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SERIA A

ANUL XXXII (CXI) Nr. 3 – 4/ 2014

ARTICOLE

Functions for which mixed partial derivatives are distinct

Dumitru Popa1)

Abstract. Let h : R3 → R be a function of class C1 and let f : R2 → R,

f (x1, x2) =

 h

(
x2
1

x2
1 + x2

2

,
x2
2

x2
1 + x2

2

, x1x2

)
if (x1, x2) ̸= (0, 0) ,

0 if (x1, x2) = (0, 0) .

We find necessary and sufficient conditions for f to be continuous at (0, 0),

there exist ∂f
∂x1

(0, 0), be Fréchet differentiable at (0, 0) and having partial

derivatives ∂2f
∂x1∂x2

(0, 0), ∂2f
∂x2∂x1

(0, 0). We also show that this result can

be extended to a real linear space endowed with a scalar product.

Keywords: Fréchet differentiable, mixed partial derivative, Schwartz and
Young theorem, Hilbert spaces, real-valued functions
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Introduction

The Schwarz theorem asserts that if f : R2 → R is twice Fréchet dif-
ferentiable at a point a ∈ R2, then f ′′ (a) is symmetric, i.e., f ′′ (a) (x, y) =

f ′′ (a) (y, x) for all x, y ∈ R2. In particular, there exist ∂2f
∂x1∂x2

(a), ∂2f
∂x2∂x1

(a)

and ∂2f
∂x1∂x2

(a) = ∂2f
∂x2∂x1

(a), see [2, Propoziţia 11, p. 100]. Also the Young

theorem asserts that if f : R2 → R is such that there exist ∂f
∂x1

, ∂f
∂x2

, and there

exists and is continuous ∂2f
∂x1∂x2

: R2 → R, then there exists ∂2f
∂x2∂x1

: R2 → R
and ∂2f

∂x1∂x2
= ∂2f

∂x2∂x1
; see [2, Propoziţia 10, p. 99]. As it is well known, the

Young theorem and Fubini’s theorem are equivalent and true; for more de-
tails see [1] and the references therein. The standard example of a function

f : R2 → R for which there exist ∂2f
∂x1∂x2

(0, 0), ∂2f
∂x2∂x1

(0, 0) and are different
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is f (x1, x2) =

{
x1x2(x2

1−x2
2)

x2
1+x2

2
if(x1, x2) ̸= (0, 0)

0 if(x1, x2) = (0, 0)
; see [2, p. 113, exercise 1], [5,

p. 186, exercise 6], [6, Example 2.7.1, p. 61]. In this paper we extend the
above example, and further we show that this can be also extended to the
context of real Hilbert spaces.

The notation and definitions used in this paper are standard; see [2, 3,
4, 5, 7].

Throughout this paper we denote by e1 = (1, 0, 0), e2 = (0, 1, 0) and
e3 = (0, 0, 1) the standard unit vectors in R3.

1. The real case

Proposition 1. Let h : R3 → R be a function of class C1 and let f : R2 → R
defined by

f (x1, x2) =

{
h
(

x2
1

x2
1+x2

2
,

x2
2

x2
1+x2

2
, x1x2

)
if (x1, x2) ̸= (0, 0) ,

0 if (x1, x2) = (0, 0) .

Then:
(i) f is continuous at (0, 0) if and only if h (y1, 1− y1, 0) = 0 for all y1 ∈ [0, 1].

(ii) there exists ∂f
∂x1

(0, 0) if and only if h (e1) = 0. In this case ∂f
∂x1

(0, 0) = 0.

(iii) there exists ∂f
∂x2

(0, 0) if and only if h (e2) = 0. In this case ∂f
∂x2

(0, 0) = 0.

(iv) f is Fréchet differentiable at (0, 0) if and only if h (y1, 1− y1, 0) = 0 for
all y1 ∈ [0, 1].

(v) there exists ∂2f
∂x1∂x2

(0, 0) if and only if h (e2) = 0. In this case
∂2f

∂x1∂x2
(0, 0) = ∂h

∂y3
(e1).

(vi) there exists ∂2f
∂x2∂x1

(0, 0) if and only if h (e1) = 0. In this case
∂2f

∂x2∂x1
(0, 0) = ∂h

∂y3
(e2).

Proof. First we recall a well known result: h is of class C1 if and only if there
exist and are continuous ∂h

∂y1
, ∂h
∂y2

, ∂h
∂y3

: R3 → R.
(i) Let us suppose that f is continuous at (0, 0). Then

lim
(x1,x2)→(0,0)

f (x1, x2) = f (0, 0) = 0.

