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Abstract. Let a ∈ R and f : (a,∞) → R be a continuous function such
that f (x) > x, ∀x > a and (xn)n≥1 the sequence defined by the initial

condition x1 > a and the recurrence relation xn+1 = f (xn) for every
n ≥ 1. We prove that if there exist b0, b1, b2 ∈ R, b0 ̸= 0, such that

lim
x→∞

x2
Ä
f (x)− x− b0 − b1

x

ä
= b2 then

C := lim
n→∞

Å
xn − b0n− b1

b0
· lnn

ã
∈ R.

Moreover, xn = b0n+ b1
b0

· lnn+C +
b21
b30

· lnn
n

+ o
(
lnn
n

)
. Many and various

concrete examples are given.
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MSC: 35C20, 11B37, 40A05, 40A25.

1. Introduction

The concept of asymptotic expansion of a function was introduced by
Stieltjes and Poincaré in the year 1886, see [7, 14]. We recall it now. Let
b ∈ R ∪ {−∞}, h : (b,∞) → R a function and (an)n≥0 be a sequence of
real numbers. A series of the form a0 +

a1
x + a2

x2 + · · · is called an asymptotic

expansion of the function h if lim
x→∞

[
h (x)−

(
a0 +

a1
x + a2

x2 + · · ·+ an
xn

)]
xn = 0

for every n ≥ 0, equivalently

lim
x→∞

h (x) = a0, lim
x→∞

x (h (x)− a0) = a1, lim
x→∞

x2
(
h (x)− a0 −

a1
x

)
= a2,
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and so on. Let us note that, for example, if lim
x→∞

x2
(
h (x)− a0 − a1

x

)
= a2,

then lim
x→∞

x (h (x)− a0) = a1 and lim
x→∞

h (x) = a0. For more interesting

historical details see [6, pages 536–537].
All our notation and notions are standard. We recall just that, if (bn)n∈N

is a sequence of real numbers such that there exists n0 ∈ N with bn 6= 0,
∀n ≥ n0, and (an)n∈N is another sequence of real numbers, the notation
an = o (bn) means lim

n→∞
an
bn

= 0. The notation xn = an + o (bn) means

xn − an = o (bn). If m ∈ N, b ∈ R ∪ {−∞} and f : (b,∞) → R is a

function, the notation f (x) = o (xm) as x → ∞ means lim
x→∞

f(x)
xm = 0, while

if f : (−δ, δ) → R (δ > 0) the notation f (x) = o (xn) as x → 0 means

lim
x→0

f(x)
xm = 0; for more details, see [2, 6].

In the paper [12] we have proved the following result.

Theorem 1. Let a ∈ R and f : (a,∞) → R be a continuous function such
that f (x) > x, ∀x > a. Define the sequence (xn)n≥1 by the initial condition

x1 > a and the recurrence relation xn+1 = f (xn) for every n ≥ 1. Then:
(i) lim

x→∞
xn = ∞.

(ii) If there exists b0 ∈ R such that y = x+ b0 is an oblique asymptote at the
graph of f , then lim

n→∞
xn
n = b0.

(iii) If there exist b0, b1 ∈ R, b0 6= 0, such that lim
x→∞

x (f (x)− x− b0) = b1,

then lim
n→∞

n
lnn

(
xn
n − b0

)
= b1

b0
, that is xn = b0n+ b1

b0
· lnn+ o (lnn).

A simple look of the statement of Theorem 1 show that there is a
connection between the asymptotic expansion of the function h (x) = f (x)−x
and the asymptotic expansion of the sequence (xn)n≥1. Without any claim of
completeness let us mention that the asymptotic behavior of some recurrent
sequences defined as in Theorem 1 appears in [8, Exercises 173, 174, page 38],
[1, Example 11, page 300], [3, pages 154–159], [10, Chapter 2], [13, Theorems
1 and 2], [5, Theorem 3], [11, Proposition 9].

2. The main results

The main purpose of this paper is to complete Theorem 1, thus extend-
ing the connection between recurrent sequences and the asymptotic expansion
of a function. This is the content of the following theorem.

Theorem 2. Let a ∈ R and f : (a,∞) → R be a continuous function such
that f (x) > x, ∀x > a. Define the sequence (xn)n≥1 by the initial condition

x1 > a and the recurrence relation xn+1 = f (xn) for every n ≥ 1. If there

exist b0, b1, b2 ∈ R, b0 6= 0, such that lim
x→∞

x2
Ä
f (x)− x− b0 − b1

x

ä
= b2, then
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there exists

C := lim
n→∞

Å
xn − b0n− b1

b0
· lnn

ã
∈ R.

Moreover,

xn = b0n+
b1
b0

· lnn+ C +
b21
b30

· lnn
n

+ o

Å
lnn

n

ã
Proof. For every n ≥ 1 let us define yn = xn − b0n− b1

b0
· lnn and note that

yn+1 − yn = xn+1 − xn − b0 −
b1
b0

ln

Å
1 +

1

n

ã
=

Å
f (xn)− xn − b0 −

b1
xn

ã
+b1

Å
1

xn
− 1

b0n

ã
− b1

b0

ï
ln

Å
1 +

1

n

ã
− 1

n

ò
.

Therefore we get

n2

lnn
(yn+1 − yn) =

n2

lnn

Å
f (xn)− xn − b0 −

b1
xn

ã
+ b1 ·

n2

lnn

Å
1

xn
− 1

b0n

ã
−b1
b0

· n2

lnn

ï
ln

Å
1 +

1

n

ã
− 1

n

ò
. (1)

Since f (x) > x, ∀x > a, from Theorem 1(i), lim
n→∞

xn = ∞ and from

lim
x→∞

x2
Ä
f (x)− x− b0 − b1

x

ä
= b2, it follows that

lim
n→∞

x2n

Å
f (xn)− xn − b0 −

b1
xn

ã
= b2.

From the hypothesis lim
x→∞

x2
Ä
f (x)− x− b0 − b1

x

ä
= b2 ∈ R and the equality

f (x)−x−b0 = x2
Ä
f (x)− x− b0 − b1

x

ä
· 1
x2+

b1
x we get lim

x→∞
(f (x)− x− b0) =

0. Hence by Theorem 1(ii)

n2

lnn

Å
f (xn)− xn − b0 −

b1
xn

ã
= x2n

Å
f (xn)− xn − b0 −

b1
xn

ã
· n

2

x2n
· 1

lnn

−→ b2 ·
1

b20
· 0 = 0 as n → ∞. (2)

Similarly, from hypothesis and the equality

x (f (x)− x− b0)− b1 = x2
Å
f (x)− x− b0 −

b1
x

ã
· 1
x

we deduce that lim
x−→∞

x (f (x)− x− b0) = b1, and from Theorem 1(iii) it

follows that

n2

lnn

Å
1

xn
− 1

b0n

ã
= − 1

b0
· xn − b0n

lnn
· n

xn
−→ −b1

b30
as n → ∞. (3)
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We have also

n2

lnn

ï
ln

Å
1 +

1

n

ã
− 1

n

ò
=

ln
(
1 + 1

n

)
− 1

n
1
n2

· 1

lnn
→ −1

2
·0 = 0 as n → ∞. (4)

From the relations (1)–(4) we deduce that

lim
n→∞

yn+1 − yn
lnn
n2

= −b21
b30
. (5)

From (5) it follows, in particular, that the sequence

Å
yn+1−yn

lnn
n2

ã
n≥2

is bounded,

thus there exists M > 0 such that |yn+1 − yn| ≤ M lnn
n2 , ∀n ≥ 2. Since, by

the Cauchy condensation test, the series
∞∑
n=1

lnn
n2 is convergent, from the com-

parison criterion for series it follows that the series y1 +
∞∑
n=1

(yn+1 − yn) is

absolutely convergent, hence convergent. Let C ∈ R be its sum, that is,

C := lim
n→∞

Ç
y1 +

n−1∑
k=1

(yk+1 − yk)

å
, or equivalently C = lim

n→∞
yn. By the

Stolz-Cesàro lemma, the case
[
0
0

]
, see [4], from (5) it follows that

lim
n→∞

∞∑
k=n

(yk+1 − yk)

∞∑
k=n

ln k
k2

= lim
n→∞

∞∑
k=n+1

(yk+1 − yk)−
∞∑
k=n

(yk+1 − yk)

∞∑
k=n+1

ln k
k2

−
∞∑
k=n

ln k
k2

= lim
n→∞

yn+1 − yn
lnn
n2

= −b21
b30
. (6)

Since for every n ≥ 1 one has
∞∑
k=n

(yk+1 − yk) = lim
p→∞

p∑
k=n

(yk+1 − yk) = lim
p→∞

(yp+1 − yn) = C − yn,

from (6) it follows that

lim
n→∞

yn − C
∞∑
k=n

ln k
k2

=
b21
b30
. (7)

Again an application of the Stolz-Cesàro lemma, the case
[
0
0

]
, or [2, Proposi-

tion 1, Chapitre V], [9, Proposition 1], [10, chapter V, exercise 5.1], yields that

lim
n→∞

lnn
n

∞∑
k=n

ln k
k2

= 1, so (7) becomes lim
n→∞

yn−C
lnn
n

=
b21
b30
, yn = C +

b21
b30
· lnn

n + o
(
lnn
n

)
,

i.e., xn = b0n+ b1
b0

· lnn+ C +
b21
b30

· lnn
n + o

(
lnn
n

)
. 2

The following result completes Theorem 2 from [12].
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Theorem 3. Let φ : [0,∞) → R be a twice differentiable function such that
φ (x) > 0, ∀x ≥ 0. Define the sequence (xn)n≥1 by the initial condition

x1 > 0 and the recurrence relation xn+1 = xn + φ
Ä

1
xn

ä
for every n ≥ 1.

Then there exists C ∈ R such that

xn = φ (0)n+
φ′ (0)

φ (0)
· lnn+ C +

[φ′ (0)]2

[φ (0)]3
· lnn

n
+ o

Å
lnn

n

ã
.

Proof. Let f : (0,∞) → R, f (x) = x+φ
(
1
x

)
. Obviously, f is continuous and

since φ (x) > 0, ∀x > 0, it follows that f (x) > x, ∀x > 0. From the continuity
of φ we have lim

x→∞
(f (x)− x) = lim

x→∞
φ
(
1
x

)
= lim

t→0,t>0
φ (t) = φ (0) = b0 > 0.

Since φ is twice differentiable we have

lim
x→∞

x (f (x)− x− φ (0)) = lim
x→∞

x

Å
φ

Å
1

x

ã
− φ (0)

ã
= lim

t→0,t>0

φ (t)− φ (0)

t
= φ′ (0) = b1

and

lim
x→∞

x2
Å
f (x)− x− φ (0)− φ′ (0)

x

ã
= lim

x→∞
x2
Å
φ

Å
1

x

ã
− φ (0)− φ′ (0)

x

ã
= lim

t→0,t>0

φ (t)− φ (0)− φ′ (0) t

t2
=

φ′′ (0)

2
= b2.

We apply now Theorem 2. 2
The following results complete Corollaries 9(i) and 10(i) from [12].

Corollary 4. Let α > 1, β > 0. Define the sequence (xn)n≥1 by the initial
condition x1 > 0 and the recurrence relation

xn+1 = xn + ln

Å
α+

β

xn

ã
for every n ≥ 1.

Then there exists C ∈ R such that

xn = (lnα)n+
β

α lnα
· lnn+ C +

β2

α2 ln3 α
· lnn

n
+ o

Å
lnn

n

ã
.

Proof. Let φ : [0,∞) → (0,∞), φ (x) = ln (α+ βx). Let us observe that

φ′ (x) = β
α+βx . We apply Theorem 3 for the function φ. 2

Corollary 5. Let α > 0, β > 0. Define the sequence (xn)n≥1 by the initial
condition x1 > 0 and the recurrence relation

xn+1 = xn +

 
α+

β

xn
for every n ≥ 1.
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Then there exists C ∈ R such that

xn =
√
αn+

β

2α
· lnn+ C +

β2

4α2
√
α
· lnn

n
+ o

Å
lnn

n

ã
.

Proof. Let φ : [0,∞) → (0,∞), φ (x) =
√
α+ βx. Let us observe that

φ′ (x) = β
2 (α+ βx)−

1
2 . We apply Theorem 3 for the function φ. 2

The following result completes [12, Theorem 4].

Theorem 6. Let φ : [0,∞) → R be a three times differentiable function such
that φ (x) > 1, ∀x > 0, φ (0) = 1, φ′ (0) 6= 0. Define the sequence (xn)n≥1 by
the initial condition x1 > 0 and the recurrence relation

xn+1 = xnφ

Å
1

xn

ã
for every n ≥ 1.

Then there exists C ∈ R such that

xn = φ′ (0)n+
φ′′ (0)

2φ′ (0)
· lnn+ C +

[φ′′ (0)]2

4 [φ′ (0)]3
· lnn

n
+ o

Å
lnn

n

ã
.

Proof. Let f : (0,∞) → R, f (x) = xφ
(
1
x

)
. Obviously, f is continuous and

since φ (x) > 1, ∀x > 0, it follows that f (x) > x, ∀x > 0. The continuity of

φ implies that lim
x→∞

f(x)
x = lim

x→∞
φ
(
1
x

)
= lim

t→0,t>0
φ (t) = φ (0) = 1. Since φ is

three times differentiable we have

lim
x→∞

(f (x)− x) = lim
x→∞

x

Å
φ

Å
1

x

ã
− 1

ã
= lim

t→0,t>0

φ (t)− φ (0)

t
= φ′ (0) = b0,

lim
x→∞

x
(
f (x)− x− φ′ (0)

)
= lim

x→∞
x

Å
xφ

Å
1

x

ã
− x− φ′ (0)

ã
= lim

t→0,t>0

φ (t)− 1− φ′ (0) t

t2
=

φ′′ (0)

2
= b1,

lim
x→∞

x2
Å
f (x)− x− φ′ (0)− φ′′ (0)

2x

ã
= lim

x→∞
x2
Å
xφ

Å
1

x

ã
− x− φ′ (0)− φ′′ (0)

2x

ã
= lim

t→0,t>0

φ (t)− 1− φ′ (0) t− φ′′(0)t2

2

t3
=

φ′′′ (0)

3!
= b2.

From Theorem 2 we deduce the evaluation from the statement. 2
In the sequel as application of Theorem 6 we will give three concrete

examples.

Corollary 7. Let α > 0. Define the sequence (xn)n≥1 by the initial condition
x1 > 0 and the recurrence relation

xn+1 = xne
»

1
xn

+α2−α for every n ≥ 1.
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Then there exists C ∈ R such that

xn =
n

2α
+

α− 1

4α2
· lnn+ C +

(α− 1)2

8α3
· lnn

n
+ o

Å
lnn

n

ã
.

Proof. Let φ : [0,∞) → (0,∞), φ (x) = e
√
x+α2−α. Let us observe that

φ′ (x) = e
√

x+α2−α

2
√
x+α2

, φ′′ (x) =
e
√

x+α2−α(
√
x+α2−1)

4(x+α2)
√
x+α2

, φ′ (0) = 1
2α , φ

′′ (0) = α−1
4α3 .

We apply Theorem 6 for the function φ. 2
Corollary 8. Let α > 0, β ≥ 0. Define the sequence (xn)n≥1 by the initial
condition x1 > 0 and the recurrence relation

xn+1 = xn ln

Å
e+

α

xn
+

β

x2n

ã
for every n ≥ 1.

Then there exists C ∈ R such that

xn =
αn

e
+

2βe− α2

2αe
· lnn+ C +

(
2βe− α2

)2
4α3e

· lnn
n

+ o

Å
lnn

n

ã
.

