals get infected and then get recovered either by surviving and becoming
immune or by dying. In this scenario, the rate of death is not considered and
this raises discussions related to public policy, ethics, etc.

A second simulation points out the different scenarios of evolution of
the function i, representing the normalised number of infected individuals, by
varying the parameter β. We observe how the reproduction number ρ controls
the shape of the curve i and points out the bifurcation in the neighbourhood of
ρ = 1, see Figure 2, for parameter γ = 1/23, initial values i(0) = 0.1, r(0) =
0.03, for an interval of time of 100 days, with values reported daily. The
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Figure 1. The evolution of a contagious disease as described
by the classical discretised SIR model in cae of an epidemic
with reproduction number ρ > 1. The function s is depicted
by the green line, the function r is depicted by the blue line,
and the function i is depicted by the red line.

bifurcation appears for the critical value β = 0.04349, when the reproduction
number ρ passes the value 1.

A third simulation was performed with the following scenario: an epi-
demic with reproduction number ρ > 1 outbursts and then, after an interval
of time, by taking measures of social distancing, for example, the reproduc-
tion number is brought to a value ρ < 1, then the measures of social distanc-
ing are relaxed and the reproduction number becomes ρ > 1 again. In such a
scenario, the number of infected individuals oscillates, with intervals of time
of increase followed by intervals of time of decrease, see Figure 3.

2.7. Some Conclusions. The dynamical system model SIR offers the pos-
sibility to understand what can happen with the evolution of a contagious
disease and what we should expect for. The number of reproduction num-
ber ρ tells us wether we will have and epidemic or not, and we have two
parameters β and γ on which we have to work on in order to control the
epidemic. The parameter β can be controlled by social organising and public
institutions while the parameter γ is controlled by medical aspects. When
medical remedies of type antiviral medication and vaccine are missing, the
only leverage that we can have on controlling the reproduction number ρ
is to work on the parameter β. Otherwise, the propagation of the disease
in a given population follows the mathematical model and the social and
individual consequences are very difficult to estimate.
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Figure 2. The dependence of the type of evolution of the
function i of normalised infected people by a contagious dis-
ease, for a varying parameter β taking values between 0.0025
and 0.1, with sampling interval of 0.0025.

Figure 3. We observe the scenario for variations of the pa-
rameter β either 0.4 or 0.1 for intervals of time of 30 days.

In reality, neither β nor γ is constant in time, but the general evolution
of the function i of infected people can be obtained from the discrete version
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of the SIR model, by making β = (βn)n and γ = (γn) sequences. In particu-
lar, when the reproduction number ρ oscillates, talking about “reaching the
maximal level” does not make too much sense because there may be more
maximal levels and more intervals of time of increase and decrease, a kind
of “waves”. The reader may combine our qualitative analysis with the cur-
rent pandemic of COVID-19 using the data provided by the Imperial College
COVID-19 Response Team [5].
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Abstract. We prove that for every natural number k and every continuous
function f : [0, 1] → R the following equality holds

lim
n→∞

n

(lnn)k−1

∫
· · ·

∫
[0,1]k

(1− x1 · · ·xk)
n f ((1− x1 · · ·xk)

n) dx1 · · · dxk

=
1

(k − 1)!

∫ 1

0

f (x) dx.
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1. Introduction

In this paper we find the limit of a sequence of integrals on the k-
dimensional unit cube. This limit can be viewed as a natural extension of the
well-known limit in the case of the Riemann integral on [0, 1]: if f : [0, 1] → R
is a continuous function then, lim

n→∞
n
∫ 1
0 xnf (xn) dx =

∫ 1
0 f (x) dx, see [2], [3],

[4]. The notation and notions used and not defined in this paper are standard.
For two sequences of real numbers (xn)n∈N, (yn)n∈N, (yn 6= 0, ∀n ≥ n0) the
notation xn v yn means lim

n→∞
xn
yn

= 1. For details regarding the multiple

Riemann integral we recommend the reader the excellent treatment of this
concept in the book of N. Boboc, see [1].

2. The main results

Proposition 1. For every n ∈ N we define

A(2)
n =

1

n+ 1

(
1 +

1

2
+ · · ·+ 1

n+ 1

)

and A
(k+1)
n = 1

n+1

(
1 +A

(k)
1 + · · ·+A

(k)
n

)
, for k ≥ 2. Then:

(i) For every k ≥ 2 and every n ∈ N we have∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n dx1 · · · dxk = A(k)
n .

(ii) For every k ≥ 2, we have A
(k)
n v 1

(k−1)! ·
(lnn)k−1

n .

Proof. First we prove that for every a ∈ R

∫ 1

0
(1− at)n dt =

1

n+ 1

(
1 + (1− a) + (1− a)2 + · · ·+ (1− a)n

)
. (1)

If a = 0 the equality is obvious. If a 6= 0 then

∫ 1

0
(1− at)n dt =

− (1− at)n+1

(n+ 1) a

∣∣∣∣1
0

=
1

n+ 1
· 1− (1− a)n+1

a

=
1

n+ 1

(
1 + (1− a) + (1− a)2 + · · ·+ (1− a)n

)
.
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(i) The proof is by induction on k. For k = 2 by Fubini’s theorem and (1),
for every n ∈ N, we have

x
[0,1]2

(1− xy)n dxdy =

∫ 1

0

(∫ 1

0
(1− xy)n dy

)
dx

=
1

n+ 1

∫ 1

0

(
1 + (1− x) + (1− x)2 + · · ·+ (1− x)n

)
dx

=
1

n+ 1

(
1 +

1

2
+ · · ·+ 1

n+ 1

)
= A(2)

n .