In particular, lim
x2→0

f (0, x2) = 0. Since for all x2 ̸= 0, f (0, x2) = h (0, 1, 0),

it follows that h (0, 1, 0) = 0. Let 0 < y1 ≤ 1. Then, as it is well known,

lim
x1→0

f
(
x1, x1

√
1−y1
y1

)
= 0, i.e., lim

x1→0
h
(
y1, 1− y1, x

2
1

√
1−y1
y1

)
= 0. Since h is

continuous,

lim
x1→0

h

(
y1, 1− y1, x

2
1

√
1− y1
y1

)
= h (y1, 1− y1, 0) ,
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thus h (y1, 1− y1, 0) = 0.
Conversely, suppose that h (y1, 1− y1, 0) = 0 for all y1 ∈ [0, 1].
Let ψ : [0, 1]× R → R be the function

ψ (y1, y3) =


h (y1, 1− y1, y3)− h (y1, 1− y1, 0)

y3
if y3 ̸= 0

∂h

∂y3
(y1, 1− y1, 0) , if y3 = 0

.

Let us note that since h and ∂h
∂y3

are continuous it follows that ψ is continuous.

Also h (y1, 1− y1, y3)−h (y1, 1− y1, 0) = y3ψ (y1, y3) for all (y1, y3) ∈ [0, 1]×R
and by hypothesis

h (y1, 1− y1, y3) = y3ψ (y1, y3) for all (y1, y3) ∈ [0, 1]× R.

Let (x1, x2) ∈ [−1, 1]2 with (x1, x2) ̸= (0, 0). Then

f (x1, x2) = h

(
x21

x21 + x22
,

x22
x21 + x22

, x1x2

)
= x1x2ψ

(
x21

x21 + x22
, x1x2

)
and

|f (x1, x2)| = |x1x2|
∣∣∣∣ψ( x21

x21 + x22
, x1x2

)∣∣∣∣
≤ |x1x2| sup

(y1,y3)∈[0,1]×[−1,1]
|ψ (y1, y3)| =M |x1x2|

(since ψ is continuous and [0, 1] × [−1, 1] is a compact set, by the Weier-
strass theorem the supremum is finite and attained). From here we get that

lim
(x1,x2)→(0,0)

f (x1, x2) = 0 = f (0, 0), i.e., f is continuous at (0, 0).

(ii) By definition there exists ∂f
∂x1

(0, 0) if and only if the real function

x1 7→ f (x1, 0) is derivable at 0. Now, f (x1, 0) =

{
h (e1) if x1 ̸= 0
0 if x1 = 0

.

Thus, as it is easy to prove, there exists ∂f
∂x1

(0, 0) if and only if h (e1) = 0

and moreover, ∂f
∂x1

(0, 0) = 0.

(iii) By definition there exists ∂f
∂x2

(0, 0) if and only if the real function

x2 7→ f (0, x2) is derivable at 0. Since f (0, x2) =

{
h (e2) if x2 ̸= 0
0 if x2 = 0

, there

exists ∂f
∂x2

(0, 0) if and only if h (e2) = 0 and moreover, ∂f
∂x2

(0, 0) = 0.

(iv) Suppose that f is Fréchet differentiable at (0, 0). Then, as it is well
known, f is continuous at (0, 0) and from (i) we deduce that h (y1, 1− y1, 0) =
0 for all y1 ∈ [0, 1].

Conversely, assume that h (y1, 1− y1, 0) = 0 for all y1 ∈ [0, 1]. Then, in
particular, h (e1) = h (1, 0, 0) = 0, h (e2) = h (0, 1, 0) = 0, and from (ii) and

(iii) we have ∂f
∂x1

(0, 0) = 0, ∂f
∂x2

(0, 0) = 0. As it is well known f is Fréchet
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differentiable at (0, 0) if and only if

lim
(x1,x2)→(0,0)

f (x1, x2)− f (0, 0)− ∂f

∂x1
(0, 0)x1 −

∂f

∂x2
(0, 0)x2√

x21 + x22
= 0,

i.e., lim
(x1,x2)→(0,0)

f(x1,x2)√
x2
1+x2

2

= 0. To prove this, we recall that in (i) we have

shown that

|f (x1, x2)| ≤M |x1x2| for all (x1, x2) ∈ [−1, 1]2 with (x1, x2) ̸= (0, 0)

and, since |x1|√
x2
1+x2

2

≤ 1, we deduce

|f (x1, x2)|√
x21 + x22

≤M |x2| for all (x1, x2) ∈ [−1, 1]2 with (x1, x2) ̸= (0, 0) .

From here we get that lim
(x1,x2)→(0,0)

f(x1,x2)√
x2
1+x2

2

= 0.

(v) Let us suppose that there exists ∂2f
∂x1∂x2

(0, 0). In particular, there

exists ∂f
∂x2

(0, 0) and by (iii), h (e2) = 0 and ∂f
∂x2

(0, 0) = 0.