Proof. Let φ : [0,∞) → (0,∞), φ (x) = ln
(
e+ αx+ βx2

)
and note that

φ′ (x) = α+2βx
e+αx+βx2 , φ′′ (x) =

2β(e+αx+βx2)−(α+2βx)2

(e+αx+βx2)2
, φ′ (0) = α

e , φ′′ (0) =

2βe−α2

e2
. We apply Theorem 6 for the function φ. 2

Corollary 9. Let α > 0, β ≥ 0. Define the sequence (xn)n≥1 by the initial
condition x1 > 0 and the recurrence relation

xn+1 =
»

x2n + αxn + β for every n ≥ 1.

Then there exists C ∈ R such that

xn =
αn

2
− α2 − 4β

4α
· lnn+ C +

(
α2 − 4β

)2
8α3

· lnn
n

+ o

Å
lnn

n

ã
.

Proof. Let us observe that the recurrence relation can be written under the
form

xn+1 = xn

 
1 +

α

xn
+

β

x2n
for every n ≥ 1.

Let φ : [0,∞) → (0,∞), φ (x) =
√
1 + αx+ βx2. Then φ′ (x) = α+2βx

2
√

1+αx+βx2
,

φ′′ (x) =
4β(1+αx+βx2)−(α+2βx)2

4(1+αx+βx2)
√

1+αx+βx2
, φ′ (0) = α

2 , φ
′′ (0) = 4β−α2

4 . We apply The-

orem 6 for the function φ. 2
The following result completes Corollary 6 from [12].
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Proposition 10. (i) Let p ≥ 1 be a natural number and 0 < a1 < a2 < · · · <
ap real numbers. Define the sequence (xn)n≥1 by the initial condition x1 > ap
and the recurrence relation

xn+1 =
xp+1
n

(xn − a1) (xn − a2) · · · (xn − ap)
for every n ≥ 1.

Then there exists C ∈ R such that

xn = σ1n+
σ2
1 + σ2
2σ1

· lnn+ C +

(
σ2
1 + σ2

)2
4σ3

1

· lnn
n

+ o

Å
lnn

n

ã
where σ1 = a1 + a2 + · · ·+ ap, σ2 = a21 + a22 + · · ·+ a2p.
(ii) Let p ≥ 1 be a natural number. Define the sequence (xn)n≥1 by the initial
condition x1 > p and the recurrence relation

xn+1 =
xp+1
n

(xn − 1) (xn − 2) · · · (xn − p)
for every n ≥ 1.

Then there exists C ∈ R such that

xn =
p (p+ 1)

2
·n+(3p+ 1) (p+ 2)

12
·lnn+C+

(3p+ 1)2 (p+ 2)2

72p (p+ 1)
· lnn
n

+o

Å
lnn

n

ã
Proof. (i) Let f : (ap,∞) → R, f (x) = xp+1

(x−a1)(x−a2)···(x−ap)
, and note that f

is continuous and f (x)− x > 0, ∀x > ap. For every x ∈ R we have

(x− a1) · · · (x− ap) = xp − s1x
p−1 + s2x

p−2 − s3x
p−3 + · · ·+ (−1)p sp (8)

where s1 = a1+ · · ·+ap, s2 =
∑
i<j

aiaj , . . . , sp = a1a2 · · · ap. It is easy to prove

that lim
x→∞

(f (x)− x) = s1 = b0 > 0. For every x > ap we have f (x)−x−s1 =(
s21 − s2

)
xp−1 − (s1s2 − s3)x

p−2 + · · · − (−1)p−1 (s1sp−1 − sp)x− (−1)p s1sp

(x− a1) · · · (x− ap)
,

which gives us that lim
x→∞

x (f (x)− x− s1) = s21 − s2 = b1 and also

f (x)− x− s1 −
s21 − s2

x
=

h (x)

x (x− a1) · · · (x− ap)
,

where

h (x) =
(
s21 − s2

)
xp − (s1s2 − s3)x

p−1 + · · · − (−1)p−1 (s1sp−1 − sp)x

− (−1)p s1sp −
(
s21 − s2

)
(x− a1) · · · (x− ap) .

From the relation (8) we deduce that

h (x) =
(
s21 − s2

)
xp − (s1s2 − s3)x

p−1 + · · · − (−1)p−1 (s1sp−1 − sp)x

− (−1)p s1sp −
(
s21 − s2

) (
xp − s1x

p−1 + · · ·+ (−1)p sp
)

=
(
s31 − 2s1s2 + s3

)
xp−1 + · · · .
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It follows then that

lim
x→∞

x2
Å
f (x)− x− s1 −

s21 − s2
x

ã
= lim

x→∞

(
s31 − 2s1s2 + s3

)
xp+1 + · · ·

x (x− a1) · · · (x− ap)

= s31 − 2s1s2 + s3 = b2.

From Theorem 2 it follows that

xn = s1n+
s21 − s2

s1
· lnn+ C +

(
s21 − s2

)2
s31

· lnn
n

+ o

Å
lnn

n

ã
= σ1n+

σ2
1 + σ2
2σ1

· lnn+ C +

(
σ2
1 + σ2

)2
4σ3

1

· lnn
n

+ o

Å
lnn

n

ã
.

We have used that s1 =
n∑

i=1
ai = σ1, s2 =

Ç
n∑

i=1
ai

å2

−
n∑

i=1
a2i

2 =
σ2
1−σ2

2 ,

s21 − s2 =
σ2
1+σ2

2 .

(ii) Take in (i) ai = i, i = 1, . . . , p, so that σ1 =
p∑

i=1
i = p(p+1)

2 ,

σ2 =
p∑

i=1
i2 = p(p+1)(2p+1)

6 , σ2
1 + σ2 =

p(p+1)(3p+1)(p+2)
12 . 2

We need in the sequel the following two results.

Proposition 11. Let a, b, c ∈ R. Then for every r ∈ R \ {0}Å
1 +

a lnn

n
+

b

n
+

c lnn

n2
+ o

Å
lnn

n2

ããr
= 1 +

ra lnn

n
+

rb

n

+
r (r − 1)

2
· a

2 ln2 n

n2
+ r ((r − 1) ab+ c) · lnn

n2
+ o

Å
lnn

n2

ã
.

In particular,

1

1 + a lnn
n + b

n + c lnn
n2 + o

(
lnn
n2

) = 1− a lnn

n
− b

n

+
a2 ln2 n

n2
+

(2ab− c) lnn

n2
+ o

Å
lnn

n2

ã
.

Proof. We will use the well-known evaluation (1 + x)r = 1+ rx+ r(r−1)
2 x2 +

r(r−1)(r−2)
2 x3 + o

(
x3
)
as x → 0. For xn = a lnn

n + b
n + c lnn

n2 + o
(
lnn
n2

)
we have

x3n = a3 ln3 n
n3 + o

Ä
ln3 n
n3

ä
= o

(
lnn
n2

)
and thusÅ

1 +
a lnn

n
+

b

n
+

c lnn

n2
+ o

Å
lnn

n2

ããr
= 1+r

Å
a lnn

n
+

b

n
+

c lnn

n2

ã
+
r (r − 1)

2

Å
a lnn

n
+

b

n
+

c lnn

n2

ã2
+ o

Å
lnn

n2

ã
. (9)
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If we use thatÅ
a lnn

n
+

b

n
+

c lnn

n2

ã2
=

a2 ln2 n

n2
+

2ab lnn

n2
+ o

Å
lnn

n2

ã
,

from the relation (9), after some simple calculations, we get the evaluation
from the statement. 2
Proposition 12. Let α, β, γ, C ∈ R, α 6= 0, and r ∈ R \ {0}. If

xn = αn+ β lnn+ C + γ · lnn
n

+ o

Å
lnn

n

ã
then

xrn = αrnr +
rβ

α1−r
· lnn

n1−r
+

rC

α1−rn1−r

+
r (r − 1)β2

2α2−r
· ln

2 n

n2−r
+

r [(r − 1)βC + αγ]

α2−r
· lnn

n2−r
+ o

Å
lnn

n2−r

ã
.

In particular,

1

xn
=

1

αn
− β lnn

α2n2
− C

α2n2
+

β2 ln2 n

α3n3
+

(2βC − αγ) lnn

α3n3
+ o

Å
lnn

n3

ã
.

Proof. We have

xrn = αrnr

Å
1 +

β

α
· lnn

n
+

C

αn
+

γ

α
· lnn
n2

+ o

Å
lnn

n2

ããr
.

Since by Proposition 11Å
1 +

β

α
· lnn

n
+

C

αn
+

γ

α
· lnn
n2

+ o

Å
lnn

n2

ããr
= 1 +

rβ

α
· lnn

n
+

rC

αn

+
r (r − 1)β2

2α2
· ln

2 n

n2
+

r [(r − 1)βC + γα]

α2
· lnn
n2

+ o

Å
lnn

n2

ã
.

after some obvious calculations we obtain the formula from the statement. 2
The following application was suggested to us by Corollary 9.

Proposition 13. Let α > 0, β ≥ 0. Define the sequence (yn)n≥1 by the
initial condition y1 > 0 and the recurrence relation

yn+1 =
yn√

1 + αyn + βy2n
for every n ≥ 1.

Then there exists C ∈ R such that

yn =
2

αn
+

α2 − 4β

α3
· lnn
n2

− 4C

α2n2
+

(
α2 − 4β

)2
2α5

· ln
2 n

n3

−
(
α2 − 4β

) (
8αC + α2 − 4β

)
2α5

· lnn
n3

+ o

Å
lnn

n3

ã
.
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Proof. For every n ≥ 1 we denote xn = 1
yn
. Then x1 > 0 and the recurrence

relation becomes

xn+1 =
»

x2n + αxn + β for every n ≥ 1.

From Corollary 9 there exists C ∈ R such that

xn =
αn

2
− α2 − 4β

4α
· lnn+ C +

(
α2 − 4β

)2
8α3

· lnn
n

+ o

Å
lnn

n

ã
and by Proposition 12

yn =
1

xn
=

2

αn
+

α2 − 4β

α3
· lnn
n2

− 4C

α2n2
+

(
α2 − 4β

)2
2α5

· ln
2 n

n3

−
(
α2 − 4β

) (
8αC + α2 − 4β

)
2α5

· lnn
n3

+ o

Å
lnn

n3

ã
.

We made the changes α → α
2 , β → −α2−4β

4α , γ → (α2−4β)
2

8α3 and use that

α2−4β
4α · 4

α2 = α2−4β
α3 ,

(α2−4β)
2

16α2 · 8
α3 =

(α2−4β)
2

2α5 , −(α2−4β)C
2α − (α2−4β)

2

16α2 =

−(α2−4β)(8αC+α2−4β)
16α2 , −(α2−4β)(8αC+α2−4β)

16α2 · 8
α3 = −(α2−4β)(8αC+α2−4β)

2α5 . 2
The following application was suggested to us by the context considered

in Proposition 10. It completes Corollary 7 from [12].

Proposition 14. (i) Let p ≥ 1 be a natural number and 0 < a1 < a2 <
· · · < ap real numbers. Define the sequence (yn)n≥1 by the initial condition

0 < y1 <
1
ap

and the recurrence relation

yn+1 = yn (1− a1yn) (1− a2yn) · · · (1− apyn) for every n ≥ 1.

Then there exists C ∈ R such that

yn =
1

xn
=

1

σ1n
− σ2

1 + σ2
2σ3

1

· lnn
n2

− C

σ2
1n

2
+

(
σ2
1 + σ2

)2
4σ5

1

· ln
2 n

n3

+

(
σ2
1 + σ2

) (
4σ1C − σ2

1 − σ2
)

4σ5
1

· lnn
n3

+ o

Å
lnn

n3

ã
where σ1 = a1 + a2 + · · ·+ ap, σ2 = a21 + a22 + · · ·+ a2p.
(ii) Let p ≥ 1 be a natural number. Define the sequence (yn)n≥1 by the initial

condition 0 < y1 <
1
p and the recurrence relation

yn+1 = yn (1− yn) (1− 2yn) · · · (1− pyn) for every n ≥ 1.

Then there exists C ∈ R such that

yn =
2

p (p+ 1)n
−(p+ 2) (3p+ 1)

3p2 (p+ 1)2
· lnn
n2

− 4C

p2 (p+ 1)2 n2
+
(p+ 2)2 (3p+ 1)2

18p3 (p+ 1)3
· ln

2 n

n3
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+
2 (p+ 2) (3p+ 1)

Ä
2C − (p+2)(3p+1)

12

ä
3p3 (p+ 1)3

· lnn
n3

+ o

Å
lnn

n3

ã
.

Proof. (i) For every n ≥ 1 we denote xn = 1
yn
. From 0 < y1 < 1

ap
it follows

that x1 > ap and the recurrence relation becomes

xn+1 =
xp+1
n

(xn − a1) (xn − a2) · · · (xn − ap)
for every n ≥ 1.

From Corollary 10 (i) there exists C ∈ R such that

xn = σ1 · n+
σ2
1 + σ2
2σ1

· lnn+ C +

(
σ2
1 + σ2

)2
4σ3

1

· lnn
n

+ o

Å
lnn

n

ã
and from Proposition 12

yn =
1

xn
=

1

σ1n
− σ2

1 + σ2
2σ3

1

· lnn
n2

− C

σ2
1n

2
+

(
σ2
1 + σ2

)2
4σ5

1

· ln
2 n

n3

+

(
σ2
1 + σ2

) (
4σ1C − σ2

1 − σ2
)

4σ5
1

· lnn
n3

+ o

Å
lnn

n3

ã
.

We have α = σ1, β =
σ2
1+σ2

2σ1
, γ =

(σ2
1+σ2)

2

4σ3
1

and thus

2βC − αγ

α3
=

(σ2
1+σ2)C
σ1

− (σ2
1+σ2)

2

4σ2
1

σ3
1

=

(
σ2
1 + σ2

) (
4σ1C − σ2

1 − σ2
)

4σ5
1

.

(ii) Take in (i) ai = i, 1 ≤ i ≤ p. Then σ1 = p(p+1)
2 , σ2 = p(p+1)(2p+1)

6 ,

so σ2
1 + σ2 =

p(p+1)(p+2)(3p+1)
12 ,

σ2
1+σ2

2σ3
1

= (p+2)(3p+1)

3p2(p+1)2
,
(σ2

1+σ2)
2

4σ5
1

= (p+2)2(3p+1)2

18p3(p+1)3
,(

σ2
1 + σ2

) (
4σ1C − σ2

1 − σ2
)

4σ5
1

=
(p+ 2)(3p+ 1)

12
· 8

p4(p+ 1)4

·
Å
2p(p+ 1)C − p(p+ 1)(p+ 2)(3p+ 1)

12

ã
=

2 (p+ 2) (3p+ 1)
Ä
2C − (p+2)(3p+1)

12

ä
3p3 (p+ 1)3

.

2
The case p = 1 in Proposition 14 was previously studied in [13], [5], and

[11].
In the next result we complete the evaluation from [10, exercise 2.8].

Corollary 15. Define the sequence (xn)n≥1 by the initial condition x1 > 0

and the recurrence relation xn+1 = xn + 1
xn

for every n ≥ 1. Then there
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exists C ∈ R such that

xn =
√
2·
√
n+

1

4
√
2
· lnn√

n
+

C

2
√
2 ·

√
n
− 1

64
√
2
· ln

2 n

n
√
n
−C − 1

8
√
2
· lnn
n
√
n
+o

Å
lnn

n
√
n

ã
.

Proof. Squaring the recurrence relation, we obtain x2n+1 = x2n+2+ 1
x2
n
, ∀n ≥ 1.