Let us suppose that
∫
· · ·
∫
[0,1]k (1− x1 · · ·xk)n dx1 · · · dxk = A

(k)
n , for some

integer k ≥ 2 and every n ∈ N.
Then by Fubini’s theorem, (1) and the inductive hypothesis we get∫

· · ·
∫
[0,1]k+1

(1− x1 · · ·xkxk+1)
n dx1 · · · dxkdxk+1

=

∫
· · ·
∫
[0,1]k

(∫ 1

0
(1− x1 · · ·xkxk+1)

n dxk+1

)
dx1 · · · dxk

=
1

n+ 1

∫
[0,1]k

(1 + (1− x1 · · ·xk) + · · ·+ (1− x1 · · · xk)n) dx1 · · · dxk

=
1

n+ 1

(
1 +A

(k)
1 + · · ·+A(k)

n

)
= A(k+1)

n .

(ii) The proof is by induction on k. As it is well-known, 1+ 1
2+· · ·+ 1

n+1 v lnn

and thus, A
(2)
n = 1

n+1

(
1 + 1

2 + · · ·+ 1
n+1

)
v lnn

n . Let k ≥ 2 and suppose

that A
(k)
n v (lnn)k−1

n · 1
(k−1)! . Since the series

∞∑
n=1

(lnn)k−1

n diverges, by the

Stolz-Cesàro Lemma, the case
[
∞
]
, 1+A

(k)
1 + · · ·+A

(k)
n v 1

(k−1)!

n∑
i=1

(ln i)k−1

i .

By the Stolz-Cesàro Lemma we deduce that
n∑

i=1

(ln i)k−1

i v (lnn)k

k and hence

A
(k+1)
n v 1

k! ·
(lnn)k

n . 2
Theorem 2. Let k ∈ N and f : [0, 1] → R be a continuous function. Then

lim
n→∞

n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n f ((1− x1 · · ·xk)n) dx1 · · · dxk

=
1

(k − 1)!

∫ 1

0
f (x) dx.

Proof. The case k = 1 is well-known, see [2] or [3]. Let k ≥ 2.
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The case of polynomials. First note that by Proposition 1 for every
i ∈ Z, i ≥ 0, we have∫

· · ·
∫
[0,1]k

(1− x1 · · ·xk)n(i+1) dx1 · · · dxk v 1

(k − 1)!
· (ln (n (i+ 1)))k−1

n (i+ 1)

and hence∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n(i+1) dx1 · · · dxk v 1

(k − 1)!
· 1

i+ 1

(lnn)k−1

n
. (2)

Let P (t) = a0 + a1t+ · · ·+ akt
k be a polynomial. From (2) we deduce that

lim
n→∞

n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n P ((1− x1 · · ·xk)n) dx1 · · · dxk

=
k∑

i=0

ai lim
n→∞

n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n(i+1) dx1 · · · dxk

=
1

(k − 1)!

k∑
i=0

ai
i+ 1

,

and so

lim
n→∞

n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n P ((1− x1 · · ·xk)n) dx1 · · · dxk

=
1

(k − 1)!

∫ 1

0
P (x) dx.

The case of continuous functions. Let f : [0, 1] → R be a continuous
function and let ε > 0. By Bernstein’s theorem, there exists a polynomial
Pε : [0, 1] → R such that |f (x)− Pε (x)| < ε, ∀x ∈ [0, 1], that is,

−ε+ Pε (x) ≤ f (x) ≤ ε+ Pε (x) , ∀x ∈ [0, 1] . (3)

From (3) we deduce that for every natural number n we have

n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n Pε ((1− x1 · · ·xk)n) dx1 · · · dxk

− εn

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n dx1 · · · dxk

≤ n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n f ((1− x1 · · ·xk)n) dx1 · · · dxk

≤ n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n Pε ((1− x1 · · ·xk)n) dx1 · · · dxk

+
εn

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n dx1 · · · dxk. (4)
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Then, from (3) and (4) we get

1

(k − 1)!

∫ 1

0
Pε (x) dx− ε

(k − 1)!

≤ lim inf
n→∞

n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n f ((1− x1 · · ·xk)n) dx1 · · · dxk

≤ lim sup
n→∞

n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n f ((1− x1 · · ·xk)n) dx1 · · · dxk

≤ 1

(k − 1)!

∫ 1

0
Pε (x) dx+

ε

(k − 1)!
. (5)

But, from (3)

∫ 1

0
f (x) dx− ε ≤

∫ 1

0
Pε (x) dx ≤

∫ 1

0
f (x) dx+ ε (6)

and hence from (5) and (6) we get

1

(k − 1)!

∫ 1

0
f (x) dx− 2ε

(k − 1)!

≤ lim inf
n→∞

n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n f ((1− x1 · · ·xk)n) dx1 · · · dxk

≤ lim sup
n→∞

n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n f ((1− x1 · · ·xk)n) dx1 · · · dxk

≤ 1

(k − 1)!

∫ 1

0
f (x) dx+

2ε

(k − 1)!
.

Since ε > 0 is arbitrary we obtain

1

(k − 1)!

∫ 1

0
f (x) dx

≤ lim inf
n→∞

n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n f ((1− x1 · · ·xk)n) dx1 · · · dxk

≤ lim sup
n→∞

n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n f ((1− x1 · · ·xk)n) dx1 · · · dxk

≤ 1

(k − 1)!

∫ 1

0
f (x) dx.
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Thus

lim inf
n→∞

n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n f ((1− x1 · · ·xk)n) dx1 · · · dxk

= lim sup
n→∞

n

(lnn)k−1

∫
· · ·
∫
[0,1]k

(1− x1 · · ·xk)n f ((1− x1 · · ·xk)n) dx1 · · · dxk

=
1

(k − 1)!