Conversely, let us suppose that h (e2) = 0. Let (x1, x2) ̸= (0, 0). By the
chain rule we have

∂f

∂x2
=

∂h

∂y1
· ∂y1
∂x2

+
∂h

∂y2
· ∂y2
∂x2

+
∂h

∂y3
· ∂y3
∂x2

,

i.e.,

∂f

∂x2
= − 2x21x2(

x21 + x22
)2 · ∂h

∂y1
+

2x21x2(
x21 + x22

)2 · ∂h
∂y2

+ x1 ·
∂h

∂y3
.

Above we used the usual convention that we wrote ∂f
∂x1

instead of ∂f
∂x1

(x1, x2)

and ∂h
∂y1

instead of ∂h
∂y1

(
x2
1

x2
1+x2

2
,

x2
2

x2
1+x2

2
, x1x2

)
, etc. Then

∂f

∂x2
(x1, 0) =

 x1 ·
∂h

∂y3
(1, 0, 0) for x1 ̸= 0

0 for x1 = 0
= x1 ·

∂h

∂y3
(e1) for x1 ∈ R.

By definition, we have

∂2f

∂x1∂x2
(0, 0) = lim

x1→0

∂f

∂x2
(x1, 0)−

∂f

∂x2
(0, 0)

x1
=

∂h

∂y3
(e1) .

(vi) Let us suppose that ∂2f
∂x2∂x1

(0, 0) exists. Then, in particular, there

exists ∂f
∂x1

(0, 0), which by (ii) gives us h (e1) = 0 and ∂f
∂x1

(0, 0) = 0.
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Conversely, let us suppose that h (e1) = 0. Let (x1, x2) ̸= (0, 0). By the
chain rule we have

∂f

∂x1
=

∂h

∂y1
· ∂y1
∂x1

+
∂h

∂y2
· ∂y2
∂x1

+
∂h

∂y3
· ∂y3
∂x1

,

i.e.,
∂f

∂x1
=

2x1x
2
2(

x21 + x22
)2 · ∂h

∂y1
− 2x1x

2
2(

x21 + x22
)2 · ∂h

∂y2
+ x2 ·

∂h

∂y3

with the same convention as above. Then

∂f

∂x1
(0, x2) =

{
x2 · ∂h

∂y3
(0, 1, 0) for x2 ̸= 0

0 for x2 = 0
= x2 ·

∂h

∂y3
(e2) for x2 ∈ R.

Thus, by definition we have

∂2f

∂x2∂x1
(0, 0) = lim

x2→0

∂f
∂x1

(0, x2)− ∂f
∂x1

(0, 0)

x2
=

∂h

∂y3
(e2) .

2
Taking h : R3 → R, h (y1, y2, y3) = (y1 − y2) y3 in Proposition 1, we get

the Dieudonné’s example.

2. Real Hilbert spaces

One of the main features of the example given in Proposition 1 is that
it can be extended to the context of real Hilbert spaces, more precisely to
real linear spaces endowed with a scalar product. Even, maybe, for some
readers this extension is almost obvious, we give the full details. We recall
some definitions and results. Throughout the rest of the paper we denote
by H a real linear space endowed with a scalar product ⟨, ⟩, ∥x∥ =

√
⟨x, x⟩

for all x ∈ H and BH = {x ∈ H | ∥x∥ ≤ 1} is the closed unit ball of H. By
IH : H → H we denote the identity operator, i.e., IH (x) = x for x ∈ H
and L (H) = {A : H → H | A is linear and continuous} endowed with the
operator norm.

Let f : H → R and a ∈ H. By definition, the function f is Fréchet
differentiable at a if and only if there exists f ′ (a) ∈ H such that

lim
x→a

f (x)− f (a)− ⟨f ′ (a) , x− a⟩
∥x− a∥

= 0.

We need the following results:
R1) Let φ : H → R, φ (x) = ∥x∥2. Then φ′ (a) = 2a for all a ∈ H. This

follows simply by definition.

R2) If we have the maps H
f→ R φ→ R such that f is Fréchet differen-

tiable at a ∈ H, and φ derivable at f (a), then φ ◦ f is Fréchet differentiable
at a and (φ ◦ f)′ (a) = φ′ (f (a)) f ′ (a). This is the well known theorem of
differentiability of the composition of functions, see [2, 3, 4, 5, 7].
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R3) If λ > 0, then P : H → R defined by P (x) = 1
∥x∥2+λ

is Fréchet

differentiable at x ∈ H and P ′ (x) = − 2x

(∥x∥2+λ)
2 . This follows from R1) and

R2).
Let f : H → H and a ∈ H. By definition, the function f is Fréchet

differentiable at a if and only if there exists f ′ (a) ∈ L (H) such that

lim
x→a

f (x)− f (a)− f ′ (a) (x− a)

∥x− a∥
= 0;

see [2, 3, 4, 5, 7].
R4) Let A ∈ L (H) and f : H → H, f (x) = A (x). Then f is Fréchet

differentiable at every a ∈ H and f ′ (a) = A for all a ∈ H. In particular,
if c ∈ R and f : H → H is defined by f (x) = cx, then f ′ (a) = cIH for all
a ∈ H. This follows by definition; see [2, 3, 4, 5, 7].