For every n ≥ 1 we denote x2n = an and thus an+1 = an+2+ 1
an

= an+φ
Ä

1
an

ä
,

where φ (x) = 2 + x. By Theorem 3, there exists C ∈ R such that

an = φ (0)n+
φ′ (0)

φ (0)
· lnn+ C +

[φ′ (0)]2

[φ (0)]3
· lnn

n
+ o

Å
lnn

n

ã
or

x2n = an = 2n+
lnn

2
+ C +

1

8
· lnn

n
+ o

Å
lnn

n

ã
.

From Proposition 12 for r = 1
2 we deduce that

xn =
√
α ·

√
n+

1

2
· β

α
1
2

· lnn
n

1
2

+
1

2
· C

α
1
2n

1
2

+
1
2 ·
(
−1

2

)
β2

2α
3
2

· ln
2 n

n
3
2

+

1
2

Ä
−βC

2 + αγ
ä

α
3
2

· lnn
n

3
2

+ o

Å
lnn

n
3
2

ã
.

or

xn =
√
α
√
n+

1

2
· β√

α
· lnn√

n
+

1

2
· C√

α
√
n

− β2

8α
√
α
· ln

2 n

n
√
n
− (βC − 2αγ)

4α
√
α

· lnn

n
√
n
+ o

Å
lnn

n
√
n

ã
,

where α = 2, β = 1
2 , γ = 1

8 . Then by calculation we get the evaluation from
the statement. 2

We need latter the following result which establishes a natural connec-
tion between two asymptotic evaluations of some functions.

Proposition 16. Let A > 0 and g : [0, A) → R be a function with the
property that there exist a1, a2, a3 ∈ R such that g (x) = x + a1x

2 + a2x
3 +

a3x
4 + o

(
x4
)
if x → 0, x > 0. Then

1

g (x)
=

1

x
− a1 +

(
a21 − a2

)
x−

(
a31 − 2a1a2 + a3

)
x2 + o

(
x2
)
as x → 0.

In particular,

1

g
(
1
x

) = x− a1 +
a21 − a2

x
− a31 − 2a1a2 + a3

x2
+ o

Å
1

x2

ã
as x → ∞.

Proof. We have 1
g(x) =

1
x · 1

1+a1x+a2x2+a3x3+o(x3)
. Since as is well-known

1

1 + u
= 1− u+ u2 − u3 + o

(
u3
)
as u → 0,
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we will have

1

1 + a1x+ a2x2 + a3x3 + o (x3)
= 1−

(
a1x+ a2x

2 + a3x
3
)

+
(
a1x+ a2x

2 + a3x
3
)2 − a31x

3 + o
(
x3
)
.

Since
(
a1x+ a2x

2 + a3x
3 + o

(
x3
))2

= a21x
2 + 2a1a2x

3 + o
(
x3
)
we deduce

that

1

1 + a1x+ a2x2 + a3x3 + o (x3)
= 1−

(
a1x+ a2x

2 + a3x
3
)

+
(
a21x

2 + 2a1a2x
3
)
− a31x

3 + o
(
x3
)

= 1− a1x+
(
a21 − a2

)
x2 −

(
a31 − 2a1a2 + a3

)
x3 + o

(
x3
)
.

(Another proof is to verify by calculus that

lim
x→0

1
1+a1x+a2x2+a3x3+o(x3)

− 1 + a1x−
(
a21 − a2

)
x

x3
= −a31 + 2a1a2 − a3.)

Then we get

1

g (x)
=

1

x
− a1 +

(
a21 − a2

)
x−

(
a31 − 2a1a2 + a3

)
x2 + o

(
x2
)
as x → 0.

2
The following theorem is a natural companion of Theorem 2.

Theorem 17. Let A > 0, g : [0, A) → [0,∞) be a continuous function such
that 0 < g(x) < x, ∀ 0 < x < A. Define the sequence (xn)n≥1 by the initial
condition x1 ∈ (0, A) and the recurrence relation

xn+1 = g(xn) for every n ≥ 1.

If there exist real numbers a1, a2, a3, a1 6= 0, such that

g (x) = x+ a1x
2 + a2x

3 + a3x
4 + o

(
x4
)
as x → 0, x > 0

then there exists C ∈ R such that

xn = − 1

a1
· 1
n
+

a21 − a2
a31

· lnn
n2

− C

a21n
2
−
(
a21 − a2

)2
a51

· ln
2 n

n3

+

(
a21 − a2

) (
2a1C + a21 − a2

)
a51

· lnn
n3

+ o

Å
lnn

n3

ã
.

Proof. Let f :
(
1
A ,∞

)
→ R, f (x) = 1

g( 1
x)
. Then f is continuous and from

0 < g(x) < x, ∀0 < x < A, it follows that f (x) > x, ∀x > 1
A . For every n ≥ 1

we define vn = 1
xn

. Then v1 >
1
A and the recurrence relation becomes vn+1 =

f (vn) for every n ≥ 1. Since g (x) = x+a1x
2+a2x

3+a3x
4+o

(
x4
)
as x → 0,
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x > 0, from Proposition 16 it follows that f (x) = x + b0 +
b1
x + b2

x2 + o
(

1
x2

)
as x → ∞, where

b0 = −a1, b1 = a21 − a2, b2 = −a31 + 2a1a2 − a3.

From Theorem 2 we have

vn = b0n+
b1
b0

· lnn+ C +
b21
b30

· lnn
n

+ o

Å
lnn

n

ã
and by Proposition 12

1

vn
=

1

b0n
− b1 lnn

b30n
2

− C

b20n
2
+

b21 ln
2 n

b50n
3

+
b1 (2b0C − b1) lnn

b50n
3

+ o

Å
lnn

n3

ã
.

Since xn = 1
vn

we deduce that

xn = − 1

a1
· 1
n
+

a21 − a2
a31

· lnn
n2

− C

a21n
2
−
(
a21 − a2

)2
a51

· ln
2 n

n3

+

(
a21 − a2

) (
2a1C + a21 − a2

)
a51

· lnn
n3

+ o

Å
lnn

n3

ã
.

2
In the next result we complete the evaluation from [10, exercise 2.3].

Corollary 18. Let (xn)n≥1 be the sequence defined by the initial condition
x1 > 0 and the recurrence relation xn+1 = ln(1 + xn) for every n ≥ 1. Then
there exists C ∈ R such that

xn =
2

n
+

2

3
· lnn
n2

− 4C

n2
+

2

9
· ln

2 n

n3
− 2 (12C + 1)

9
· lnn
n3

+ o

Å
lnn

n3

ã
.

Proof. As is well known ln (1 + x) = x − x2

2 + x3

3 − x4

4 + o
(
x4
)
as x → 0,

i.e., a1 = −1
2 , a2 = 1

3 , a3 = −1
4 . Then

a21−a2
a31

= 8
12 = 2

3 ,
(a21−a2)

2

a51
= −2

9 ,

(a21−a2)(2a1C+a21−a2)
a51

= 32
12

(
−C − 1

12

)
= −2(12C+1)

9 . We apply Theorem 17. 2
References

[1] J. M. Arnaudiès, H. Fraysse, Cours de mathématiques - 2: Analyse, Classes
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Mira, Bucureşti, 2007.
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On the number of dividers of square-free rational integers
and quadratic fields of class-number 1

Rică Zamfir1), Valentin Tănase2)

Abstract. Throughout the paper d denotes a square-free rational integer,
K = Q(

√
d) a quadratic field and A√

D its ring of integers. Our goal is
to prove that if A√

D is a Unique Factorization Domain (UFD), then d
is a prime rational integer or d has only two prime factors which are not
congruent to 1 modulo 4.

Keywords: quadratic field; unique factorization domain

MSC: 11A51

1. Introduction

This article is the result of several years of collaboration between the
two authors. Now, following the passing of Valentin Tănase, I feel it is my
duty to share our results regarding a classical problem of Number Theory.

Throughout the paper d denotes a square-free rational integer, K =
Q(

√
d) a quadratic field and A√

D its ring of integers.

Definition 1. For any rational integer n, we say that n is represented by
the norm (in A√

D) if there is α ∈ A√
D with N(α) = ±n.

We also assume that the next statement is well known.

Proposition 2. Let p be an odd rational prime which does not divide d.
Then:

(1) p remains prime in A√
D iff d is not a quadratic residue modulo p.

1)Tudor Vianu National College, Bucharest, Romania, rzamfir62@gmail.com
2)Deceased
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(2) p is irreducible in A√
D iff p is not represented by the norm (in A√

D).

We also assume that the properties of the Legendre symbol and the law
of quadratic reciprocity are very well known to our readers.

2. A Quick Example

For a quick illustration of our proof, let’s consider d = 15 and let’s take
a quick look at the next diophantine equation:

x2 − 15y2 = ±7. (1)

Assuming that the equation has rational solutions, then obviously ±7
would be quadratic residue modulo 3 and 5. However we can immediately
notice that neither 7 nor −7 is a quadratic residue modulo 5 and therefore the
above equation has no solutions. We’ve just proved that 7 is not represented
by the norm in A√

15 and therefore 7 is irreducible in A√
15.

On the other hand 15 is a quadratic residue modulo 7 and therefore 7
is not prime in A√

15. By all means A√
15 is not a UFD.

3. Main Result

This very basic criterion for identifying irreducible elements that are
not primes in A√

D will be successfully exploited in order to prove our main
theorem. The next lemma is a generalization of the above criterion.

Lemma 3. Let p be a rational prime which does not divide d and is repre-
sented by the norm, and let q be an odd rational integer that divides d. Then
either p or −p is a quadratic residue modulo q.

Proof. Notice that p is represented by the norm if and only if one of the next
two diophantine equations has rational solutions:

x2 − dy2 = ±p if d ≡ 2, 3 mod 4, or (2)

x2 − dy2 = ±4p if d ≡ 1 mod 4. (3)

For the former we have that x2 ≡ ±p mod q, (∀)q | d, which will lead
us to the desired conclusion.

For the latter we have that x2 ≡ ±4p mod q, (∀)q | d, and because q is
odd we have (2−1x)2 ≡ ±p mod q, which again proves our conclusion. 2
Remark 4. The same criterion could be restricted only to the rational primes
q that divide d using the Legendre symbol.

If p is represented by the norm thenÅ±p

q

ã
= 1, (∀)q odd prime, q | d. (4)
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Corollary 5. Let p be a prime rational integer, which does not divide d and
is represented by the norm. Then either p or −p is a quadratic residue modulo
all q, where q is any odd rational integer that divides d.

Theorem 6. If A√
D is a UFD, then d is a prime rational integer or d has

only two prime factors which are not congruent to 1 modulo 4.

Proof. Let d = d1 · · · dk with di > 0, (∀)i = 1, k, be the factorization of d as
a product of rational primes.

(I) Let us assume that d is composed and d1 ≡ 1 mod 4.
Let α be a rational integer which is coprime with d1 and is not a qua-

dratic residue modulo d1 (i.e.,
Ä

α
d1

ä
= −1).

If d is even we can assume that d2 = 2 and consider the following
system of simultaneous congruences:

x ≡ 5 mod 8, (5)

x ≡ α mod d1, (6)

x ≡ 1 mod di, i = 3, k. (7)

By Chinese Remainder Theorem the above system of congruences has rational
solutions and let x0 be a solution. Since lcm(8, d1, d2, ..., dk) = 4d, all rational
integers n = x0 +4dn, (∀)n ∈ Z, are also valid solutions. On the other hand,
since x0 and 4d are coprime, by Dirichlet’s Prime Number Theorem there
is a rational odd prime p that satisfies the above system of simultaneous
congruences. To conclude, we found out a rational prime p with the following
properties: Å

p

di

ã
=

ß
−1 if i = 1,
1 if i > 2.

(8)

Using the Legendre symbol properties we haveÅ−p

di

ã
= (−1)

di−1

2

Å
p

di

ã
=

®
−1 if i = 1,

(−1)
di−1

2 if i > 2,
(9)

since d1 ≡ 1 mod 4.

We have just proved that
Ä
±p
d1

ä
= −1 and from the previous lemma, p

is not represented by norm and therefore p is irreducible in A√
D.

Our next goal is to prove that p is not a prime element of A√
D (which

is true iff
Ä
d
p

ä
= 1). Applying the quadratic reciprocity law we getÅ
di
p

ã
= (−1)

p−1
2

di−1

2

Å
p

di

ã
=

® Ä
p
di

ä
if i 6= 2,

−1 if i = 2,
(10)

since p ≡ 5 mod 8 and obviously
Ä
d2
p

ä
=
Ä
2
p

ä
= −1.

We are now ready to compute:
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d

p

ã
=

k∏
i=1

Å
di
p

ã
=

Å
2

p

ã k∏
i ̸=2

Å
di
p

ã
= (−1)

k∏
i ̸=2

Å
di
p

ã
= (−1)(−1)

k∏
i=3

Å
di
p

ã
= 1

and therefore we were able to find an element p ∈ A√
D which is irreducible

but is not prime. Hence A√
D is not a UFD.

If d is odd let β be a rational integer, which is coprime with d2 and

is not a quadratic residue modulo d2 (i.e.,
Ä

β
d2

ä
= −1). Let us consider now

the following system of simultaneous congruences:

x ≡ 1 mod 4, (11)

x ≡ α mod d1, (12)

x ≡ β mod d2, (13)

x ≡ 1 mod di, i = 3, k. (14)

Similarly we can prove that there is a rational odd prime p which is also
solution to the above system of simultaneous congruences. Obviously, it
holds Å

p

di

ã
=

ß
−1 if i ≤ 2,
1 if i > 2.

(15)

At the same time one hasÅ−p

di

ã
= (−1)

di−1

2

Å
p

di

ã
. (16)

We notice that
Ä
±p
d1

ä
= −1 (since d ≡ 1 mod 4), and by the previous

lemma p is not represented by norm and therefore p is irreducible in A√
D.

Applying the quadratic reciprocity law we getÅ
di
p

ã
= (−1)

p−1
2

di−1

2

Å
p

di

ã
=

Å
p

di

ã
(17)

since p ≡ 1 mod 4. Therefore, we getÅ
d

p

ã
=

k∏
i=1

Å
di
p

ã
=

k∏
i=1

Å
p

di

ã
=

Å
p

d1

ãÅ
p

d2

ã k∏
i=3

Å
p

di

ã
= (−1)(−1) · 1 · · · 1

= 1.

Again we were able to find an element p ∈ A√
D which is irreducible but

is not prime, and therefore A√
D is not a UFD.



20 Articles

(II) Let us suppose now that d has at least three rational prime factors (i.e.,
k ≥ 3) which are not congruent to 1 modulo 4.

Let α be a rational integer which is coprime with d1 and is not a qua-

dratic residue modulo d1 (i.e.,
Ä

α
d1

ä
= −1).

If d is even we may assume that d2 = 2 and let us consider the following
system of simultaneous congruences:

x ≡ 5 mod 8, (18)

x ≡ α mod d1, (19)

x ≡ 1 mod di, i = 3, k. (20)

We know by now that there is an odd rational prime p which is a solution of
the above system of simultaneous congruences. Hence,Å

p

di

ã
=

ß
−1 if i = 1,
1 if i > 2.

(21)

Using the Legendre symbol properties we haveÅ−p

di

ã
= (−1)

di−1

2

Å
p

di

ã
=

ß
1 if i = 1,

−1 if i > 2,
(22)

since di ≡ 3 mod 4, (∀)i = 1, k, i 6= 2.
Let us notice now that p is not represented by the norm. If that would

be the case, then ±p would be quadratic residue modulo q, (∀)q | d (see

Corollary 5). The identities above however show that neither
Ä

p
di

ä
= 1 norÄ

−p
di

ä
= 1(∀)i = 1, k, i 6= 2 (here we used the assumption that k > 2 and

therefore
Ä
−p
d3

ä
= −1). Hence p is irreducible in A√

D.