∫ 1

0
f (x) dx,

and the theorem is proved 2
References
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[4] D. Popa, Limitele unor şiruri de integrale (in Romanian), Gazeta Matematică seria B
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Abstract. The 14th South Eastern European Mathematical Olympiad
for University Students (SEEMOUS 2020) took place on March 3–8, 2020,
in Thessaloniki, Greece. We present the competition problems and their
solutions, as given by the corresponding authors. Alternative solutions
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Students with International Participation (SEEMOUS 2020). The compe-
tition was hosted by the School of Mathematics of the Aristotle University
of Thessaloniki, Greece, between March 3 and March 8, 2020. Due to the
evolution of the COVID-19 epidemic in Europe, some of the teams were not
able to participate, which significantly reduced the number of contestants to
58, representing 16 universities from Bulgaria, Romania, Greece and Repub-
lic of North Macedonia. The jury awarded 7 gold medals, 14 silver medals
and 18 bronze medals. The student Andrei Robert Bâra from University
of Bucharest was the absolute winner of the competition, being the only
contestant that obtained full marks to all four problems.

We present the problems from the contest and their solutions as given
by the corresponding authors, together with alternative solutions provided
by members of the jury or by the contestants.

Problem 1. Consider A ∈ M2020(C) such that

A+A∗ = I2020, A ·A∗ = I2020, (1)

where A∗ is the adjugate of A, i.e., the matrix whose elements are a∗ij =

(−1)i+jdji, where dji is the determinant obtained from A by eliminating the
row j and the column i. Find the maximum number of matrices A verifying
(1) such that any two of them are not similar.

Marian Panţiruc, Gheorghe Asachi Technical University of Iaşi, Romania

The jury considered the problem to be easy. With almost 15% of the
contestants providing a full solution and another 10% getting close to a com-
plete one, the jury’s evaluation was correct.

Author’s solution. It is known that A ·A∗ = detA · I2020, hence, from the
second relation in (1) we obtain that detA = 1 and A is invertible. Next,
multiplying in the first relation of (1) by A, we get A2−A+I2020 = O2020. It
follows that the minimal polynomial of A dividesX2−X+1 = (X−ω)(X−ω̄),

where ω = 1
2 + i

√
3
2 = cos π

3 + i sin π
3 . Because the factors of the minimal

polynomial of A are of degree 1, it follows that A is diagonalizable, so A is
similar to a matrix of the form

Ak =

(
ωIk Ok,2020−k

O2020−k,k ω̄I2020−k

)
, k ∈ {0, 1, . . . , 2020} .

Since detA = 1, it follows that

ωkω̄2020−k = 1 ⇔ ω2k−2020 = 1 ⇔ cos
(2k − 2020)π

3
+ i sin

(2k − 2020)π

3
= 1

⇔ cos
(2k + 2)π

3
+ i sin

(2k + 2)π

3
= 1

⇔ k = 3n− 1 ∈ {0, . . . , 2020} ⇔ k ∈ {2, 5, 8, . . . , 2018} .
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Two matrices Ak1 and Ak2 that verify the given relations are not similar if
and only if k1 6= k2, so the required maximum number of matrices is 673.

Remark 1. The notation A∗ is used to denote different objects in different
countries, so a more clear statement of the problem is:

Find the maximum number of non similar matrices in M2020(C) of de-
terminant 1 such that the sum between a matrix and its inverse is the unit
matrix I2020.

Remark 2. The interested reader can verify that if A ∈ Mn(C) is singular,
then the relation A+A∗ = In holds if and only if rankA = n−1 and A2 = A.

Problem 2. Let k > 1 be a real number. Calculate:

(a) L = lim
n→∞

∫ 1

0

(
k

n
√
x+ k − 1

)n

dx;

(b) lim
n→∞

n

[
L−

∫ 1

0

(
k

n
√
x+ k − 1

)n

dx

]
.

Ovidiu Furdui, Alina Ŝıntămărian, Technical University of Cluj-Napoca,

Romania

The jury considered the problem to be of low to medium difficulty. Yet,
only one contestant obtained the maximum number of points for this problem,
while about 40% of the contestants got a blank score, proving it to be the most
difficult problem.

Authors’ solution. (a) Using the substitution x = yn, we have that

In :=

∫ 1

0

(
k

n
√
x+ k − 1

)n

dx = nkn
∫ 1

0

(
y

y + k − 1

)n−1 dy

y + k − 1
.

By the second substitution t =
y

y + k − 1
, we obtain after some calculations

that In = nkn
∫ 1

k

0

tn−1

1− t
dt. Next, the integration by parts leads to

In =
k

k − 1
− kn

∫ 1
k

0

tn

(1− t)2
dt.

It follows that L := lim
n→∞

In =
k

k − 1
, since

0 < kn
∫ 1

k

0

tn

(1− t)2
dt < kn · k2

(k − 1)2

∫ 1
k

0
tn dt =

k

(n+ 1)(k − 1)2
→ 0

as n → ∞.



26 Articles

(b) Continuing from L − In = kn
∫ 1

k

0

tn

(1− t)2
dt, the integration by

parts gives

L− In =
1

n+ 1
· k

(k − 1)2
− 2kn

n+ 1

∫ 1
k

0

tn+1

(1− t)3
dt.

This implies that

lim
n→∞

n (L− In) = lim
n→∞

[
n

n+ 1
· k

(k − 1)2
− 2knn

n+ 1

∫ 1
k

0

tn+1

(1− t)3
dt

]

=
k

(k − 1)2
− 2 lim

n→∞
kn
∫ 1

k

0

tn+1

(1− t)3
dt =

k

(k − 1)2
,

since

0 < kn
∫ 1

k

0

tn+1

(1− t)3
dt <

kn+3

(k − 1)3

∫ 1
k

0
tn+1 dt =

k

(k − 1)3(n+ 2)
→ 0

as n → ∞.