On the cartesian product H×H we consider the natural scalar product

⟨(x1, x2) , (y1, y2)⟩ = ⟨x1, y1⟩+ ⟨x2, y2⟩ .

Let f : H × H → R and (a1, a2) ∈ H × H. We say that f is Fréchet
differentiable at (a1, a2) with respect to the first variable if and only if the
function v1 : H → R, v1 (x1) = f (x1, a2), is Fréchet differentiable at a1.
Similarly, f is Fréchet differentiable at (a1, a2) with respect to the second
variable if and only if the function v2 : H → R, v (x2) = f (a1, x2), is Fréchet
differentiable at a2.

Let f : H × H → R and (a1, a2) ∈ H × H. We say that f is twice
Fréchet differentiable at (a1, a2) with respect to the variables x1 and x2 if and

only if there exists ∂f
∂x2

: H×H → H and the function g1 =
∂f
∂x2

: H×H → H

is Fréchet differentiable with respect to x1 at (a1, a2). In this case, ∂g1
∂x1

(a)
def
=

∂2f
∂x1∂x2

(a1, a2) ∈ L (H).
Indeed, let us note that f : H ×H → H is twice Fréchet differentiable

with respect to x1 at (a1, a2) if and only if the function v1 : H → H defined

by v1 (x1) = ∂f
∂x2

(x1, a2) is Fréchet differentiable at a1, so
∂2f

∂x1∂x2
(a1, a2) =

v′1 (a1) ∈ L (H).
Similarly, the function f : H × H → R is twice Fréchet differentiable

at (a1, a2) ∈ H × H with respect to the variables x2 and x1 if and only if

there exists ∂f
∂x1

: H × H → H and the function g2 = ∂f
∂x1

: H × H → H is

Fréchet differentiable with respect to x2 at (a1, a2). In this case, ∂g2
∂x2

(a)
def
=

∂2f
∂x2∂x1

(a1, a2) ∈ L (H).

R5) The chain rule. Let us consider the maps H×H y1→ R, H×H y2→ R,
H ×H

y3→ R, R3 h→ R and let f : H ×H → R be defined by

f (x1, x2) = h (y1 (x1, x2) , y2 (x1, x2) , y3 (x1, x2))
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and (a1, a2) ∈ H × H. If y1, y2, y3 are Fréchet differentiable at (a1, a2)
and h is Fréchet differentiable at (y1 (a1, a2) , y2 (a1, a2) , y3 (a1, a2)), then f
is Fréchet differentiable at (a1, a2) and the chain rule holds:

∂f

∂x1
=

∂h

∂y1
· ∂y1
∂x1

+
∂h

∂y2
· ∂y2
∂x1

+
∂h

∂y3
· ∂y3
∂x1

,

∂f

∂x2
=

∂h

∂y1
· ∂y1
∂x2

+
∂h

∂y2
· ∂y2
∂x2

+
∂h

∂y3
· ∂y3
∂x2

,

with the usual convention that by ∂f
∂x1

(respectively ∂h
∂y1

) we understand
∂f
∂x1

(a1, a2) (respectively
∂h
∂y1

(y1 (a1, a2) , y2 (a1, a2) , y3 (a1, a2))); see [2, 3, 4,

5, 7]. Let us note that ∂h
∂y1

= ∂h
∂y1

(y1 (a1, a2) , y2 (a1, a2) , y3 (a1, a2)) ∈ R,
∂y1
∂x1

= ∂y1
∂x1

(a1, a2) ∈ H.
We also need the following well known result.
R6) If f : H ×H → R is such that there exists lim

(x,y)→(0,0)
f (x, y) ∈ R,

then lim
x→0

f (x,mx) = lim
y→0

f (ny, y) = lim
(x,y)→(0,0)

f (x, y) for all m,n ∈ R.

With this preparation we are ready to prove the extension of Proposition
1 to Hilbert spaces.

Proposition 2. Let (H, ⟨, ⟩) be a real linear space endowed with a scalar
product, h : R3 → R a function of class C1 and let f : H ×H → R,

f (x1, x2) =

{
h
(

∥x1∥2

∥x1∥2+∥x2∥2
, ∥x2∥2

∥x1∥2+∥x2∥2
, ⟨x1, x2⟩

)
if (x1, x2) ̸= (0, 0)

0 if (x1, x2) = (0, 0)
.

Then:
(i) f is continuous at (0, 0) if and only if h (y1, 1− y1, 0) = 0 for all y1 ∈ [0, 1].