Applying the quadratic reciprocity law we getÅ
di
p

ã
= (−1)

p−1
2

di−1

2

Å
p

di

ã
=

®
−1 if i = 2,Ä

p
di

ä
if i 6= 2,

(23)

since p ≡ 5 mod 8 and d2 = 2.
Finally, we getÅ

d

p

ã
=

k∏
i=1

Å
di
p

ã
=

Å
2

p

ã k∏
i ̸=2

Å
di
p

ã
= (−1)

k∏
i ̸=2

Å
p

di

ã
= (−1)(−1)

k∏
i=3

Å
p

di

ã
= 1.

Again we were able to find an element p ∈ A√
D which is irreducible but

is not prime and therefore A√
D is not a UFD.

If d is odd let β be a rational integer which is coprime with d2 and

is not a quadratic residue modulo d2 (i.e.,
Ä

β
d2

ä
= −1). Let us consider now
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the following system of simultaneous congruences:

x ≡ 1 mod 4, (24)

x ≡ α mod d1, (25)

x ≡ β mod d2, (26)

x ≡ 1 mod di, i = 3, k. (27)

Similarly we can prove that there is a rational odd prime p which is also
solution to the above system of simultaneous congruences. Obviously,Å

p

di

ã
=

ß
−1 if i ≤ 2,
1 if i > 2.

(28)

At the same time one hasÅ−p

di

ã
= (−1)

di−1

2

Å
p

di

ã
=

ß
1 if i ≤ 2,

−1 if i > 2.
(29)

Because neither p nor −p is a quadratic residue modulo all di with
i = 1, k, we have that p is irreducible in A√

D.
Applying the quadratic reciprocity law we getÅ

di
p

ã
= (−1)

p−1
2

di−1

2

Å
p

di

ã
=

Å
p

di

ã
(30)

since p ≡ 1 mod 4.
Finally,Å

d

p

ã
=

k∏
i=1

Å
di
p

ã
=

k∏
i=1

Å
p

di

ã
=

Å
p

d1

ãÅ
p

d2

ã k∏
i=3

Å
p

di

ã
= (−1)(−1) · 1 · · · 1

= 1,

and again we were able to find an element p ∈ A√
D which is irreducible but

is not prime, and therefore A√
D is not a UFD. 2

Remark 7. There are more powerful results regarding the structure of the
ideal classes group, in the case of quadratic fields. See, for example, Theorem
105 and Theorem 106 from [2], where it is proven that the number of elements
of order less than or equal to 2 from group CQ(

√
d) may be 2t−1 or 2t−2, where

t is the number of prime factors of the discriminant D of
√
d.

Additionally, in Theorem 2.18 from [1] it is proved that in the case
of a quadratic imaginary field with d = −n ≡ 2, 3 mod 4, we have h(d) =
h(−4n) = 1 ⇐⇒ n = 1, 2, 3, 7.

However, our results are obtained following a different approach than
the aforementioned textbooks, an elementary one.

Acknowledgments. Many thanks to the referee for indicating the
textbooks of D. Hilbert and D. Cox, where these results are presented.
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Traian Lalescu national mathematics contest for university
students, 2019 edition

Cornel Băeţica2), Gabriel Mincu3), Vasile Pop4),
Constantin-Cosmin Todea4)

Abstract. This note deals with the problems proposed at the 2019 edition
of the Traian Lalescu mathematics contest for university students, hosted
by the Technical University of Cluj-Napoca between May 9th and May
11th, 2019.

Keywords: Rank, eigenvalue, equivalent matrices, connectedness, change
of variable, integrals, series

MSC: Primary 15A03; Secondary 15A21, 26D15.

17 students, representing five universities from Braşov, Bucharest, Cluj-
Napoca, Craiova and Timişoara, participated in Section A. Problem 1 in this
section was solved by more than half of the participants, whilst few contes-
tants managed to tackle the other problems, and even fewer gave complete
solutions for these.

A number of 27 students participated in Section B, first and second
year, technical section-electric profile. These students were selected from the
following six universities: Alexandru I. Cuza University of Iaşi, Gheorghe
Asachi Technical University of Iaşi, Ferdinand I Military Technical Academy
of Bucharest, Politehnica University of Timişoara, Politehnica University of
Bucharest, and Technical University of Cluj-Napoca. Analyzing the scores
which were obtained by the contestants, the problems were correctly ordered,
respecting the difficulty. Problems 1 and 2, one of algebra and the other one
of analysis, were accessible. Half of the students obtained high results for
the first two problems. Problem 3 was a difficult problem of mathematical
analysis (integral calculus). Problem 4 was the most difficult problem in
competition and was not solved completely by any contestant.

Many of the students are former participants and medalists of the na-
tional high school mathematics olympiad.

We present in the sequel the problems proposed in Sections A and B of
the contest and their solutions.

2)Universitatea din Bucureşti, Bucureşti, România, cornel.baetica@fmi.unibuc.ro
3)Universitatea din Bucureşti, Bucureşti, România, gamin@fmi.unibuc.ro
4)Universitatea Tehnică din Cluj-Napoca, România, Vasile.Pop@math.utcluj.ro
4)Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Ro-

mania, constantin.todea@math.utcluj.ro



C. Băeţica, G. Mincu, V. Pop, C. Todea, Traian Lalescu Contest 23

Section A

Problem 1. One considers the points A(0, 0, 1), B(6, 0, 0) in R3, and
the straight line

d :

®
x− y = 0,

z = 0.

Find the coordinates of the point M ∈ d for which the sum of the distances
to A and B is minimal.

Cornel Pintea, Babeş-Bolyai University, Cluj-Napoca

Solution 1. Since OA ⊥ d, the distance from any point P ∈ d to A
equals the distance from P to any point of the circle that has centre O, radius
OA, and is perpendicular to d.

We consider the point C
Ä
− 1√

2
, 1√

2
, 0
ä
. Then i⃗+j⃗ ⊥

−→
OA and i⃗+j⃗ ⊥

−−→
OC,

so d ⊥ (AOC). Consequently, C belongs to the aforementioned circle, so for
any point P ∈ d we have PA = PC.

Since C lies in the plane spanned by d and B and d separates B and
C, we derive, using the triangle inequality, that the point M we are looking
for is at the intersection of the lines d and BC.

Thus, there is a real constant λ such that
−−→
BM = λ

−−→
BC, i.e.,

(xM − 6)⃗i+ yM j⃗ = −λ

Å
1√
2
+ 6

ã
i⃗+

λ√
2
j⃗,

whence xM = 6− λ
Ä

1√
2
+ 6
ä
and yM = λ√

2
.

Consequently, M ∈ d if and only if 6−λ

Å
1√
2
+ 6

ã
=

λ√
2
, which yields

λ =
3
√
2

1 + 3
√
2
.

Therefore, the coordinates of the point M are

Å
3

1 + 3
√
2
,

3

1 + 3
√
2
, 0

ã
.

Solution 2. Consider an arbitrary point Qt(t, t, 0) ∈ d and define a

function D : R → R by D(t) = QtA + QtB =
√
2t2 + 1 +

√
(t− 6)2 + t2.

Then D is everywhere differentiable and

D′(t) =
2t√

2t2 + 1
+

2t− 6√
(t− 6)2 + t2

.

The equation D′(t) = 0 does obviously not admit the solution t = 0, so it is
equivalent to  

(t− 6)2 + t2

2t2 + 1
=

3− t

t
,
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and thus its solutions will lie in the interval (0, 3]. On this interval, the
equation D′(t) = 0 is equivalent to t2(2t2 − 12t+ 36) = (2t2 + 1)(3− t)2 and
further to 17t2 + 6t− 9 = 0. The only solution this last equation has in the
interval (0, 3] is τ = 3

1+3
√
2
. Consequently, D has τ as its only stationary

point. Since lim
t→±∞

= ∞, τ is the point of global minimum of D.

Thus, the point we are looking for is M

Å
3

1 + 3
√
2
,

3

1 + 3
√
2
, 0

ã
.

Problem 2. Let R be a commutative unitary ring. Two matrices
A,B ∈ M2(R) are called equivalent if there exist invertible matrices U , V in
M2(R) such that B = UAV .

Show that the matrices

Å
X Y
0 Z

ã
and

Å
X 0
Y Z

ã
from M2(C[X,Y, Z])

are not equivalent.

Cornel Băeţica, University of Bucharest

Solution. Assume that the given matrices are equivalent. Then there

exist two invertible matrices U =

Å
f g
h j

ã
, V =

Å
F G
H J

ã
in M2(C[X,Y, Z])

such that

U

Å
X Y
0 Z

ã
=

Å
X 0
Y Z

ã
V.

Then

Xf = XF,

Y f + Zg = XG, (1)

Xh = Y F + ZH,

Y (h−G) = Z(J − j),

and from the last equation we conclude that there is Φ ∈ C[X,Y, Z] such
that h = G+ ZΦ and J = j + Y Φ.

We have detU = fj − g(G+ ZΦ).
From the second equation in (1) we get f ∈ (X,Z) (here (X,Z) denotes

the ideal generated by X and Z in C[X,Y, Z]) and g ∈ (X,Y ), so detU ∈
(X,Y, Z), and therefore detU is not invertible in C[X,Y, Z], a contradiction.

Remark. It is well known that two matrices (of the same size) over a
principal ideal domain are equivalent if and only if the ideals generated by
their r × r minors are equal, for all r ≥ 1.

In our problem the matrices have the same ideals generated by minors,
namely (X,Y, Z) and (XZ), but are not equivalent. The reason is that the
ring C[X,Y, Z] is not principal.
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Problem 3. Let n ≥ 2 be a positive integer and let f : Rn → R,

f(x1, . . . , xn) =



∑
1≤i<j≤n

xixj

n∑
i=1

x2i

for (x1, . . . , xn) ∈ Rn \ {(0, . . . , 0)}

a for (x1, . . . , xn) = (0, . . . , 0).

Find a ∈ R such that the graph of the function f is connected.

Gabriel Mincu, University of Bucharest

Solution. Let x = (x1, . . . , xn) ∈ Rn \ {(0, . . . , 0)}. Then
n∑

i=1

x2i ≥ −2
∑

1≤i<j≤n

xixj ,

so

−1

2
≤

∑
1≤i<j≤n

xixj

n∑
i=1

x2i

.

The inequality ∑
1≤i<j≤n

(xi − xj)
2 ≥ 0

yields

(n− 1)

n∑
i=1

x2i ≥ 2
∑

1≤i<j≤n

xixj ,

whence ∑
1≤i<j≤n

xixj

n∑
i=1

x2i

≤ n− 1

2
.

Consequently,

f(Rn \ {(0, . . . , 0)}) ⊂
ï
−1

2
,
n− 1

2

ò
. (2)

The value −1
2 is taken at (1, 1, . . . , 1, 1 − n), whilst the value n−1

2 is
taken at (1, 1, . . . , 1).

The function f is continuous on Rn\{(0, . . . , 0)}, so f(Rn\{(0, . . . , 0)})
is connected. Taking into account relation (2), we get

f (Rn \ {(0, . . . , 0)}) =
ï
−1

2
,
n− 1

2

ò
.
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If a ∈ R \
ï
−1

2
,
n− 1

2

ò
and d is the distance from a to the intervalï

−1

2
,
n− 1

2

ò
, we have

Gf =

Å
Gf ∩

Å
Rn ×

Å
a− d

2
, a+

d

2

ããã
∪
Å
Gf ∩

Å
Rn ×

Å
−1

2
− d

2
,
n− 1

2
+

d

2

ããã
,

so Gf is not connected.

If a ∈
ï
−1

2
,
n− 1

2

ò
, we first notice that, since the restriction of f to

Rn \ {(0, . . . , 0)} is continuous, its graph is path-connected.

Since f(Rn \ {(0, . . . , 0)}) =
ï
−1

2
,
n− 1

2

ò
, there exists u ∈ Rn \ {(0, . . . , 0)}

such that f(u) = a. Thus,

lim
x→0

(tu1, . . . , tun, f (tu1, . . . , tun)) = (0, . . . , 0, f(u)) = (0, . . . , 0, a),

so γ : [0, 1] → Rn+1, γ(t) = (tu1, . . . , tun, f (tu1, . . . , tun)) is continuous.
Moreover, Imγ ⊂ Gf and γ(0) = (0, . . . , 0, a). Therefore Gf is also path-
connected, and thus it is connected.

We conclude that Gf is connected if and only if a ∈
ï
−1

2
,
n− 1

2

ò
.

Problem 4. (a) Let n ∈ N∗. Compute

In =

∫ 1

0

ln(1− x) + x+ x2

2 + · · ·+ xn

n

xn+1
dx.

(b) Let a ∈ R and b > 0. Prove that the integral

J(a, b) =

∫ ∞

0

ï
2 + (x+ a) ln

x

x+ b

ò
dx

is convergent if and only if a = 1 and b = 2, and in this case compute J(1, 2).

Ovidiu Furdui, Technical University of Cluj-Napoca
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Solution. (a) We have

In = −
∫ 1

0

∞∑
i=n+1

xi

i

xn+1
dx = −

∫ 1

0

∞∑
i=n+1

xi−n−1

i
dx

(∗)
= −

∞∑
i=n+1

1

i(i− n)
= −

∞∑
j=1

1

j(j + n)

= − 1

n

∞∑
j=1

Å
1

j
− 1

j + n

ã
= − 1

n

Å
1 +

1

2
+ · · ·+ 1

n

ã
.

(b) We change the variable x
x+b = y and get

J(a, b) = b

∫ 1

0

ï
2 +

by + a(1− y)

1− y
ln y

ò
1

(1− y)2
dy

1−y=t
= b

∫ 1

0

ï
2 +

b− (b− a)t

t
ln(1− t)

ò
1

t2
dt.

An easy computation shows that

2 +
b− (b− a)t

t
ln(1− t) =

= 2− b+
b− 2a

2
t+ b

ln(1− t) + t+ t2

2

t
− (b− a) (ln(1− t) + t) .

Then we have

J(a, b) = b

∫ 1

0

ñ
2− b+ b−2a

2 t

t2
+ b

ln(1− t) + t+ t2

2

t3
− (b− a)

ln(1− t) + t

t2

ô
dt

(3)
Since the integrals

I1 =

∫ 1

0

ln(1− t) + t

t2
dt and I2 =

∫ 1

0

ln(1− t) + t+ t2

2

t3
dt

are convergent, their values being calculated in (a), we have that J(a, b) is
convergent if and only if the integral∫ 1

0

2− b+ b−2a
2 t

t2
dt

is convergent.
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We have∫ 1

0

2− b+ b−2a
2 t

t2
dt = lim

ε→0+

∫ 1

ε

2− b+ b−2a
2 t

t2
dt

= lim
ε→0+

Å
−2− b

t
+

b− 2a

2
ln t

ã ∣∣∣∣1
ε

= b− 2− lim
ε→0+

(b− 2a)ε ln ε− 2(2− b)

2ε
.

The foregoing integral is convergent if and only if the limit

lim
ε→0+

(b− 2a)ε ln ε− 2(2− b)

2ε

exists and is finite. But this limit is finite if and only if 2 − b = 0 and
b− 2a = 0, that is, b = 2 and a = 1.

In this case we have, from (3), that the value of integral J(1, 2) equals

J(1, 2) = 4

∫ 1

0

ln(1− t) + t+ t2

2

t3
dt− 2

∫ 1

0

ln(1− t) + t

t2
dt

= 4I2 − 2I1

= 4

Å
−3

4

ã
− 2(−1)

= −1.

Section B

Problem 1. For any a ∈ C, a 6= 0, and any matrix A ∈ Mn(C), n ≥ 2,
show that

rank(aA−A2) = rankA+ rank(aIn −A)− n.

Is the statement true for a = 0? Justify!