Solution proposed by Tiberiu Trif. (a) Similarly to the authors’ solution,
after the first substitution x = yn we get

In :=

∫ 1

0

(
k

n
√
x+ k − 1

)n

dx =

∫ 1

0
kn

(
ky

y + k − 1

)n−1 dy

y + k − 1
.

Further, a second substitution t =

(
ky

y + k − 1

)n

yields

dt = k(k − 1)n

(
ky

y + k − 1

)n−1 dy

(y + k − 1)2
, y + k − 1 =

k(k − 1)

k − t1/n
,

whence

In =

∫ 1

0

y + k − 1

k − 1
k(k − 1)n

(
ky

y + k − 1

)n−1 dy

(y + k − 1)2
= k

∫ 1

0

dt

k − t1/n
.

By virtue of the Arzelà bounded convergence theorem, we deduce that

lim
n→∞

In = k lim
n→∞

∫ 1

0

dt

k − t1/n
= k

∫ 1

0

dt

k − 1
=

k

k − 1
.
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(b) Taking into account the representation of In obtained in part (a),
we have

n

(
k

k − 1
− In

)
= n

(
k

k − 1
− k

∫ 1

0

dt

k − t1/n

)
= kn

∫ 1

0

(
1

k − 1
− 1

k − t1/n

)
dt

=
k

k − 1

∫ 1

0+0

n
(
1− t1/n

)
k − t1/n

dt.

Consider the sequence of functions fn : (0, 1] → (0,∞) (n ≥ 1), defined by

fn(t) :=
n
(
1− t1/n

)
k − t1/n

for all t ∈ (0, 1].

It is immediately seen that

lim
n→∞

fn(t) = − ln t

k − 1
=: f(t) for all t ∈ (0, 1]

and that

fn(t) ≤ f(t) for all n ≥ 1 and all t ∈ (0, 1]

because

n
(
1− t1/n

)
≤ − ln t and

1

k − t1/n
≤ 1

k − 1
.

Since ∫ 1

0+0
f(t) dt = − 1

k − 1

∫ 1

0+0
ln tdt =

1

k − 1
,

by applying the dominated convergence theorem we deduce that

lim
n→∞

n

(
k

k − 1
− In

)
=

k

k − 1
lim
n→∞

∫ 1

0+0
fn(t) dt

=
k

k − 1

∫ 1

0+0
f(t) dt =

k

(k − 1)2
.

Solution to part (a), proposed by Tiberiu Trif. Consider the sequence
of functions fn : (0, 1] → (0,∞) (n ≥ 1), defined by

fn(x) :=

(
k

n
√
x+ k − 1

)n

for all x ∈ (0, 1].

A standard computation shows that

lim
n→∞

fn(x) = x−1/k =: f(x) for all x ∈ (0, 1].

We claim that

fn(x) ≤ f(x) for all n ≥ 1 and all x ∈ (0, 1].
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Indeed, given any x ∈ (0, 1], we have

fn(x) ≤ f(x) ⇐⇒ k
n
√
x+ k − 1

≤ x−
1
nk ⇐⇒ x

1
n + k − 1 ≥ kx

1
nk .

Letting t := x
1
nk , the last inequality becomes

tk + k − 1 ≥ kt. (2)

To prove (2), note that t ∈ (0, 1] and by virtue of Bernoulli’s inequality, we
have

tk + k − 1 = (1 + (t− 1))k + k − 1 ≥ 1 + k(t− 1) + k − 1 = kt,

hence (2) holds. Since∫ 1

0+0
f(x) dx =

∫ 1

0+0
x−1/k dx =

k

k − 1
,

by applying the dominated convergence theorem we conclude that

lim
n→∞

∫ 1

0

(
k

n
√
x+ k − 1

)n

dx = lim
n→∞

∫ 1

0+0
fn(x)dx =

∫ 1

0+0
f(x)dx =

k

k − 1
.

Solution proposed by Mircea Rus. The problem can be seen as a par-
ticular case of the following set of limits:

(i) L = lim
n→∞

∫ 1

0
fn
(

n
√
x
)
dx,

(ii) lim
n→∞

(
L−

∫ 1

0
fn
(

n
√
x
)
dx

)
,

where f : [0, 1] → R is of class C2 such that f(1) = 1 and the mapping
g : [0, 1] → R, g(t) = tf(t), has no critical points (i.e., g′ has no roots). It is

easy to check that f(t) =
k

t+ k − 1
verifies these conditions.

By the substitution t = n
√
x, we can write

In =

∫ 1

0
fn
(

n
√
x
)
dx = n

∫ 1

0
tn−1fn(t) dt = n

∫ 1

0
f(t) · gn−1(t) dt.

Since g(0) = 0, g(1) = f(1) = 1 and g′ has no roots, the function g has a
differentiable inverse h : [0, 1] → [0, 1]. Substituting y = g(t) (i.e., t = h(y)),
it follows that

In = n

∫ 1

0
yn−1·f(h(y))h′(y) dy = n

∫ 1

0
yn−1F (y) dy, where F = (f ◦ h)·h′.