(ii) there exists ∂f
∂x1

(0, 0) if and only if h (e1) = 0. In this case ∂f
∂x1

(0, 0) = 0.

(iii) there exists ∂f
∂x2

(0, 0) if and only if h (e2) = 0. In this case ∂f
∂x2

(0, 0) = 0.

(iv) f is Fréchet differentiable at (0, 0) if and only if h (y1, 1− y1, 0) = 0 for
all y1 ∈ [0, 1].

(v) there exists ∂2f
∂x1∂x2

(0, 0) if and only if h (e2) = 0. In this case
∂2f

∂x1∂x2
(0, 0) = ∂h

∂y3
(e1) IH .

(vi) there exists ∂2f
∂x2∂x1

(0, 0) if and only if h (e1) = 0. In this case
∂2f

∂x2∂x1
(0, 0) = ∂h

∂y3
(e2) IH .

Proof. Again h is of class C1 if and only if there exist and are continuous
∂h
∂y1

, ∂h
∂y2

, ∂h
∂y3

: R3 → R.
(i) Let us suppose that f is continuous at (0, 0). Then

lim
(x1,x2)→(0,0)

f (x1, x2) = f (0, 0) = 0.
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In particular, lim
x2→0

f (0, x2) = 0. Since for all x2 ̸= 0, f (0, x2) = h (0, 1, 0),

it follows that h (0, 1, 0) = 0. Let 0 < y1 ≤ 1. Then, from R6 we have

lim
x1→0

f
(
x1,
√

1−y1
y1

x1

)
= 0, i.e., lim

x1→0
h
(
y1, 1− y1, ∥x1∥2

√
1−y1
y1

)
= 0. Since

h is continuous,

lim
x1→0

h

(
y1, 1− y1, ∥x1∥2

√
1− y1
y1

)
= h (y1, 1− y1, 0) ,

thus h (y1, 1− y1, 0) = 0.
Conversely, suppose that h (y1, 1− y1, 0) = 0 for all y1 ∈ [0, 1].
Let ψ : [0, 1]× R → R be defined by

ψ (y1, y3) =

{
h(y1,1−y1,y3)−h(y1,1−y1,0)

y3
if y3 ̸= 0,

∂h
∂y3

(y1, 1− y1, 0) if y3 = 0.

Let us note that since h and ∂h
∂y3

are continuous, ψ is continuous. Also

h (y1, 1− y1, y3) − h (y1, 1− y1, 0) = y3ψ (y1, y3) for all (y1, y3) ∈ [0, 1] × R
and by hypothesis

h (y1, 1− y1, y3) = y3ψ (y1, y3) for all (y1, y3) ∈ [0, 1]× R.
Let (x1, x2) ∈ BH ×BH with (x1, x2) ̸= (0, 0). Then

f (x1, x2) = h

(
∥x1∥2

∥x1∥2 + ∥x2∥2
,

∥x2∥2

∥x1∥2 + ∥x2∥2
, ⟨x1, x2⟩

)

= ⟨x1, x2⟩ψ

(
∥x1∥2

∥x1∥2 + ∥x2∥2
, ⟨x1, x2⟩

)
.

From Cauchy-Bunyakovsky-Schwarz inequality we have |⟨x1, x2⟩| ≤ ∥x1∥ ∥x2∥
and since (x1, x2) ∈ BH×BH we deduce |⟨x1, x2⟩| ≤ 1, i.e., ⟨x1, x2⟩ ∈ [−1, 1].
We have

|f (x1, x2)| = |⟨x1, x2⟩|

∣∣∣∣∣ψ
(

∥x1∥2

∥x1∥2 + ∥x2∥2
, ⟨x1, x2⟩

)∣∣∣∣∣
≤ |⟨x1, x2⟩| sup

(y1,y3)∈[0,1]×[−1,1]
|ψ (y1, y3)| =M ∥x1∥ ∥x2∥ .

Now we get that lim
(x1,x2)→(0,0)

f (x1, x2) = 0 = f (0, 0), i.e., f is continuous at

(0, 0).

(ii) By definition there exists ∂f
∂x1

(0, 0) if and only if the function

H ∋ x1 7→ f (x1, 0) ∈ R is Fréchet differentiable at 0.

Now, f (x1, 0) =

{
h (e1) if x1 ̸= 0
0 if x1 = 0

. If this function is Fréchet diffe-

rentiable at 0, then it is continuous at 0 and thus h (e1) = 0. Conversely, if

h (e1) = 0 then f (x1, 0) = 0 for all x1 ∈ H and thus ∂f
∂x1

(0, 0) = 0.
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(iii) By definition there exists ∂f
∂x2

(0, 0) if and only if the function

H ∋ x2 7→ f (0, x2) ∈ R is Fréchet differentiable at 0.