Bogdan Sebacher, Ferdinand I Military Technical Academy Bucharest

For this problem the students gave five full solutions and five partial
solutions.

Solution 1. [Author’s solution] For a = 0 and A = On the relation
is not true. We prove the case a 6= 0. With the substitution A = aB the
relation becomes

rank(B −B2) = rankB + rank(In −B)− n. (4)

Consider the linear map T : Cn → Cn, Tx = Bx. In the canonical
basis, this map has the attached matrix MT = B and then rankB = rankT ,
rank(In − B) = rank(I − T ), rank(B − B2) = rank(T − T 2), where I is the
identity operator.
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Using dimension theorem for T we obtain

n = dim(ImT ) + dim(KerT ) = rankT + def T.

Therefore, relation (4) becomes

def(T − T 2) = def T + def(I − T ). (5)

In order to prove (5), it is enough to show that

Ker(T − T 2) = KerT ⊕Ker(I − T ),

that is, for any x ∈ Ker(T −T 2) there exist a unique x1 ∈ KerT and a unique
x2 ∈ Ker(I−T ) such that x = x1+x2. If there are such x1, x2 we will obtain
the relations

(T − T 2)(x) = 0 ⇔ T (x) = T 2(x),

T (x1) = 0 and (I − T )(x2) = 0 ⇔ T (x2) = x2.

From the relations x = x1 + x2 and T (x) = T (x1) + T (x2) = x2 it follows

x2 = T (x), x1 = x− T (x),

which are uniquely determined. Next we show that x1 ∈ KerT and x2 ∈
Ker(I − T ). We have

T (x1) = T (x)− T 2(x) = 0, T (x2) = T 2(x) = T (x) = x2,

which conclude the proof.

Solution 2. [Vasile Pop] We prove relation (4) by using elementary
transformations of block matrices. We start with the matrix

M =

Å
B O
O In −B

ã
and make the following successive elementary transformations (we denote by
Ci and Li the transformation using column and line i ∈ {1, 2}, respectively):

N = L2L1MC1C2 =

Å
B −B2 O

O In

ã
,

where C1 =

Å
In In
O In

ã
, L1 =

Å
In O
In In

ã
, L2 =

Å
In −B
O In

ã
, C2 =

Å
In O
−In In

ã
.

The elementary matrices C1, C2, L1, L2 have determinant 1, therefore
rankM = rankN . It follows

rankB + rank(In −B) = rank(B −B2) + rank In = rank(B −B2) + n,

hence relation (4) is proved.

Solution 3. [Vasile Pop] If JB is the Jordan canonical form of matrix
B and P is the similarity transformation matrix, then B = PJBP

−1. Since
rank JB = rankB, relation (4) becomes

rank(JB − J2
B) = rank JB + rank(In − JB)− n. (6)
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Let JB =

á
Jλ1 O . . . O
O Jλ2 . . . O

O O
. . . O

O O . . . Jλp

ë
be the canonical Jordan form of

the matrix B. Since

rank

á
B1 O . . . O
O B2 . . . O

O O
. . . O

O O . . . Bp

ë
= rankB1 + · · ·+ rankBp,

the relation (6) reduces to the same relation for Jordan cells. If

Jλ =

â
λ 1 . . . 0

0 λ
. . . 0

. . . . . . . . . . . .

0 0
. . . 1

0 0 . . . λ

ì
is a Jordan cell of dimension k, we will prove that

rank(Jλ − J2
λ) = rank Jλ + rank(Ik − Jλ)− k. (7)

We have

Ik − Jλ =

à
1− λ 1 . . . 0
0 1− λ . . . 0
. . . . . . . . . . . .
0 0 . . . 1
0 0 . . . 1− λ

í
,

Jλ − Jλ2 =


λ− λ2 1− 2λ 1 . . . 0 0

0 λ− λ2 1− 2λ . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 λ− λ2 . . . 1− 2λ 1
0 0 0 . . . λ− λ2 1− 2λ
0 0 0 . . . 0 λ− λ2

 ,

so that

- for λ = 1 relation (7) is k − 1 = k + (k − 1)− k.
- for λ = 0 relation (7) becomes k − 1 = (k − 1) + k − k.
- for λ 6= 1, λ 6= 0 relation (7) is k = k + k − k.

All the three cases are true.

Solution 4. [Cornel Băeţica] This problem is a particular case of equal-
ity in the Sylvester’s rank inequality. An immediate consequence of Theorem
2.6 from F. Zhang, Matrix Theory. Basic Results and Techniques, Springer,
2011, is the following:
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Let X and Y be complex matrices of sizes m×n and n×p, respectively.
Then rank(XY ) = rank(X) + rank(Y )− n if and only if KerX ⊆ ImY .

If we set X = aIn−A (with a 6= 0) and Y = A, then we get the desired
result.

Problem 2. Let (an)n≥3 be a decreasing sequence of positive numbers.
Show that the series

∞∑
n=3

an

n (lnn)2
and

∞∑
n=3

Å
an

ln(n− 1)
− an+1

ln (n+ 1)

ã
are convergent.

Mircea Rus, Technical University of Cluj-Napoca

The contestants have given five complete solutions and one partial so-
lution for this problem.

Solution 1. [Author’s solution] Using comparison test or Abel’s test,

we can notice that the series with positive terms (A) :
∞∑
n=3

an

n (lnn)2
is conver-

gent since the sequence (an) is decreasing (so, bounded), and

∞∑
n=3

1

n (lnn)2
is

convergent (the convergence of the last series can be obtained, by example,
using condensation test).

For the second series, we write

an
ln(n− 1)

− an+1

ln (n+ 1)
=

á
an

ln(n− 1) lnn︸ ︷︷ ︸
bn

− an+1

lnn ln (n+ 1)︸ ︷︷ ︸
bn+1

ë
lnn

=(bn − bn+1) lnn,

where, obviously, bn =
an

ln(n− 1) lnn
(n ≥ 3) decreases to 0.

Also,
an

n (lnn)2
=

bn
n

· ln(n− 1)

lnn
,

such that series (A) :
∞∑
n=3

an

n (lnn)2
and (B) :

∞∑
n=3

bn
n

have the same nature,

hence the series B is convergent.
We use a similar approach to the summation rule of Abel and we show

that the series (C) :

∞∑
n=3

(bn − bn+1) lnn has the same nature as B (hence, is
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convergent). To this end, consider the sequence of positive numbers

cn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
− lnn (n ≥ 1),

convergent to Euler’s constant γ. Then
1

k
= ck − ck−1 + (ln k − ln(k − 1))

and

Bn =
n∑

k=3

bk
k

=

n∑
k=3

bkck −
n∑

k=3

bkck−1 +

n∑
k=3

bk ln k −
n∑

k=3

bk ln(k − 1)

=

n∑
k=3

bkck −
n−1∑
k=2

bk+1ck +

n∑
k=3

bk ln k −
n−1∑
k=2

bk+1 ln k

= bncn − b3c2 +

n−1∑
k=3

(bk − bk+1)ck + bn lnn− b3 ln 2 +

n−1∑
k=3

(bk − bk+1) ln k

= Cn−1 + bncn︸︷︷︸
↓
0

+
an

ln(n− 1)︸ ︷︷ ︸
↓
0

−b3 (c2 + ln 2) +
n−1∑
k=3

(bk − bk+1)ck.

Since (bn) is decreasing and (cn) is convergent (hence bounded), it fol-
lows that the series (with positive terms)

∑∞
k=3(bk − bk+1)ck is convergent.

This means that the series B and C have the same nature, hence C is also
convergent.

Solution 2. [Alternative statement and solution by Mircea Ivan, Tech-
nical University of Cluj-Napoca]

Let (an)n≥3 be a bounded sequence. Show that the series

∞∑
n=3

an

n (lnn)2
and

∞∑
n=3

Å
an

ln(n− 1)
− an+1

ln (n+ 1)

ã
are convergent.

Assume |an| ≤ M for all n ≥ 3. By comparison test we have
∞∑
n=3

∣∣∣∣∣ an

n (lnn)2

∣∣∣∣∣ ≤
∞∑
n=3

M

n (lnn)2
,

hence the first series is convergent.
We have

∞∑
n=3

Å
an

ln(n− 1)
− an+1

ln (n+ 1)

ã
=

∞∑
n=3

an

Å
1

ln(n− 1)
− 1

ln (n+ 1)

ã
+

∞∑
n=3

Å
an
lnn

− an+1

ln (n+ 1)

ã
,
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where
∞∑
n=3

an

∣∣∣∣ 1

ln(n− 1)
− 1

ln (n+ 1)

∣∣∣∣ ≤ M

ln 2

and
∞∑
n=3

Å
an
lnn

− an+1

ln (n+ 1)

ã
=

a3
ln 3

.

Problem 3. Let f : [a,∞) → (0,∞) be a continuous and monotone
function such that

∫∞
a f(x) dx is convergent. The graph of f, together with

the lines y = 0 and x = a, delimit a domain of area A > 0.
a) Show that, for any n ∈ N∗, there are points x1, . . . , xn ∈ [a,∞) such

that the lines of equations x = xk, k = 1, n, parallel to Oy, split the above
domain in parts of equal areas.

b) Let (an)n≥1 be a sequence given by

an =
1

n

n∑
k=1

f(xk), ∀n ≥ 1.

Show that V, the volume of the body obtained by rotating the graph of the
function f around Ox, is finite and

lim
n→∞

an =
V

πA
.

Radu Strugariu, Gheorghe Asachi Technical University of Iaşi

For this difficult problem just one contestant gave a full solution. Three
partial solutions were also given.

Solution. [Author’s solution]
a) We consider the function F : [a,∞) → [0, A) given by F (x) =∫ x

a f(t) dt. This is continuous, strictly increasing on [a,∞) and satisfies
lim
x→∞

F (x) = A. We take x1 = a. Since F is strictly increasing and has

the intermediate value property, it will achieve, successively, the values

A

n
,
2A

n
, . . . ,

(n− 1)A

n

in the points x2 < x3 < · · · < xn. It follows
∫∞
xn

f(t) dt =
A

n
.

b) Since f is monotone, there exists limx→∞ f(x). Since
∫∞
a f(x) dx is

convergent, it follows that
lim
x→∞

f(x) = 0.

So, there exists δ > a such that, for any x > δ, we have

|f(x)| ≤ 1.

But f is continuous on [a, δ] , hence bounded. It follows that f is bounded
on [a,∞) .
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Since it is bounded and has positive values, we obtain

V = π

∫ ∞

a
f2(x) dx ≤ Mπ

∫ ∞

a
f(x) dx < ∞,

where by M ∈ (0,∞) we denote the supremum of the function f on [a,∞) .
Since F is continuous and strictly increasing on [a,∞) , it is bijective,

and its inverse F−1 has the same properties on the interval [0, A) .
Moreover

F (x1) = 0, F (x2) =
A

n
, F (x3) =

2A

n
, . . . , F (xn) =

(n− 1)A

n
.

Then

xk = F−1

Å
(k − 1)A

n

ã
, ∀k = 1, n,

hence, we can write

an =
1

n

n∑
k=1

f(xk) =
1

A
· A
n

n∑
k=1

f

Å
F−1

Å
(k − 1)A

n

ãã
.

Notice the fact that the function f ◦ F−1 : [0, A) → (0,∞) is continuous and
bounded, hence we can compute its Riemann integral on [0, A] (we can add

an arbitrary value in A). Ignoring the factor
1

A
in the above formula, we

have a Riemann sum of the function f ◦ F−1. It follows that

lim
n→∞

an =
1

A

∫ A

0
f
(
F−1 (x)

)
dx.

By changing the variable F−1(x) = y, it follows that x = F (y), hence
dx = f(y) dy, and then

lim
n→∞

an =
1

A

∫ ∞

a
f2 (y) dy =

V

πA
.

Problem 4. Let A,B ∈ Mn(C) such that A2 +B2 = 2AB.

a) Prove that (A−B)n = On.
b) Prove that A and B have the same eigenvalues.

Vasile Pop, Technical University of Cluj-Napoca

Mihai Opincariu, Avram Iancu National College, Brad

This problem was the most difficult one, only four partial solutions were
given by contestants.

Solution 1. [Authors’ solution]
a) We have the sequence of equivalences

A2+B2 = 2AB ⇔ A2+B2−AB−BA = AB−BA ⇔ (A−B)2 = AB−BA.
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We denote C = A − B (equivalently, A = B + C) and from the above
relation we obtain

C2 = AB −BA = (B + C)B −B(B + C) = CB −BC = [C,B]
not
= D.

We get Dk+1 = (CB−BC)C2k = CBC2k−BC2k+1 = [C,BC2k] hence
Tr(Dk) = 0 for any k ∈ N∗. We obtain that all eigenvalues of D are 0.

Finally we get Dn = On ⇔ C2n = On ⇔ Cn = On ⇔ (A−B)n = On.
b) From the given relation we get

(A− λIn)
2 + (B − λIn)

2 = 2(A− λIn)(B − λIn),

for any λ ∈ C. This implies

(A− λIn)(2B −A− λIn) = (B − λIn)
2

and
(B − λIn)(2A−B − λIn) = (A− λIn)

2.

Now, by taking determinants we obtain fA(λ) = 0 ⇔ fB(λ) = 0, where
fA and fB is the characteristic polynomial of A and B, respectively. Thus,
A and B have the same eigenvalues.

Solution 2. [Cornel Băeţica]
a) If X is a square matrix over a field of characteristic zero, and X

commutes with one of its commutators, say [X,Y ], then [X,Y ] is nilpotent.
(This is a well known result of Jacobson from 1935.)

Now set X = A − B and Y = B. We have X2 = [X,Y ], and it is
obvious that X commutes with [X,Y ], so [X,Y ] = (A − B)2 is nilpotent.
Thus A−B is nilpotent, and therefore (A−B)n = On.

b) If λ is an eigenvalue of B, then there exists x ∈ Cn, x 6= 0, such that
Bx = λx. Since A2 +B2 = 2AB, we get A2x+B2x = 2ABx, which implies
(A− λIn)

2x = 0, and thus λ is an eigenvalue of A, too.
For the converse take the transpose in A2 +B2 = 2AB and recall that

the eigenvalues of a matrix are equal to the eigenvalues of its transpose.

Remark 1. Although A and B have the same eigenvalues, it does not
follow that A is equivalent to B and neither A is similar to B, as we can see
from the following example:

A =

 0 1
2 0

0 0 0
0 0 0

 , B =

 0 1 0
0 0 1
0 0 0

 , A2 +B2 = 2AB =

 0 0 1
0 0 0
0 0 0

 ,

but
rankA = 1 6= 2 = rankB.

Remark 2. One can prove even more: If A,B ∈ Mn(C) have the
property A2 +B2 = 2AB, then A,B are simultaneously triangularizable. In
particular, it follows that A and B have the same characteristic polynomials.
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MATHEMATICAL NOTES

A remarkable series on fixed points of tan z

Robert Bosch1)

Abstract. In this note we consider the function tan z over complex num-
bers, showing their fixed points are real numbers, and also, there are infin-
itely many. Later, we show that it holds

∞∑
k=1

1

x2
k

=
1

10
,

where xk are the positive fixed points of tanx. The source of this problem
is not well determined, the author proposed it to the journal Mathematical
Reflections as problem U223. Our solution is very similar to the one found
by G.R.A.20 Problem Solving Group, Roma, Italy.

Keywords: tan z, complex numbers, fixed points.

MSC: 33B10.

1. The fixed points of tan z are real numbers

In this section we shall prove that if tan z = z, with z = a − bi a complex
number, then b = 0. For sake of contradiction, assume b 6= 0. We know that

tan z =
e2iz − 1

i(e2iz + 1)
.