Finally, a last change of variable x = yn leads to

In =

∫ 1

0
F
(

n
√
x
)
dx.
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Note that F is of class C1, since f (hence g and h) is of class C2. Since the
sequence (|F ( n

√
x)|)n is uniformly bounded by max

y∈[0,1]
|F (y)| and

lim
n→∞

F
(

n
√
x
)
= F (1) for all x ∈ (0, 1],

we conclude by Arzelà bounded convergence theorem that

L = lim
n→∞

∫ 1

0
fn
(

n
√
x
)
dx = lim

n→∞

∫ 1

0
F
(

n
√
x
)
dx =

∫ 1

0
F (1) dx = F (1)

= f(h(1)) · h′(1) = 1

g′(1)
=

1

1 + f ′(1)
,

which for f(t) =
k

t+ k − 1
yields the result

k

k − 1
.

For the second limit, we rewrite

n (L− In) = n

∫ 1

0

(
F (1)− F

(
n
√
x
))

dx =

∫ 1−0

0

F ( n
√
x)− F (1)

n
√
x− 1

·1−
n
√
x

1
n

dx.

(3)
We have that∣∣∣∣F ( n

√
x)− F (1)

n
√
x− 1

∣∣∣∣ ≤ max
t∈[0,1]

∣∣F ′(t)
∣∣ for all n ≥ 1 and x ∈ [0, 1).

Also, it is easy to check that∣∣∣∣∣1− n
√
x

1
n

∣∣∣∣∣ = 1− n
√
x

1
n

≤ − lnx for all n ≥ 1 and x ∈ (0, 1].

Because

lim
n→∞

(
F ( n

√
x)− F (1)

n
√
x− 1

· 1−
n
√
x

1
n

)
= −F ′(1) · lnx for all x ∈ (0, 1),

we can now apply the dominated convergence theorem and conclude from (3)
that

lim
n→∞

n (L− In) = −F ′(1)

∫ 1−0

0+0
lnx dx = F ′(1).

An elementary computation gives

F ′(1) = f ′(h(1)) ·
(
h′(1)

)2
+ f(h(1)) · h′′(1) = f ′(1)

(g′(1))2
− g′′(1)

(g′(1))3

=
f ′(1)

(1 + f ′(1))2
− 2f ′(1) + f ′′(1)

(1 + f ′(1))3
=

(f ′(1))2 − f ′(1)− f ′′(1)

(1 + f ′(1))3
,

which, in the case of f(t) =
k

t+ k − 1
, provides the result

k

(k − 1)2
.
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Problem 3. Let n be a positive integer, k ∈ C and A ∈ Mn(C) such that
TrA 6= 0 and

rankA+ rank ((TrA) · In − kA) = n. (4)

Find rankA.
Vasile Pop, Technical University of Cluj-Napoca, Romania

Mihai Opincariu, Avram Iancu National College, Brad, Romania

The jury considered this problem to be also of low to medium difficulty.
This assessment was right, since about 15% of the contestants obtained a
maximum score, while other 10% got close to a complete solution.

Authors’ solution. For simplicity, denote α = TrA. Consider the block
matrix

M =

[
A On

On αIn − kA

]
.

We perform on M a sequence of elementary transformations on rows and
columns (that do not change the rank) as follows:

M
R1−→
[
A On

A αIn − kA

]
C1−→
[
A kA
A αIn

]
R2−→
[
A− k

αA
2 On

A αIn

]
C2−→
[
A− k

αA
2 On

On αIn

]
= N,

where R1 is the left multiplication by

[
In On

In In

]
; C1 is the right multipli-

cation by

[
In kIn
On In

]
; R2 is the left multiplication by

[
In − k

αA
On In

]
; C2

is the right multiplication by

[
In On

− 1
αA In

]
.

It follows that

n = rank A+rank (αIn−kA) = rank M = rank N = rank

(
A− k

α
A2

)
+n,

hence rank

(
A− k

α
A2

)
= 0, which leads to A − k

αA
2 = On. Letting B :=

k
αA, it follows that B2 = B, hence

rank B = TrB = Tr

(
k

α
A

)
=

k

α
TrA = k = rankA.

Solution proposed by Cornel Băeţica. It is known (see, e.g., [1, Theorem
2.6]) that the equality in Sylvester’s rank inequality

rankAB ≥ rankA+ rankB − n
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holds if and only if KerA ⊆ ImB, i.e., the null space of A is a subset of the
image space of B. Let B = (TrA) · In − kA. Then for all x ∈ KerA,

x =
1

TrA
((TrA) · In − kA)x =

1

TrA
·Bx ∈ 1

TrA
· ImB = ImB,

hence KerA ⊆ ImB, which means that

rank (A · ((TrA) · In − kA)) = rankA+ rank ((TrA) · In − kA)− n
(4)
= 0.

This shows that A · ((TrA) · In − kA) = On, which implies that k 6= 0

and the minimal polynomial of A divides X

(
TrA

k
−X

)
, hence A is diag-

onalizable and the possible eigenvalues are 0 and
TrA

k
6= 0. It follows that

rankA equals the multiplicity of
TrA

k
and taking into account that TrA is

the sum of all eigenvalues of A, we obtain TrA =
TrA

k
·rankA, so rankA = k.

Solution proposed by Marian Panţiruc. We see, as above, that k 6=

0. Then, obviously, rank ((TrA) · In − kA) = rank

(
TrA

k
In −A

)
and for

convenience, denote B =
TrA

k
· In −A. Then

n = rank

(
TrA

k
· In
)

= rank(A+B) = dim(Im(A+B))

≤ dim(ImA+ ImB) = dim(ImA) + dim(ImB)− dim(ImA ∩ ImB)

= rankA+ rankB − dim(ImA ∩ ImB) ≤ rankA+ rankB
(4)
= n.

Since there is equality in the above inequalities, it follows that ImA∩ImB =
{0}. Now, let x ∈ Cn. Note that AB = BA. Then ABx = BAx ∈ ImA ∩

ImB = {0}, hence ABx = 0 for all x ∈ Cn, so AB = A ·
(
TrA

k
· In −A

)
=

On. The conclusion follows, repeating the final argument from the first proof.