From f (0, x2) =

{
h (e2) if x2 ̸= 0
0 if x2 = 0

, as in (ii) we deduce that there

exists ∂f
∂x2

(0, 0) if and only if h (e2) = 0 and moreover ∂f
∂x2

(0, 0) = 0.

(iv) Let us suppose that f is Fréchet differentiable at (0, 0). Then f
is continuous at (0, 0) and from (i) we deduce h (y1, 1− y1, 0) = 0 for all
y1 ∈ [0, 1].

Conversely, let us suppose that h (y1, 1− y1, 0) = 0 for all y1 ∈ [0, 1].
Then, in particular, h (e1) = h (1, 0, 0) = 0, h (e2) = h (0, 1, 0) = 0 and from

(ii) and (iii) we get ∂f
∂x1

(0, 0) = 0, ∂f
∂x2

(0, 0) = 0. As it is well known, f is

Fréchet differentiable at (0, 0) if and only if

lim
(x1,x2)→(0,0)

f (x1, x2)− f (0, 0)−
⟨

∂f
∂x1

(0, 0) , x1

⟩
−
⟨

∂f
∂x2

(0, 0) , x2

⟩
√

∥x1∥2 + ∥x2∥2
= 0

(see [2, 3, 4, 5, 7]), which is equivalent to lim
(x1,x2)→(0,0)

f(x1,x2)√
∥x1∥2+∥x2∥2

= 0. To

prove this, recall that since h (y1, 1− y1, 0) = 0 for all y1 ∈ [0, 1], in (i) we
have shown that

|f (x1, x2)| ≤M ∥x1∥ ∥x2∥ for all (x1, x2) ∈ BH×BH with (x1, x2) ̸= (0, 0) .

Since ∥x1∥√
∥x1∥2+∥x2∥2

≤ 1, we deduce

|f (x1, x2)|√
∥x1∥2 + ∥x2∥2

≤M ∥x2∥ for all (x1, x2) ∈ BH×BH with (x1, x2) ̸= (0, 0) .

From here we get lim
(x1,x2)→(0,0)

f(x1,x2)√
∥x1∥2+∥x2∥2

= 0.

(v) Let us suppose that there exists ∂2f
∂x1∂x2

(0, 0). In particular, there

exist ∂f
∂x2

(0, 0) and, by (iii), h (e2) = 0 and ∂f
∂x2

(0, 0) = 0.

Conversely, let us suppose that h (e2) = 0. Let (x1, x2) ∈ H × H,
(x1, x2) ̸= (0, 0). By the chain rule R5, we have

∂f

∂x2
=

∂h

∂y1
· ∂y1
∂x2

+
∂h

∂y2
· ∂y2
∂x2

+
∂h

∂y3
· ∂y3
∂x2

,

i.e., by R3

∂f

∂x2
= − ∂h

∂y1
· 2 ∥x1∥2 x2(

∥x1∥2 + ∥x2∥2
)2 +

∂h

∂y2
· 2 ∥x1∥2 x2(

∥x1∥2 + ∥x2∥2
)2 +

∂h

∂y3
· x1.
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Above we used the usual convention that we wrote ∂f
∂x1

instead of ∂f
∂x1

(x1, x2)

and ∂h
∂y1

instead of ∂h
∂y1

(
∥x1∥2

∥x1∥2+∥x2∥2
, ∥x2∥2

∥x1∥2+∥x2∥2
, ⟨x1, x2⟩

)
, etc. Then

∂f

∂x2
(x1, 0) =

{
∂h
∂y3

(1, 0, 0)x1 for x1 ̸= 0

0 for x1 = 0
=

∂h

∂y3
(e1)x1 for x1 ∈ H.

From R4 we deduce ∂2f
∂x1∂x2

(0, 0) = ∂h
∂y3

(e1) IH .

(vi) Let us suppose that ∂2f
∂x2∂x1

(0, 0) exists. Then, in particular, there

exists ∂f
∂x1

(0, 0) which by (ii) gives us h (e1) = 0 and ∂f
∂x1

(0, 0) = 0.

Conversely, let us suppose that h (e1) = 0. Let (x1, x2) ∈ H × H,
(x1, x2) ̸= (0, 0). By the chain rule R5 we have

∂f

∂x1
=

∂h

∂y1
· ∂y1
∂x1

+
∂h

∂y2
· ∂y2
∂x1

+
∂h

∂y3
· ∂y3
∂x1

,

i.e., by R3

∂f

∂x1
=

∂h

∂y1
· 2 ∥x2∥2 x1(

∥x1∥2 + ∥x2∥2
)2 − ∂h

∂y2
· 2 ∥x2∥2 x1(

∥x1∥2 + ∥x2∥2
)2 +

∂h

∂y3
· x2

with the same convention as above. Then

∂f

∂x1
(0, x2) =

{
∂h
∂y3

(0, 1, 0)x2 for x2 ̸= 0

0 for x2 = 0
=

∂h

∂y3
(0, 1, 0)x2 for x2 ∈ H.