So, tan z = z is equivalent to

a sin 2a+ (1− b) cos 2a =
b+ 1

e2b
,

(1− b) sin 2a− a cos 2a =
a

e2b
.

From these equations we obtain

sin 2a =
2a

(a2 + (b− 1)2)e2b
,

cos 2a =
(1− a2 − b2)

(a2 + (b− 1)2)e2b
.

From sin2 2a+ cos2 2a = 1, we deduce

e4b =
a2 + (b+ 1)2

a2 + (b− 1)2
.

So, we can assume without loss of generality a ≥ 0 and b > 0. We claim that
it holds

1 ≥ sin 2a

2a
=

e4b − 1

4b · e2b
> 1,

1)USA bobbydrg@gmail.com
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a contradiction. Thus, b = 0. Note that for b > 0 one has

e4b − 1

4b · e2b
> 1 ⇔ e2b > 2b+

√
4b2 + 1.

Setting x = 2b, all that we need to prove is that for x > 0 the following
inequality holds

ex > x+
√
x2 + 1.

Note that this is stronger than the classical ex > x + 1. For the proof, let
f(x) = ex−x−

√
x2 + 1. We want to show that f(x) > f(0) for x > 0. So, it

is enough to prove the function f(x) is strictly increasing on (0,+∞). This
is clear because its first derivative satisfies

f ′(x) = ex − 1− x√
x2 + 1

> x− x√
x2 + 1

> 0.

2. There are infinitely many fixed points for tanx

Clearly x = 0 is a solution to the equation tanx = x. Since tan(−x) =
− tanx = −x, we may search for positive solutions only. Consider the fol-
lowing intervals

Ik =
(
(2k − 3)

π

2
, (2k − 1)

π

2

)
for k ≥ 2.

We shall prove there is precisely one solution in each Ik. Denote f(x) =
tanx− x, and g(x) = sinx− x cosx. Clearly, the function g(x) is continuous
on Ik and satisfies

g
(
(2k − 3)

π

2

)
· g
(
(2k − 1)

π

2

)
= sin

(
(2k − 3)

π

2

)
· sin

(
(2k − 1)

π

2

)
= (−1)k · (−1)k+1

= (−1)2k+1

= −1 < 0.

So, by Bolzano’s theorem, there is xk ∈ Ik such that g(xk) = 0, and hence
f(xk) = 0. Now, let us prove there is only one fixed point xk in each Ik.
Suppose, by contradiction, f(xk) = f(x′k) = 0, for xk and x′k in Ik. The

function f(x) is derivable on Ik, its first derivative is f ′(x) = 1
cos2 x

− 1,
clearly non-negative, thus f(x) is increasing. By Rolle’s theorem, there is ξk
with xk < ξk < x′k and f ′(ξk) = 0. Observe that the first derivative is zero
only for integer multiples of π, therefore ξk = mπ, for m a positive integer.
But, f(mπ) = −mπ < 0, which is a contradiction because the function f(x)
is increasing.
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3. Problem U223

Problem U223. (Mathematical Reflections) Let (xk)k≥1 be the positive
solutions of the equation tanx = x. Show that

∞∑
k=1

1

x2k
=

1

10
.

Solution. Let us consider the entire complex function

f(z) = sin z − z cos z.

The zeroes of f(z) are xk, −xk, and 0. These are all simple with the exception
of 0 whose order is 3. By the Weierstrass factorization theorem we have

f(z) =
z3

3

∞∏
k=1

Ç
1− z2

x2k

å
.

On the other hand, by expanding f(z) at 0 we have that

f(z) =
∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
− z

∞∑
n=0

(−1)nz2n

(2n)!
=

z3

3

∞∑
n=0

6(n+ 1)

(2n+ 3)!
(−1)nz2n.

By comparing these two expressions we find that

Sn :=
∑

k1<k2<···<kn

1

x2k1x
2
k2
· · ·x2kn

=
6(n+ 1)

(2n+ 3)!
.

In particular, for n = 1 we obtain

S1 =
∞∑
k=1

1

x2k
=

6 · 2
5!

=
1

10
.
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PROBLEMS

Authors should submit proposed problems to gmaproblems@rms.unibuc.ro.

Files should be in PDF or DVI format. Once a problem is accepted and considered

for publication, the author will be asked to submit the TeX file also. The referee

process will usually take between several weeks and two months. Solutions may also

be submitted to the same e-mail address. For this issue, solutions should arrive

before 15th of November 2020.

PROPOSED PROBLEMS

496. Calculate the integral:∫ ∞

0

arctanx√
x4 + x2 + 1

dx.

Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu,

Romania.

497. Let n ≥ 4 and let a1, . . . , an be nonzero real numbers such that
1

a1
+

· · ·+ 1

an
= 0. Prove thatÅ

1

a21
+ · · ·+ 1

a2n

ã ∑
1≤i<j≤n

(ai − aj)
2 ≥ n3.

When do we have equality?

Proposed by Leonard Giugiuc, Traian National College, Drobeta

Turnu Severin, Romania.

498. Let A,B ∈ Mn(C) be two matrices such that

A2 −B2 − In =
1

3
(AB −BA).

Prove that:
(i) det(A2 −B2) = det(A−B) det(A+B) = 1.
(ii) (AB −BA)n = 0.

Proposed by Florin Stănescu, Şerban Cioculescu School, Găeşti,

Dâmboviţa, Romania.

499. Let a, b ≥ 0. Calculate

lim
n→∞

√
n

∫ π
2

0

√
a sin2n x+ b cos2n x dx.

Proposed by Ovidiu Furdui, Alina Sı̂ntămărian, Technical

University of Cluj-Napoca, Cluj-Napoca, Romania.
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500. Let C be a simplex in Rn with the vertices A1, . . . , An+1 and let M be
a point in the interior of C. For every 1 ≤ i < j ≤ n + 1 we denote by Ai,j

the point where hyperplane generated by M and A1, . . . , Âi, . . . , Âj , . . . , An

intersects the edge AiAj of C. We denote by D the convex hull of {Ai,j :
1 ≤ i < j ≤ n+ 1}.

Prove that volD ≤ (1 − n+1
2n ) volC, and the equality is reached if and

only if M is the centroid of C.

Proposed by Leonard Giugiuc, National College Traian, Drobeta

Turnu Severin, Costel Bălcău, University of Piteşti, and Constantin-

Nicolae Beli, IMAR, Bucureşti, Romania.

501. Let f : R → R be a differentiable function. Then f(x + y) − f(x) ≥
yf ′(x) ∀x, y ∈ R if and only if n (f(x+ 1/n)− f(x)) ≥ f ′(x) ∀x ∈ R and for
every positive integer n.

Proposed by Florin Stănescu, Şerban Cioculescu School, Găeşti,

Dâmboviţa, Romania.

502. Let m ≥ 0 be an integer. Evaluate the series
∞∑
k=1

(xm log x)(k+m)

k!
, x > 1,

where f (i) is the derivative of order i of f .

Proposed by Mircea Ivan, Technical University of Cluj-Napoca,

Romania.

503. The Poincaré half-space model of the non-Euclidean n-dimensional
space is the upper half-space Hn = {(x, y) | x ∈ Rn−1, y > 0}. We regard an
element x ∈ Rn−1 as a column vector, i.e., as an element of Mn−1,1(R).

Then the group of positively oriented isometries of H is made of the
functions fα,A,a : H → H, with α > 0, A ∈ O+(n − 1) and a ∈ Rn−1, given
by (x, y) 7→ α(Ax + a, y), and the functions gα,A,r,a : H → H, with α > 0,

A ∈ O−(n−1) and r, a ∈ Rn−1, given by (x, y) 7→ α
Ä

A(x−r)
|x−r|2+y2

+ b, y
|x−r|2+y2

ä
.

Give a direct proof of the fact that if G is the set of all fα,A,a and all
gα,A,r,a then (G, ◦) is a group.

Here O(n − 1) is the orthogonal group, O(n − 1) = {A ∈ Mn−1(R) |
ATA = In−1}. We have O(n−1) = O+(n−1)∪O−(n−1), where O±(n−1) =
{A ∈ O(n− 1) | detA = ±1}.

If x = (x1, . . . , xn−1)
T ∈ Rn−1 then |x| denotes its Euclidean length,

|x|2 = x21 + · · ·+ x2n−1.

Proposed by Constantin-Nicolae Beli, IMAR, Bucureşti, Romania.
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SOLUTIONS

482. Let x ∈ R. Prove the series

∞∑
n=0

3n
Å
sinx− x+

1

3!
x3 − · · · −

sin nπ
2

n!
xn
ã
,

converges absolutely and calculate its sum.

Proposed by Ovidiu Furdui, Technical University of Cluj-Na-

poca, Cluj-Napoca, Romania.

Solution by the author. The answer is sinx cos(2x). First we prove the
series converges absolutely. We apply the Maclaurin formula of order n to
the function f(x) = sinx and we have that

sinx− x+
1

3!
x3 − · · · −

sin nπ
2

n!
xn = Rn(x),

where

Rn(x) =
sin(n+1)(θxx)

(n+ 1)!
xn+1 =

sin
Ä
θxx+ (n+1)π

2

ä
(n+ 1)!

xn+1,

for some θx ∈ (0, 1). It follows that

∞∑
n=0

∣∣∣∣ 3n Åsinx− x+
1

3!
x3 − · · · −

sin nπ
2

n!
xn
ã ∣∣∣∣

=
∞∑
n=0

∣∣∣∣ 3n sin
Ä
θxx+ (n+1)π

2

ä
(n+ 1)!

xn+1

∣∣∣∣
≤ 1

3

∞∑
n=0

(3|x|)n+1

(n+ 1)!

=
1

3

Ä
e3|x| − 1

ä
,

which shows the series converges absolutely.
Now we calculate its sum. We have
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f(x) =

∞∑
n=0

3n
Å
sinx− x+

1

3!
x3 − · · · −

sin nπ
2

n!
xn
ã

= sinx+

∞∑
n=1

3n
Å
sinx− x+

1

3!
x3 − · · · −

sin nπ
2

n!
xn
ã

n−1=m
==== sinx+

∞∑
m=0

3m+1

(
sinx− x+

1

3!
x3 − · · · −

sin (m+1)π
2

(m+ 1)!
xm+1

)

= sinx+ 3

∞∑
m=0

3m
Å
sinx− x+

1

3!
x3 − · · · −

sin mπ
2

m!
xm
ã

−
∞∑

m=0

3m+1 sin
(m+1)π

2

(m+ 1)!
xm+1

= sinx+ 3f(x)−
∞∑

m=0

sin(m+1)(0)

(m+ 1)!
(3x)m+1

= sinx+ 3f(x)− sin(3x),

and it follows that 2f(x) = sin(3x)− sinx. Concluding, f(x) = sinx cos(2x)
for all x ∈ R.

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria,

Spain. Since sinx−
n∑

k=0

sin
kπ

2

xk

k!
=

∞∑
k=n+1

sin
kπ

2

xk

k!
, our series writes as

S =

∞∑
n=0

3n
∞∑

k=n+1

sin
kπ

2

xk

k!
.

To solve the problem, we prove that the double series S is absolutely
convergent and we calculate its sum.

Assuming that S converges absolutely, we have
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S =

∞∑
k=1

sin
kπ

2

xk

k!

k−1∑
n=0

3n

=

∞∑
k=1

sin
kπ

2

xk

k!

Ç
3k − 1

2

å
=

1

2

( ∞∑
k=1

sin
kπ

2

(3x)k

k!
−

∞∑
k=1

sin
kπ

2

xk

k!

)

=
sin(3x)− sin(x)

2
.

To prove that S is absolutely convergent we note that

∣∣∣∣∣sin kπ

2

xk

k!

∣∣∣∣∣ ≤ |x|k

k!

so it is enough to show that T < ∞, where T =
∞∑
n=0

3n
∞∑

k=n+1

|x|k

k!
. By the

same calculations as for S, but with the factor sin
kπ

2
ignored and with x

replaced by |x|, one gets

T =
1

2

( ∞∑
k=1

(3|x|)k

k!
−

∞∑
k=1

|x|k

k!

)
=

1

2
((e3|x|−1)−(e|x|−1)) =

e3|x| − e|x|

2
< ∞.

In conclusion, the proposed series is absolutely convergent and its sum

is
sin 3x− sinx

2
.

Solution by Nicuşor Minculete, Braşov, Romania, and Daniel Văcaru,
Piteşti, Romania. If we consider the Taylor expansion of f(x) = sinx we
have

sinx− x+
1

3!
x3 − · · · −

sin π
2

n!
xn = f(x)−

n∑
k=0

f (k)(0)
xk

k!

=

∫ x

0
f (n+1)(t)

(x− t)n

n!
dt.

We will determine

S :=
∑
n≥0

an
∫ x

0
f (n+1)(t)

(x− t)n

n!
dt.

For this problem we need the case a = 3.
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Since |f (n+1)(t)| ≤ 1 ∀t, we have
∫ x
0 |f (n+1)(t) (x−t)n

n! |dt ≤ |x|n+1

(n+1)! , so our

series S is absolutely convergent. We have

S =

∫ x

0
g(t)dt, where g(t) =

∑
n≥0

f (n+1)(t)
an(x− t)n

n!
.

Let y = ax− (a− 1)t, then an(x− t)n = (ax− at)n = (y − t)n, so that

g(t) =
∑
n≥0

(f ′)(n)(t)
(y − t)n

n!
= f ′(y) = f ′(ax− (a− 1)t).

Therefore

S =

∫ x

0
f ′(ax− (a− 1)t)dt =

f(ax)− f(x)

a− 1
.

In our case, f(x) = sinx and a = 3, so S = sin 3x−sinx
2 = sinx cos 2x.

Note of the Editor. Note that in their proof Nicuşor Minculete and
Daniel Văcaru prove that the sum of the series writes as

∫ x
0 f ′(ax−(a−1)t)dt.

Since f(x) = sinx and a = 3, this means the sum is
∫ x
0 cos(3x− 2t)dt.

We received a solution from Ulrich Abel, from Technische Hochschule
Mittelhessen, Germany, who arrives to the same formula, but in a different
way. He too writes the remainder of the Taylor series in the integral form,
but then he continues as follows:

∞∑
n=0

3n
Å
sinx− x

1!
+

x3

3!
− · · · − f (n) (0)

xn

n!

ã
=

∞∑
n=0

3n
∫ x

0

(x− t)n

n!
f (n+1) (t) dt

=
∞∑
n=0

32n
∫ x

0

(x− t)2n

(2n)!
(−1)n cos (t) dt

+

∞∑
n=0

32n+1

∫ x

0

(x− t)2n+1

(2n+ 1)!
(−1)n+1 sin (t) dt

=

∫ x

0
(cos (3 (x− t)) cos (t)− sin (3 (x− t)) sin (t)) dt

=

∫ x

0
cos (3x− 2t) dt =

−1

2
sin (3x− 2t)

∣∣∣∣x
t=0

=
sin (3x)− sin (x)

2
.
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483. Suppose that 0 < a1 ≤ a2 ≤ . . . and

∞∑
n=1

1/an < ∞. Let A :=

{n ∈ N∗ : an < n log n}. Prove that A has logarithmic density 0, that

is, lim
x→∞

1

log x

∑
k≤x,k∈A

1

k
= 0.

Proposed by George Stoica, New Brunswick, Canada.

Solution by the author. Let B := {m ∈ N∗ : (2m−1, 2m] ∩ A 6= ∅}.
Suppose m ∈ B. Then there exists an integer nm ∈ A with 2m−1 < nm ≤ 2m.
Then for nm/2 < k ≤ nm we have ak ≤ anm < nm log nm, so

(∗)
∑

nm/2<k≤nm

1

ak
≥ nm − [nm/2]

nm log nm
≥ 1

2 log nm
≥ 1

2m log 2
.