Solution proposed by Cristian Grecu, contestant. Observe first that
k 6= 0, otherwise (4) would imply that rankA = 0, so TrA = 0, which is
false. Using the rank theorem, (4) gives def A + def ((TrA) · In − kA) = n,
hence

def A+ def

(
TrA

k
· In −A

)
= n.

This means that we can choose a basis B = {u1, . . . , up} in kerA and a

basis B′ = {v1, . . . , vn−p} in ker

(
TrA

k
· In −A

)
. Observe that for every
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j = 1, . . . , n− p

Avj =

(
TrA

k
· In −

(
TrA

k
· In −A

))
· vj =

TrA

k
· vj ,

so each of the n − p linearly independent eigenvectors vj of
TrA

k
· In − A

(corresponding to the eigenvalue 0) is an eigenvector for A, corresponding

to the non-zero eigenvalue
TrA

k
. Since A already has p linearly indepen-

dent eigenvectors corresponding to 0 (the elements of B), it follows that
{u1, . . . , up, v1, . . . , vn−p} is, in fact, a basis in Cn, consisting of eigenvectors
of A. This means that A is diagonalizable and its rank now equals the mul-

tiplicity of the nonzero eigenvalue
TrA

k
. By repeating the final part of the

previous proof, the conclusion follows.

Solution proposed by Andrei Jelea, contestant. We will use that the
rank of a square matrix is at least the number of its non-zero eigenvalues.

Let λ1 = λ2 = · · · = λr = 0 and λr+1, λr+2, . . . , λn 6= 0 be the
eigenvalues of A (with r possibly 0). Then rankA ≥ n − r. Also, the
eigenvalues of (TrA) · In − kA are {µi = TrA− kλi | i = 1, 2, . . . , n}, with
µ1 = µ2 = . . . = µr = TrA 6= 0. This leads to rank ((TrA) · In − kA) ≥ r,
hence

n = (n− r) + r ≤ rankA+ rank ((TrA) · In − kA)
(4)
= n.

This means that rankA = n− r and rank ((TrA) · In − kA) = r. Also,
µi = 0 for all i ∈ {r + 1, . . . , n}, otherwise (TrA) · In − kA has more than
r non-zero eigenvalues, which contradicts rank ((TrA) · In − kA) = r. Since

TrA =

n∑
i=1

λi =

n∑
i=r+1

λi, it follows that

0 =

n∑
i=r+1

µi = (n− r)TrA− k

n∑
i=r+1

λi = (n− r − k)TrA,

hence n− r − k = 0, which leads to rankA = n− r = k.

Solution proposed by Ştefan Cristian Popa, contestant. Recall that
if J is the Jordan canonical form of some matrix A ∈ Mn(C), then rankA =
rank J = n − p, where p is the number of Jordan blocks in J corresponding
to the eigenvalue 0.

We see, as in the previous proofs, that k 6= 0. Write A as A = PJP−1,
where J is its Jordan canonical form and P is a nonsingular matrix. Since

(TrA) · In− kA = (TrA) ·P ·P−1−P · kJ ·P−1 = P · ((TrA) · In− kJ) ·P−1
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and TrA = TrJ , we can write (4) as

rank J + rank ((TrJ) · In − kJ) = rank J + rank

(
J − Tr J

k
· In
)

= n. (5)

Since Tr J = TrA 6= 0, it follows that J 6= On, hence rank J ≥ 1 and, by (5),

rank

(
J − Tr J

k
· In
)

≤ n−1. Hence, we conclude that det

(
J − TrJ

k
· In
)

=

0, which means that 0 is an eigenvalue of the Jordan form J− Tr J

k
·In, while

all the 0 eigenvalues in J − Tr J

k
· In correspond to the eigenvalues λ =

Tr J

k
in J .

Let p and q be the number of Jordan blocks associated to the eigenvalue

0 in J and J−Tr J

k
·In, respectively (pmay be 0); equivalently, q is the number

of Jordan blocks associated to the eigenvalue λ in J . Then

rank J = n− p, rank

(
J − Tr J

k
· In
)

= n− q,

hence n − p + n − q = n by (5), which leads to p + q = n. This means that
the only eigenvalues of J are 0 and λ, each of them belonging to a Jordan
block of size 1. In conclusion,

TrJ = p · 0 + q · λ = q · Tr J
k

=⇒ q = k

and

rankA = rank J = n− p = q = k.

Solution proposed by Mădălin Mitrofan, contestant. As seen in the

previous solutions, k 6= 0. Also, λ =
TrA

k
6= 0 is an eigenvalue of A, by an

argument similar to one presented in the previous proof. Since

rankA = n− rank ((TrA) · In − kA) = n− rank (λ · In −A) ,

it follows that rankA = q(λ), the geometric multiplicity of λ. On the other
hand, q(λ) is the number of blocks in JA, the Jordan canonical form of A,
hence

rank JA = rankA = q(λ).

This happens only when all the blocks in JA corresponding to λ are of size
1, while the other blocks are all 0, i.e.,

JA = λ

[
Ir 0
0 0

]
, r = rankA.

Finally,

TrA = TrJA = r · λ = rankA · TrA
k

,
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that leads to rankA = k.

Remark. From the seven solutions to this problem, we can summarize
several additional conclusions:

(1) A · ((TrA) · In − kA) = On; equivalently, B =
k

TrA
· A is idem-

potent (B2 = B), hence Bm = B, which translates as km−1Am =

(TrA)m−1A for all m ≥ 1.
(2) KerA = Im ((TrA) · In − kA), ImA = Ker ((TrA) · In − kA) and

Cn = KerA⊕Ker ((TrA) · In − kA).