From R4 we deduce ∂2f
∂x2∂x1

(0, 0) = ∂h
∂y3

(e2) IH . 2
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Evaluation of an integral with fractional part function

Ovidiu Furdui1)

Abstract. In this article we evaluate the following class of fractional part
integrals

Ip,q =

∫ 1
p

0

{
1

x

}q

dx,

where p, q ≥ 1 are integers and {x} denotes the fractional part of x. We
prove that Ip,q equals a series involving the product of the reciprocal of a
special binomial coefficient and an expression involving the Riemann zeta
function.

Keywords: Fractional part integrals, binomial coefficients, Riemann zeta
function.

MSC: 40A05, 40A10, 11M06

1. Introduction and the main result

In the footnote of Question 892996 in Mathematics Stack Exchange it
is mentioned as an open problem, proposed by O. Oloa, the evaluation of the
following class of fractional part integrals

Ip,q =

∫ 1
p

0

{
1

x

}q

dx, (1)

where p, q ≥ 1 are integers and {x} denotes the fractional part of x.
In this paper we prove that Ip,q equals a series involving the product

of the reciprocal of a special binomial coefficient and an expression involving
the Riemann zeta function.

The main result of this article is the following theorem.

Theorem 1. Let p, q ≥ 1 be integers and let Ip,q be the integral in (1). Then,

Ip,q =

∞∑
j=1

1(
q+j
j

) (ζ(j + 1)− 1− 1

2j+1
− · · · − 1

pj+1

)
,

where ζ denotes the Riemann zeta function.

Proof. We change variables x = 1
y and we get

Ip,q =

∫ ∞

p

{y}q

y2
dy =

∞∑
k=p

∫ k+1

k

(y − k)q

y2
dy

=

∞∑
k=p

∫ 1

0

uq

(u+ k)2
du =

∫ 1

0
uq

 ∞∑
k=p

1

(u+ k)2

du.

1)Department of Mathematics, Technical University of Cluj-Napoca, Romania,
Ovidiu.Furdui@math.utcluj.ro, ofurdui@yahoo.com
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On the other hand,

1

(u+ k)2
=

∫ ∞

0
e−(u+k)ttdt,

and this implies that

∞∑
k=p

1

(u+ k)2
=

∞∑
k=p

∫ ∞

0
e−(u+k)ttdt =

∫ ∞

0
te−ut

 ∞∑
k=p

e−kt

 dt

=

∫ ∞

0
t
e−(u+p)t

1− e−t
dt.

It follows, based on Tonelli Theorem [4, p. 309], that

Ip,q =

∫ 1

0
uq

(∫ ∞

0
t
e−(u+p)t

1− e−t
dt

)
du =

∫ ∞

0
t

e−pt

1− e−t

(∫ 1

0
uqe−utdu

)
dt.

Let

Jq =

∫ 1

0
uqe−utdu.

Integrating by parts we get the recurrence formula Jq = − e−t

t + q
tJq−1. Let

aq = Jq
tq

q! and we note that aq = − e−t

t · tq

q! + aq−1. This implies that

aq = −e−t

t

(
tq

q!
+

tq−1

(q − 1)!
+ · · ·+ t

1!

)
+

1− e−t

t

=
e−t

t

[
et −

(
1 +

t

1!
+
t2

2!
+ · · ·+ tq

q!

)]
=

e−t

t

∞∑
j=1

tq+j

(q + j)!
.

Thus,

Jq = q!e−t
∞∑
j=1

tj−1

(q + j)!
,

and this implies that

Ip,q = q!

∫ ∞

0

e−(p+1)t

1− e−t

∞∑
j=1

tj

(q + j)!
dt = q!

∞∑
j=1

1

(q + j)!

∫ ∞

0
tj
e−(p+1)t

1− e−t
dt. (2)
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On the other hand,∫ ∞

0
tj
e−(p+1)t

1− e−t
dt =

∫ ∞

0
tje−(p+1)t

∞∑
m=0

e−tmdt

=
∞∑

m=0

∫ ∞

0
tje−(p+1+m)tdt

(p+1+m)t=x
=

∞∑
m=0

1

(p+ 1 +m)j+1

∫ ∞

0
xje−xdx

= Γ(j + 1)

∞∑
m=0

1

(p+ 1 +m)j+1

= j!

(
ζ(j + 1)− 1− 1

2j+1
− · · · − 1

pj+1

)
.

(3)

Combining (2) and (3) we get that

Ip,q =

∞∑
j=1

1(
q+j
j

) (ζ(j + 1)− 1− 1

2j+1
− · · · − 1

pj+1

)
,

and the theorem is proved. 2
The following special cases are worth mentioning.