Note that if m,m′ ∈ B with m′−m ≥ 2 then 2nm ≤ 2m+1 ≤ 2m
′−1 < nm′ so

(nm/2, nm]∩ (nm′/2, nm′ ] = ∅. It follows that every k ≥ 1 belongs to at most
two intervals of the type (nm/2, nm]. Thus, when we sum the inequality (*)
over m ≥ 1, we get

2
∞∑
k=1

1

ak
≥
∑
m∈B

1

2m log 2
.

Since
∑∞

k=1
1
ak

< ∞, this implies that
∑

m∈B
1
m < ∞.

We also have∑
2m−1<k≤2m, k∈A

1

k
≤
®
2m−1 · 1

2m−1 = 1 if m ∈ B,

0 if m /∈ B.

If y := (log x)/(log 2) then

∑
k≤x,k∈A

1

k
=

∑
k≤2y , k∈A

1

k
≤

∑
m≤y+1

Ñ ∑
k∈A, 2m−1<k≤2m

1

k

é
≤ 1

y log 2

∑
m∈B,m≤y+1

1 =
1

y log 2
f(y + 1),

where f(y) :=
∑

m∈B,m≤y

1.

We have

f(N)− f(N/2)

N
≤

∑
m∈B,n/2<m≤N

1

m
−→ 0 as N −→ ∞.

Thus f(y)/y −→ 0 as y −→ ∞, hence

lim sup
x→∞

1

log x

∑
k≤x,k∈A

1

k
≤ lim sup

y→∞

f(y + 1)

y
= 0.
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As the lim inf of the expression in the conclusion is always ≥ 0, the problem
now follows.

484. Prove that for a continuous nonconstant function f : R → R, the
following conditions are equivalent:

(1) f(x)− f(y) ∈ Q for all x, y ∈ R such that x− y ∈ Q;
(2) f(x)− f(y) ∈ R \Q for all x, y ∈ R such that x− y ∈ R \Q;
(3) there exist a ∈ Q∗ and b ∈ R such that f(x) = ax+ b for all x ∈ R.
Proposed by Vasile Pop, Technical University of Cluj-Napo-

ca, Cluj-Napoca, Romania.

Solution by the author. Assuming (3), then f(x)−f(y) = a(x−y) for all
x, y ∈ R, and the implications (3) ⇒ (1) and (3) ⇒ (2) are straightforward.

Conversely, assume either (1) or (2), and let A = Q, or A = R \ Q
respectively.

Fix y ∈ A and define g : R → R by g(x) = f(x + y) − f(x) for all
x ∈ R. Then g(R) ⊆ A, and g(R) is an interval (possibly degenerated) since
g is continuous, hence g must be constant. It follows that g(x) = g(0) for all
x ∈ R, hence

f(x+ y)− f(x) = f(y)− f(0) for all x ∈ R, y ∈ A. (4)

Next, fix x ∈ R and let h : R → R be defined by h(y) = f(x+ y)− f(y)
for all y ∈ R. By (4), h(y) = h(0) for all y ∈ A and by using the continuity
of h and the density of A in R, it follows that h(y) = h(0) for all y ∈ R.

Thus one has

f(x+ y) = f(x) + f(y)− f(0) for all x, y ∈ R,
or, equivalently,

f(x+ y)− f(0) = (f(x)− f(0)) + (f(y)− f(0)) for all x, y ∈ R.
Using the continuity and additivity of

F : R → R, F (x) = f(x)− f(0) for all x ∈ R,
it follows that F (x) = ax for all x ∈ R, with a ∈ R constant, hence

f(x) = ax+ b for all x ∈ R
where b = f(0) ∈ R. Since f is nonconstant, it follows that a 6= 0.

Finally, under the assumption (1), we have that

a = f(1)− f(0) ∈ Q,

while, under the assumption (2), we have that

f

Å
1

a

ã
− f(0) = 1 ∈ Q,

hence
1

a
/∈ R \Q, leading to a ∈ Q and concluding the proof.
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We received the same solution from Daniel Văcaru, Maria Teiuleanu
Economic College, Piteşti, Romania.

485. Assume that ABC is a triangle with a ≥ b ≥ c, where the angle A has
a fixed value. We denote by Σ the sum…

b+ c− a

a
+

…
c+ a− b

b
+

…
a+ b− c

c
.

Then the only possible values of A are π/3 ≤ A < π and we have:
(i) The smallest possible value Σ is

4 sin A
2 +
»

2
(
1− sin A

2

)»
2 sin A

2

.

(ii) If π/3 ≤ A < π/2 then the largest possible value of Σ is

4 cosA+
√
2 (1− cosA)√

2 cosA
.

If π/2 ≤ A < π then there is no finite upper bound for Σ.

Proposed by Leonard Giugiuc, National College Traian, Dro-

beta Turnu Severin, Romania.

Solution by the author. Since a ≥ b ≥ c we have A ≥ B ≥ C. Since A
is the largest angle of a triangle, we have π/3 ≤ A < π.

Let x = b+c−a
a , y = c+a−b

b , z = a+b−c
c , so that Σ =

√
x+

√
y +

√
z. We

have the well known relations:

x =
2 sin B

2 sin C
2

sin A
2

, y =
2 sin C

2 sin A
2

sin B
2

, z =
2 sin A

2 sin B
2

sin C
2

.

It follows that

yz = 4 sin2
A

2
, zx = 4 sin2

B

2
, xy = 4 sin2

C

2
, xyz = 8 sin

A

2
sin

B

2
sin

C

2
.

Hence the identity sin2 A
2 +sin2 B

2 +sin2 C
2 +2 sin A

2 sin B
2 sin C

2 = 1 writes as
xy + yz + zx+ xyz = 4.

Since π
2 > A

2 ≥ B
2 ≥ C

2 > 0 we have yz ≥ zx ≥ xy, whence x ≤ y ≤ z.

Let k = yz = 4 sin2 A
2 . Since A is fixed, so is k. We have π/3 ≤ A < π,

so that 4 sin2 π
6 ≤ k < 4 sin2 π

2 , i.e., 1 ≤ k < 4.
Let y + z = 2s. We also have yz = k so, by the AM-GM inequality,

s ≥
√
k.
We have x(y + z + yz) = 4 − yz, i.e., x(2s + k) = 4 − k, so x = 4−k

2s+k .

We also have
√
y +

√
z =

√
y + z + 2

√
yz =

√
2s+ 2

√
k. Hence

Σ =

»
2s+ 2

√
k +

 
4− k

2s+ k
= fk(s),
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where fk : [
√
k,∞) → R, fk(t) =

√
2t+ 2

√
k +
»

4−k
2t+k .

We claim that fk is strictly increasing. We have f ′
k(t) = 1√

2t+2
√
k
−√

4−k
(2t+k)3

. We must prove that f ′
k(t) > 0, i.e., (2t + k)3 > 2(t +

√
k)(4 − k),

∀t ≥
√
k. Since k ≥ 1 we have (2t+ k)3 ≥ (2t+ 1)3 and 3 ≥ 4− k. Hence it

suffices to prove that (2t+1)3 > 6(t+
√
k), i.e., 8t3+12t2+6t+1 > 6t+6t

√
k.

But this follows from 12t2 > 12t > 12
√
k > 6

√
k. (We have t >

√
k ≥ 1.)

We are now ready to solve (i). Since fk is increasing, the smallest value

of Σ = fk(s) is obtained when we take sminimal, i.e., when s =
√
k = 2 sin A

2 .

Then fk(
√
k) =

√
2
√
k + 2

√
k+
√

4−k
2
√
k+k

. But
√
2
√
k + 2

√
k =
»
8 sin A

2 and 
4− k

2
√
k + k

=

 
4− k√

k(2 +
√
k)

=

√
2−

√
k√

k
=

√
2− 2 sin A

2

2 sin A
2

.

In conclusion, the smallest possible value of Σ is…
8 sin

A

2
+

√
2− 2 sin A

2

2 sin A
2

=
4 sin A

2 +
»

2
(
1− sin A

2

)»
2 sin A

2

.

To see when this minimal value of Σ is reached, recall that k = yz and
2s = y + z, so s =

√
k happens precisely when y = z =

√
k. This is

equivalent to zx = xy, i.e., 2 sin2 B
2 = 2 sin2 C

2 , i.e., B = C = π−A
2 . Note that

A ≥ π/3 implies A ≥ π−A
2 , so A ≥ B = C. Hence the condition a ≥ b ≥ c is

fulfilled.
For (ii), in order to obtain large values of Σ = fk(s) we need large values

of s. Therefore we must find the largest eligible value of s. Since y+ z = 2s,
yz = k and y ≤ z, we have y = s −

√
s2 − k, z = s +

√
s2 − k. Since also

x = 4−k
2s+k , the condition that x ≤ y writes as 4−k

2s+k ≤ s −
√
s2 − k, which

is equivalent to (2s + k)(s −
√
s2 − k) ≥ 4 − k, i.e., gk(s) ≥ 4 − k, where

gk : [
√
k,∞) → R, gk(t) = (2t+ k)(t−

√
t2 − k). Moreover, we have x = y if

and only if gk(s) = 4− k.

We claim that gk is strictly decreasing. We have g′k(t) = 2(t−
√
t2 − k)+

(2t+k)(1− t√
t2−k

) = (t−
√
t2 − k)(2− 2t+k√

t2−k
), which is < 0 for t >

√
k since

the first factor of the product is always positive and the second is always
negative. Hence gk is decreasing on its domain [

√
k,∞). Also note that

gk(
√
k) = (2

√
k + k)

√
k = 2k + k

√
k ≥ 3k ≥ 4 − k, as k ≥ 1. We also have

limt→∞ gk(t) = limt→∞(2t + k) k
t+

√
t2−k

= k. Hence limt→∞ gk(t) is ≥ 4 − k

or < 4− k when k ≥ 2 or k < 2, respectively. As k = 4 sin2 A
2 , the two cases

correspond to A ≥ π/2 and A < π/2. We consider the two cases separately.

a. π/3 ≤ A < π/2, i.e., k < 2. Then gk(
√
k) ≥ 4 − k > limt→∞ gk(t).

Since gk is decreasing and continuous, there is a unique t0 ∈ [
√
k,∞) such
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that gk(t0) = 4− k. We have gk(t) ≥ 4− k if and only if t ∈ [
√
k, t0]. Hence

the largest value of s ∈ [
√
k,∞) with gk(s) ≥ 4 − k is s = t0, so the largest

value of Σ is achieved for s = t0.
If s = t0 then gk(s) = 4 − k, which is equivalent to x = y. Since

yz = k, we have z = k
y = k

x . If we replace y = x and z = k
x , the identity

xy+yz+zx+xyz = 4 writes as x2+k+k+kx = 4, i.e., x2+kx+2k−4 = 0.
But the roots of X2+kX+2k−4 = 0 are −2 and 2−k. Since x > 0, we have
x = 2−k. It follows that y = 2−k and z = k

2−k and so Σ =
√
x+

√
y+

√
z =

2
√
2− k +

»
k

2−k . But 2 − k = 2 − 4 sin2 A
2 = 2 cosA, so k = 2(1 − cosA).

Thus the largest possible value of Σ is

2
√
2− k +

 
k

2− k
=

4 cosA+
√
2(1− cosA)√

2 cosA
.

In order to achieve this maximal value we need that x = y, which is equivalent
to yz = zx, i.e., 4 sin2 A

2 = 4 sin2 B
2 . So we have A = B and C = π − 2A.

Since π/3 ≤ A < π/2 we have A ≥ π − 2A > 0. Hence A = B ≥ C > 0.
Hence the condition a ≥ b ≥ c is fulfilled.

b. π/2 ≤ A < π, i.e., k ≥ 2. Then limt→∞ gk(t) ≥ 4 − k. Since gk
is strictly decreasing, we have gk(s) > 4 − k ∀s ∈ [

√
k,∞) so there are no

restrictions on s. Since obviously lims→∞ fk(s) = ∞, the value of Σ = fk(s)
can be arbitrarily large, i.e., there is no finite upper bound.

Alternatively, for every M ≥ 1 we may consider the triangle ABC,
where c = 1, b = M and A is our given value, π/2 ≤ A < π. Since M ≥ 1,
we have b ≥ c and, since A ≥ π/2, we have a > b = M . Thus the condition
that a ≥ b ≥ c is fulfilled. Since a > M , b = M , c = 1 we have

Σ >

…
a+ b− c

c
>

…
M +M − 1

1
=

√
2M − 1.

So if M → ∞ then Σ → ∞, so Σ can be arbitrarily large.

Solution by Marian Cucoaneş, Eremia Grigorescu Technical Highschool,
Mărăşeşti, Vrancea, Romania. If we put p = 1

2(a + b + c) then we have the

well known formula sin A
2 =

»
(p−b)(p−c)

bc and similarly for sin B
2 and sin C

2 .
From these we get

sin(A/2) sin(B/2)

sin(C/2)
=

p− c

c
=

a+ b− c

2c
,

so …
a+ b− c

c
=

 
2 sin(A/2) sin(B/2)

sin(C/2)
.
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Together with the similar relations, this implies that

Σ√
2
=

 
sin(A/2) sin(B/2)

sin(C/2)
+

 
sin(A/2) sin(C/2)

sin(B/2)
+

 
sin(B/2) sin(C/2)

sin(A/2)

=
»

sin(A/2)

Ç 
sin(B/2)

sin(C/2)
+

 
sin(C/2)

sin(B/2)

å
+

√
sin(B/2) sin(C/2)√

sin(A/2)
.

We denote k = sin A
2 and x =

(√
sin(B/2)
sin(C/2) +

√
sin(C/2)
sin(B/2)

)2
. From the

AM-GM inequality we get x ≥ 4, with equality iff sin(B/2) = sin(C/2), i.e.,
iff B = C.

We have a ≥ b ≥ c, so A ≥ B ≥ C, which implies that A ≥ π
3 . From

π
3 ≤ A < π we get π

6 ≤ A
2 < π

2 , so
1
2 ≤ sin A

2 < 1, i.e., k ∈ [12 , 1).
We have

x =
sin(B/2)

sin(C/2)
+

sin(B/2)

sin(C/2)
+ 2 = 2 +

sin2(B/2) + sin2(C/2)

sin(B/2) sin(C/2)

= 2 +
2− cosB − cosC

2 sin(B/2) sin(C/2)
.

Since B+C
2 = π

2 − A
2 , we have cos B+C

2 = sin A
2 . We also have

cos
B − C

2
= cos

B + C

2
+ 2 sin

B

2
sin

C

2
= sin

A

2
+ 2 sin

B

2
sin

C

2
.

Therefore

cosB + cosC = 2 cos
B + C

2
cos

B − C

2
= 2 sin

A

2

Å
sin

A

2
+ 2 sin

B

2
sin

C

2

ã
.

Then the formula for x writes as

x = 2 +
2− 2 sin(A/2)(sin(A/2) + 2 sin(B/2) sin(C/2)

2 sin(B/2) sin(C/2)

= 2 +
1− k2 − 2k sin(B/2) sin(C/2)

sin(B/2) sin(C/2)

= 2− 2k +
1− k2

sin(B/2) sin(C/2)
,

so that »
sin(B/2) sin(C/2) =

 
1− k2

x+ 2k − 2
.

It follows that Σ√
2
= f(x), where f : [4,∞) is defined by formula

f(x) =
√
kx+

√
1− k2√

k
√
x+ 2k − 2

.
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We have

f ′(x) =

√
k

2
√
x
−
√
1− k2

2
√
k

· 1√
(x+ 2k − 2)3

=
k
√
(x+ 2k − 2)3 −

√
(1− k2)x

2
√
kx
√

(x+ 2k − 2)3
.