(3) A is diagonalizable, with the eigenvalues
TrA

k
and, possibly, 0.

Problem 4. Consider 0 < a < T , D = R \ {kT + a | k ∈ Z}, and let
f : D → R be a T−periodic and differentiable function such that f ′ > 1 on
(0, a) and which satisfies

f(0) = 0, lim
x→a
x<a

f(x) = +∞ and lim
x→a
x<a

f ′(x)

f2(x)
= 1.

(a) Prove that for every n ∈ N∗, the equation f(x) = x has an unique
solution xn in the interval (nT, nT + a).

(b) Let yn = nT + a− xn and zn =

∫ yn

0
f(x) dx. Prove that lim

n→∞
yn = 0

and study the convergence of the series

∞∑
n=1

yn and

∞∑
n=1

zn.

Radu Strugariu, Gheorghe Asachi Technical University of Iaşi, Romania

The jury considered this problem to be of medium to high difficulty.
Since only two maximum scores were obtained, and another five contestants
got close to the complete solution, we consider that the assessment of the jury
was right.

Author’s solution. (a) By the periodicity of f , it follows that f(nT ) =
0 < nT and lim

x↗nT+a
f(x) = +∞ > nT + a for all n ∈ N∗, hence the equation

f(x) = x has at least one solution in the interval (nT, nT + a).
Next, consider the function g(x) = f(x)−x on (nT, nT + a) and observe

that if there are two solutions of the equation f(x) = x in (nT, nT + a), say
x1n < x2n, then, by Rolle’s Theorem, there exists rn ∈

(
x1n, x

2
n

)
⊂ (nT, nT + a)

such that g′(rn) = f ′(rn)−1 = 0, which is in contradiction with g′ = f ′−1 >
0 on (nT, nT + a) (also, by periodicity).

(b) Observe that f is strictly increasing on (nT, nT + a) for all n. We
prove that (yn) is decreasing. By contradiction, suppose that yn < yn+1 for
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some n. Then T + xn > xn+1, and by the monotonicity of f , it follows that

xn = f(xn) = f(xn + T ) > f(xn+1) = xn+1,

which is an obvious contradiction.
Since yn ∈ (0, a) for every n, it follows that (yn) is convergent, so there

exists y = lim
n→∞

yn ∈ [0, a). Suppose, by contradiction, that y > 0. Since

xn − nT → a − y for n → ∞, it follows by the continuity of f on (−T, a)
that f(xn − nT ) → f(a − y) for n → ∞. At the same time, f(xn − nT ) =
f(xn) = xn → ∞, hence a contradiction. Therefore, lim

n→∞
yn = 0.

Next, we prove that

lim
n→∞

nyn =
1

T
, (6)

hence
∞∑
n=1

yn diverges by a comparison test. For that, observe that

lim
n→∞

nyn =
1

T
lim
n→∞

nT

xn
· xnyn =

1

T
lim
n→∞

xnyn.

Moreover,

lim
n→∞

xnyn = lim
n→∞

f(xn)yn = lim
n→∞

f(nT + a− yn)yn = lim
n→∞

f(a− yn)yn

= lim
n→∞

yn
1

f(a−yn)

= − lim
n→∞

(a− yn)− a
1

f(a−yn)

.

But a − yn ↗ a, so the previous limit is − lim
x↗a

x− a
1

f(x)

= − lim
x↗a

1

− f ′(x)
f2(x)

= 1,

which concludes (6).
For the second series, observe that for every n, there exists cn ∈ (0, yn)

such that zn = yn · f(cn). Since f is increasing on (0, a), it follows that

zn ≤ ynf(yn) = y2n · f(yn)
yn

. (7)

Since f is differentiable at 0 and
f(yn)

yn
→ f ′(0) ≥ 0 for n → ∞, it follows

that the sequence

(
f(yn)

yn

)
n

is bounded. By (6) and (7), we conclude that

there exist n0 ∈ N and K > 0 such that

0 ≤ zn ≤ K

n2
, for all n ≥ n0.

By a comparison test,
∞∑
n=1

zn converges.
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Solution proposed by Tiberiu Trif. (a) Fix n ∈ N∗. Then the function
g : [nT, nT + a) → R, g(x) = f(x)−x, is continuous and, by the periodicity of
f , satisfies g(nT ) = −nT < 0, lim

x↗nT+a
g(x) = +∞. Also, g′(x) = f ′(x)− 1 >

0, so g is increasing. It follows that the equation g(x) = 0 has an unique
solution xn ∈ (nT, nT + a).

(b) Observe that f : [0, a) → [0,+∞) is an increasing bijection, hence
f−1 : [0,+∞) → [0, a) is also an increasing bijection.
Moreover,

a− yn = xn − nT =⇒ f(a− yn) = f(xn − nT ) = f(xn) = xn,

hence a− yn = f−1(xn). Since lim
n→∞

xn = +∞, it follows that

lim
n→∞

(a− yn) = lim
n→∞

f−1(xn) = lim
x→∞

f−1(x) = a,

so lim
n→∞

yn = 0.

Since

xn ∈ (nT, nT + a) =⇒ lim
n→∞

xn
n

= T,

by writing yn = a− f−1(xn), it follows that

lim
n→∞

nyn = lim
n→∞

n

xn
· lim
n→∞

a− f−1(xn)
1
xn

=
1

T
lim
n→∞

a− f−1(xn)
1
xn

=
1

T
lim
y→∞

a− f−1(y)
1
y

f−1(y)=x
======

1

T
lim
x↗a

a− x
1

f(x)

=
1

T
lim
x↗a

−1

− f ′(x)
f2(x)

=
1

T
.

It follows that
∞∑
n=1

yn ∼
∞∑
n=1

1

n
, i.e., it diverges.

For the second series, observe by the monotonicity of f that

zn ≤ ynf(yn) =
f(yn)

yn
· y2n =: un.

Then

lim
n→∞

un
1
n2

= lim
n→∞

f(yn)

yn
(nyn)

2 = f ′(0) · 1

T 2
,

so
∞∑
n=1

un ∼
∞∑
n=1

1

n2
, hence

∞∑
n=1

zn is convergent.

Remark. One example of such function f which satisfies the conditions of
the problem is f(x) = tg x, for T = π and a = π

2 . However, since yn =
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nπ + π
2 − xn → 0, the key relation

lim
n→∞

nyn = lim
n→∞

yn
tg yn

· lim
n→∞

n tg
(
nπ +

π

2
− xn

)
= lim

y→0

y

tg y
· lim
n→∞

n

tg xn

= lim
n→∞

n

xn
=

1

π

can be much easier obtained in this case.
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An Ermakov type test

Gabriel T. Prǎjiturǎ1)

Abstract. V. P. Ermakov gave in 1872 a criterion for the convergence
of a series with positive terms by employing the exponential function and
the integral test. In this note we extended this criterion to more general
functions subject to a certain regularity growth condition.

Keywords: positive series, convergence test.

MSC: Primary 37A45, 40A30; Secondary 40E05

Ermakov test [1] is a test for convergence of positive series based on the
exponential function and the integral test. A proof can be found in [2] on
pages 48–51. We extended this test to more general functions subject to a
certain regularity growth condition.

Theorem 1. Let f be a continuous, positive, decreasing function defined for
x ≥ 1 and g a differentiable, strictly increasing function defined on the same
domain such that there is a sequence (xn) ⊂ [1,∞) increasing to ∞ for which
g(xn) > xn for every n ≥ 1.

(i) If there is a number q ∈ (0, 1) such that

f(g(x))g′(x)

f(x)
≤ q

for all sufficiently large x then
∑

n f(n) is convergent.
(ii) If, for all sufficiently large x

f(g(x))g′(x)

f(x)
≥ 1

then the series is divergent.

Proof. In both cases we will derive the conclusion from the integral test.
(i) Without loss of generality we can assume that

f(g(x))g′(x)

f(x)
≤ q

is true for every x ≥ x1.
Then∫ g(x)

g(x1)
f(t) dt =

∫ x

x1

f(g(s))g′(s) ds ≤ q

∫ x

x1

f(s) ds = q

∫ x

x1

f(t) dt

1)Department of Mathematics, The College at Brockport, State University of New York,
350 New Campus Drive *Brockport, New York 14420-2931, USA, gprajitu@brockport.edu
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and, for xn ≥ g(x1),

(1− q)

∫ g(xn)

g(x1)
f(t) dt =

∫ g(xn)

g(x1)
f(t) dt− q

∫ g(xn)

g(x1)
f(t) dt

≤ q

∫ xn

x1

f(t) dt− q

∫ g(xn)

g(x1)
f(t) dt

= q

(∫ xn

x1

f(t) dt−
∫ g(xn)

g(x1)
f(t) dt

)

= q

(∫ g(x1)

x1

f(t) dt−
∫ g(xn)

xn

f(t) dt

)

≤ q

∫ g(x1)

x1

f(t) dt.

Therefore ∫ g(xn)

g(x1)
f(t) dt ≤ q

1− q

∫ g(x1)

x1

f(t) dt

and thus ∫ g(xn)

x1

f(t) dt =

∫ g(x1)

x1

f(t) dt+

∫ g(xn)

g(x1)
f(t) dt

≤
∫ g(x1)

x1

f(t) dt+
q

1− q

∫ g(x1)

x1

f(t) dt

=
1

1− q

∫ g(x1)

x1

f(t) dt.

Let x ≥ x1 and let xn ≥ x. Then∫ x

x1

f(t) dt ≤
∫ xn

x1

f(t) dt ≤ 1

1− q

∫ g(x1)

x1

f(t) dt.

Hence ∫ ∞

x1

f(t) dt

exists and thus the series is convergent.
(ii) By considering, if needed, a subsequence, we can assume, without

loss of generality, that xn+1 ≥ g(xn).
We have∫ g(xn)

g(x1)
f(t) dt =

∫ xn

x1

f(g(s))g′(s) ds ≥
∫ xn

x1

f(s) ds =

∫ xn

x1

f(t) dt.

Therefore ∫ g(xn)

xn

f(t) dt ≥
∫ g(x1)

x1

f(t) dt
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and thus ∫ g(xn)

x1

f(t) dt ≥
n−1∑
k=1

∫ g(xk)

xk

f(t) dt ≥ n

∫ g(x1)

x1

f(t) dt,

which implies that ∫ ∞

x1

f(t) dt = ∞

and so the series is divergent. 2
Ermakov test corresponds to g(x) = ex.
The condition about the existence of the sequence (xn) is necessary in

part (i). For instance, if we take f(x) = 1/x and g(x) = lnx then

f(g(x))g′(x) ≤ 1

2
f(x) ⇐⇒ x ≤ 1

2
x lnx ⇐⇒ 2 ≤ lnx,

which is true for x ≥ e2 but the series is divergent.
The same hypothesis is also necessary in part (ii): if we take f(x) = 1/x2

and g(x) = lnx then

f(g(x))g′(x) ≥ f(x) ⇐⇒ 1

ln2 x

1

x
≥ 1

x2
⇐⇒ x ≥ ln2 x,

which is true for x sufficiently large but the series is convergent.
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