It follows that for every x ∈ [4,∞) f ′(x) has the same sign as g(x),
where g : [4,∞) → R is given by

g(x) = (k
»
(x+ 2k − 2)3)2 − (

»
(1− k2)x)2 = k2(x+ 2k − 2)3 − (1− k2)x.

We have

g′(x) = 3k2(x+ 2k − 2)2 − (1− k2) = k2
Å
3(x+ 2k − 2)2 − 1

k2
+ 1

ã
≥ k2

Ç
3

Å
4 + 2 · 1

2
− 2

ã2
− 1

(1/2)2
+ 1

å
= 24k2 > 0.

(because x ≥ 4 and k ≥ 1
2 .)

It follows that for every x ∈ [4,∞) it holds

g(x) ≥ g(4) = k2(2k + 2)3 − 4(1− k2) = 4(k + 1)(2k2(k + 1)2 + k − 1) > 0.

(We have k ≥ 1
2 , so g(4) ≥ 4

(
1
2 + 1

) Ä
2 ·
(
1
2

)2 (1
2 + 1

)2
+ 1

2 − 1
ä
= 15

4 .)

Hence for every x ∈ [4,∞) we have f(x) ≥ f(4), whence

Σ ≥
√
2f(4) =

√
2

Ç
2
√
k +

√
1− k2√

k
√
2k + 2

å
=

4k +
√
2(1− k)√
2k

.

Since k = sin A
2 , this minimal value writes as Σ =

4 sin(A/2)+
√

2−2 sin(A/2)√
2 sin(A/2)

.

The minimum is reached if x = 4, i.e., if B = C = π−A
2 . Since A ≥ π

3 , we

have A ≥ π−A
2 , so the condition A ≥ B ≥ C is satisfied.

Suppose now that π
3 ≤ A < π

2 and A ≥ B ≥ C. In this case we have

k = sin A
2 ∈ [12 ,

√
2
2 ).

Moreover, B−C = B− (π−A−B) = A+2B− π ≤ 3A− π < π
2 , with

equality iff A = B. Then 0 ≤ B−C
2 ≤ 3A−π

2 < π
4 < π, which implies that

cos B−C
2 ≥ cos 3A−π

2 = cos π−3A
2 = sin 3A

2 , with equality iff B − C = 3A− π,

i.e., iff A = B. We also have cos B+C
2 = cos

(
π
2 − A

2

)
= sin A

2 . It follows that

sin
B

2
sin

C

2
=

1

2

Å
cos

B − C

2
− cos

B + C

2

ã
≥ 1

2

Å
sin

3A

2
− sin

A

2

ã
= sin

A

2
cosA = k(1− 2k2),
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with equality iff A = B. Then

x = 2− 2k +
1− k2

sin(B/2) sin(C/2)
≤ 2− 2k +

1− k2

k(1− 2k2)

=
(1− k)2(1 + 2k)2

k(1− 2k2)
=: x0.

Since f is strictly increasing, we have f(x) ≤ f(x0) with equality iff x = x0,
which is equivalent to A = B.

To compute f(x0), note that x0 + 2k − 2 = 1−k2

k(1−2k2)
and therefore

f(x0) =
√
kx0 +

√
1− k2√

k(x0 + 2k − 2)
=

(1− k)(1 + 2k)√
1− 2k2

+

√
1− k2√
k(1−k2)
k(1−2k2)

=
1 + k − 2k2√

1− 2k2
+
√

1− 2k2 = 2
√

1− 2k2 +
k√

1− 2k2
.

We have cosA = 1− 2 sin2 A
2 = 1− 2k2 so k =

»
1−cosA

2 . Hence

maxΣ =
√
2f(x0) =

√
2

Ç
2
√
cosA+

…
1− cosA

2 cosA

å
=

4 cosA+
√
2(1− cosA)√

2 cosA

and the maximum is reached when B = A and C = π − 2A. Since A ≥ π
3 ,

we have π − 2A ≤ A, so A ≥ B ≥ C is satisfied.
If π

2 ≤ A < π then for every 0 < C ≤ π−A
2 we take B = π −A− C and

we get a triangle with A ≥ B ≥ C. We have x = g(c) :=
√

sin(B/2)
sin(C/2) +

sin(C/2)
sin(B/2) .

Since limC→0 g(c) = ∞ and limx→∞ f(x) = ∞, we have that Σ =
√
2f(x)

has no finite upper bound.

Note from the Editor. We also received a solution for the part (i)
of the problem from Yury Yucra Limachi, from Puno, Peru. He obtained
the same formula for Σ, in terms of sin A

2 , sin B
2 and sin C

2 , as in Mar-

ian Cucoaneş’s proof, but then he considers its square, F (A,B,C) = Σ2,
which no longer has square roots. Then, after some lengthy calculations, he
proves that F (A,B,C) ≥ F (A, B2 ,

C
2 ), therefore proving that the minimum

for F (A,B,C), and so for Σ, is reached when B = C = π−A
2 .

486. Find all continuous functions f : R → R which satisfy the equation

f(−x) = x+

∫ x

0
sin t f(x− t) dt, ∀x ∈ R.

Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical

University of Cluj-Napoca, Cluj-Napoca, Romania.
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Solution by the authors. We prove that f(x) = − sin(
√
2x)

2
√
2

− x
2 .

Using the substitution x− t = u the equation becomes

f(−x) = x+

∫ x

0
sin(x− u) f(u) du. (1)

Since the right hand side of the preceding equation is a differentiable func-
tion, f being continuous, we get that the left hand side of the equation is a
differentiable function and hence f is differentiable.

First we observe that equation (1) can be written as

f(−x) = x+ sinx

∫ x

0
cosu f(u) du− cosx

∫ x

0
sinu f(u) du. (2)

Taking derivatives of both sides of equation (2) we get that

−f ′(−x) = 1+cosx

∫ x

0
cosu f(u) du+sinx

∫ x

0
sinu f(u) du, ∀x ∈ R. (3)

Since the right hand side of equation (3) is a differentiable function we get
that f ′ is also differentiable and it follows by differentiation both sides of the
preceding equation that

f ′′(−x) = − sinx

∫ x

0
cosu f(u) du+ cosx

∫ x

0
sinu f(u) du+ f(x), ∀x ∈ R.

(4)
Adding equations (2) and (4) we get that

f ′′(−x) + f(−x) = x+ f(x), ∀x ∈ R. (5)

Replacing x by −x in (5) we get that

f ′′(x) + f(x) = −x+ f(−x), ∀x ∈ R. (6)

It follows, adding (5) and (6), that f ′′(x)+f ′′(−x) = 0, ∀x ∈ R. This implies
that f ′(x) − f ′(−x) = C, for some C ∈ R. Taking x = 0 one has that C = 0
and it follows that f ′(x) − f ′(−x) = 0, ∀x ∈ R. This equation implies that
f(x) + f(−x) = C1, for some C1 ∈ R. Since f(0) = 0, we get that C1 = 0
and we have that f(x) + f(−x) = 0, ∀x ∈ R. Thus, f(−x) = −f(x) and
we obtain, based on equality (6), that f ′′(x) + 2f(x) = −x. The solution
of this non homogeneous second order differential equation with constant
coefficients is given by f(x) = a cos(

√
2x) + b sin(

√
2x) − x

2 , a, b ∈ R. Since

f(0) = 0 and f ′(0) = −1, we get that a = 0 and b = − 1
2
√
2
, and it follows

that f(x) = − sin(
√
2x)

2
√
2

− x
2 .

One can check that the function f(x) = − sin(
√
2x)

2
√
2

−x
2 verifies the integral

equation in the statement of the problem. The problem is solved.
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487. We consider the complex matrices A and B of dimensions m × n and
n ×m, where m > n ≥ 2. Let C = AB. If 0 is an eigenvalue of C of order
m−n and Ck+1 = λCk for some k ≥ 1 and λ ∈ C \ {0}, then determine BA.

Proposed by Leonard Giugiuc, National College Traian, Dro-

beta Turnu Severin, Romania, and Costel Bălcău, University of

Piteşti, Piteşti, Romania.

Solution by the authors. Let f and g be the characteristic polynomials
of AB and BA, respectively. It is well known that f(X) = Xm−ng(X).
Since, by hypothesis, 0 is a root of order m − n of f , 0 is not a root of g.
Thus BA is invertible.

We have:

(BA)k+1 = B(AB)kA = BCkA and (BA)k+2 = B(AB)k+1A = BCk+1A.

But Ck+1 = λCk, so (BA)k+2 = λ(BA)k+1. Since BA is invertible, this
implies BA = λIn.

488. Let 0 ≤ a < b and f : [a, b] → R be a continuous function with
f(a) = f(b). Then there exist α, β ∈ [a, b] such that f(α) = f(β) and
α/β /∈ Q.

Proposed by George Stoica, New Brunswick, Canada.

Solution by the author. We may assume that f is not constant on
[a, b]. Thus there is some c ∈ (a, b) such that f(c) 6= f(a). We assume that
f(c) > f(a) (a similar argument applies if f(c) < f(a)), and define a new
function g : [f(a), f(c)] → R by

g(y) =
inf{[a, c] ∩ f−1(y)}
sup{[c, b] ∩ f−1(y)}

.

As y increases, the Intermediate Value Theorem implies that the numerator
of the above function strictly increases, while the denominator strictly de-
creases. Therefore g is injective. We deduce that g(y) is irrational for some
y ∈ [f(a), f(c)]. Set α = inf{[a, c] ∩ f−1(y)} and β = sup{[c, b] ∩ f−1(y)}.
Since [a, c] ∩ f−1(y) is closed, we see that α ∈ [a, c] ∩ f−1(y), and thus
f(α) = y. Similarly, f(β) = y. As α/β /∈ Q, the proof is complete.

Note from the Editor. We received essentially the same proof from
Leonard Giugiuc, Traian National College, Drobeta Turnu Severin, Romania.

Solution by Filip Munteanu, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Cluj-Napoca, Romania. First we prove that
there are s, t ∈ (a, b), s < t, such that f(s) = f(t). If f is a constant then we
have nothing to prove. If f is not constant then, according to Weierstrass’
Theorem, f has a minimum m and a maximum M and they are distinct. In
particular, we have either m 6= f(a) or M 6= f(a). Assume that m 6= f(a),
i.e., that m < f(a) = f(b). Let z be such that f(z) = m and let’s consider
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w ∈ (m, f(a)), so that f(z) = m < w < f(a) = f(b). We have a < z < b,
f(a) > w > f(z) and f(z) < w < f(b). Since f is continuous, there exist
s ∈ (0, z) and t ∈ (z, b) such that f(s) = f(t) = w. The case when M 6= f(a)
is similar.

If s/t /∈ Q, we can choose α = s and β = t. Otherwise there exists an

integer n > 1 such that r =
(
s
t

)1/n 6∈ Q. (We write s
t > 1 as s

t = pr11 · · · prkk
for pairwise distinct prime numbers pi and nonzero integers ri, and we take n
to be any integer not dividing gcd{r1, . . . , rk}.) We have r > 1 and t = srn.

Let’s define the function g :
[
s, srn−1

]
→ R, g(x) = f(xr) − f(x) and

note that g is continuous. In addition, we have

g(s) + g(sr) + g(sr2) + · · ·+ g(srn−1) = f(srn)− f(s) = f(t)− f(s) = 0.

From here one may deduce that g has some zeroes (otherwise, since g
is continuous, it would follow that either g > 0 or g < 0, which contradicts
the relation from above).

Let c be a zero for g. We can choose α = c and β = cr.

Note from the Editor. This is a late solution to a problem published
in the the 1–2/2018 issue of GMA and solved in the 1–2/2019 issue.

472. Let a, b, c ∈ [0, π2 ] such that a+b+c = π. Prove the following inequality:

sin a+ sin b+ sin c ≥ 2 + 4

∣∣∣∣sinÅa− b

2

ã
sin

Å
b− c

2

ã
sin
(c− a

2

)∣∣∣∣ .
Proposed by Leonard Giugiuc, Traian National College, Drobeta Turnu

Severin, Romania and Jiahao He, South China University of Technology,

People’s Republic of China.

Solution by Marian Dincă. Rewrite the inequality to be proved in the
equivalent form

sin a+ sin b+ sin c ≥ 2 + | sin(a− b) + sin(b− c) + sin(c− a)|.
Recall, a, b, c ∈ [0, π2 ], with a+ b+ c = π.

By symmetry, we assume that a ≥ b ≥ c. Then

| sin(a− b) + sin(b− c) + sin(c− a)| = | sin(a− b) + sin(b− c)− sin(a− c)|
= sin(a− b) + sin(b− c)− sin(a− c).

Here we used the fact that the sine function is non-negative and subadditive
on [0, π/2], i.e., sinx+ sin y ≥ sin(x+ y) if x, y ≥ 0, with x+ y ≤ π/2.

Then our inequality writes as

sin a+ sin b+ sin c ≥ 2 + sin(a− b) + sin(b− c)− sin(a− c)

or, equivalently,

sin a+ sin b+ sin c+ sin(a− c) ≥ sin
π

2
+ sin

π

2
+ sin(a− b) + sin(b− c)|.
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We now use the following result, which is a variant [2, 3] of Karamata’s
inequality [1].

Let f : I → R be a concave and increasing function, where I ⊆ R is
an interval. Let a1, . . . , an and b1, . . . , bn be two sequences in I such that
b1 ≤ · · · ≤ bn and a1 + · · ·+ ak ≤ b1 + · · ·+ bk for k = 1, . . . , n.

Then we have f(a1) + · · ·+ f(an) ≤ f(b1) + · · ·+ f(bn).

Apply this result for f : [0, π/2] → R, f(x) = sinx, which is increasing
and concave, n = 4, (a1, a2, a3, a4) = (min(a−b, b−c),max(a−b, b−c), π2 ,

π
2 ),

and (b1, b2, b3, b4) = (min(c, a− c),max(c, a− c), b, a).
Since 0 ≤ a, b, c ≤ π

2 and a+ b+ c = π, we have a ≤ π
2 ≤ b+ c. We get

similar inequalities if we permute a, b, c.
We now verify that a1, a2, a3, a4 and b1, b2, b3, b4 satisfy the conditions

of the theorem.
Obviously min(c, a − c) ≤ max(c, a − c). Since b ≥ c and b + c ≥ a, so

b ≥ a− c, we have b ≥ max(c, a− c). Also a ≥ b. Hence b1 ≤ b2 ≤ b3 ≤ b4.
We have b + c ≥ a and a ≥ b so a − c ≤ b and b − c ≤ a − c. It

follows that min(a − b, b − c) ≤ min(c, a − c), i.e., a1 ≤ b1. Also a1 + a2 =
(a− b) + (b− c) = a− c and b1 + b2 = c+ a− c = a. We have a− c ≤ a, i.e..
a1 + a2 ≤ b1 + b2. Also a1 + a2 + a3 = a − c + π

2 and b1 + b2 + b3 = a + b.
Since b+ c ≥ a, we have a− c+ π

2 ≤ a+ b, i.e., a1 + a2 + a3 ≤ b1 + b2 + b3.
Finally a1 + a2 + a3 + a4 = a− c+ π

2 + π
2 = a− c+ π and b1 + b2 + b3 + b4 =

a + b + a = 2a + b. Since a + b + c = π, we have a − c + π = 2a + b, i.e.,
a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4.

So all the conditions of the theorem are fulfilled and we have

f(a1) + f(a2) + f(a3) + f(a4) ≤ f(b1) + f(b2) + f(b3) + f(b4).

But

f(a1) + f(a2) + f(a3) + f(a4) = sin(a− b) + sin(b− c) + sin
π

2
+ sin

π

2
and

f(b1) + f(b2) + f(b3) + f(b4) = sin c+ sin(a− c) + sin b+ sin a.

Thus we have the desired inequality.
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