Corollary 2. Special integrals with fractional part.
(a) Let q ≥ 1 be an integer. Then,∫ 1

0

{
1

x

}q

dx =
∞∑
j=1

1(
q+j
j

) (ζ(j + 1)− 1) .

(b) Let p ≥ 1 be an integer. Then,∫ 1
p

0

{
1

x

}
dx =

∞∑
j=1

1

j + 1

(
ζ(j + 1)− 1− 1

2j+1
− · · · − 1

pj+1

)
= Hp − ln p− γ,

where Hp denotes the pth harmonic number and γ is the Euler–Mascheroni
constant.

(c) Let p ≥ 1 be an integer. Then,∫ 1
p

0

{
1

x

}2

dx = 2

∞∑
j=1

1

(j + 1)(j + 2)

(
ζ(j + 1)− 1− 1

2j+1
− · · · − 1

pj+1

)
= ln(2π)− γ +Hp + 2p ln p− 2p− 2 ln p!.
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Proof. Part (a) of the corollary follows from the theorem by taking p = 1.
In particular, when q = 1 we recover an integral of de la Vallée Poussin

([1, p. 32], [3, pp. 109–111])∫ 1

0

{
1

x

}
dx =

∞∑
j=1

ζ(j + 1)− 1

j + 1
= 1− γ,

where the last equality follows by direct calculation or based on [2, Identity
(151), p. 174].

(b) The first equality of part (b) follows from the theorem by taking
q = 1. To prove the second equality we observe that∫ 1

p

0

{
1

x

}
dx =

1

p

∫ 1

0

{
p

y

}
dy = Hp − ln p− γ,

since (see [2, Problem 2.5, p. 100])∫ 1

0

{
p

y

}
dy = p(Hp − ln p− γ). (4)

(c) The first equality of part (c) of the corollary follows from the theorem
by taking q = 2. To prove the second equality we note that∫ 1

p

0

{
1

x

}2

dx =
1

p

∫ 1

0

{
p

y

}2

dy = ln(2π)− γ +Hp + 2p ln p− 2p− 2 ln p!,

since (see [2, Problem 2.6, p. 100])∫ 1

0

{
p

y

}2

dy = p (ln(2π)− γ +Hp + 2p ln p− 2p− 2 ln p!) , (5)

and the corollary is proved. 2
Remark 3. We mention that integrals (4) and (5) can be evaluated by direct
computation by reducing the integral to a series and then by calculating the
nth partial sum of the series [2, pp. 113–114]. Other integrals, single, double
or multiple, involving the fractional part function as well as open problems
can be found in [2, Chapter 2].

Theorem 4. Let m ≥ 0 and p, q ≥ 1 be integers. Then,

Ip,m,q =

∫ 1
p

0
xm
{
1

x

}q

dx

=
q!

(m+ 1)!

∞∑
j=1

(m+ j)!

(q + j)!

(
ζ(m+ j + 1)− 1− 1

2m+j+1
− · · · − 1

pm+j+1

)
,

where ζ denotes the Riemann zeta function.

Proof. The proof of this theorem, which is similar to the proof of Theorem
1, is left to the interested reader. 2
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The limit, continuity and Fréchet differentiability

of some functions on Rn

Dumitru Popa1)

Abstract. We give necessary and sufficient conditions such that the
function f : Rn → R defined by

f (x1, . . . , xn) =


x
α1
1 ···xαn

n
m∏

i=1
(|x1|βi+···+|xn|βi)γi

if (x1, . . . , xn) ̸= (0, . . . , 0)

0 if (x1, . . . , xn) = (0, . . . , 0)
has a finite limit at (0, . . . , 0), is continuous and Fréchet differentiable at
(0, . . . , 0).

Keywords: Fréchet differentiable, mixed partial derivative, real-valued
functions

MSC: Primary 26B05; Secondary 54C30.

In the study of Fréchet differentiability, one of the standard examples
is the following: the function f : R2 → R defined by

f (x, y) =

{
xy√
x2+y2

if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

is continuous at (0, 0), there exist ∂f
∂x (0, 0) and ∂f

∂y (0, 0), but f is not Fréchet

differentiable at (0, 0). In this note we study the existence of the limit,
continuity and Fréchet differentiability of some functions which extend the
above example. The notations are standard, see [1].

Proposition 1. Let n, m, α1, . . . , αn be positive integers, n ≥ 2, β1, . . . ,
βm, γ1, . . . , γm be positive real numbers and f : Rn → R defined by

f (x1, . . . , xn) =


x
α1
1 ···xαn

n
m∏
i=1

(|x1|βi+···+|xn|βi)
γi

if (x1, . . . , xn) ̸= (0, . . . , 0) ,

0 if (x1, . . . , xn) = (0, . . . , 0) .

1)Department of Mathematics, Ovidius University of Constanţa, Romania,
dpopa@univ-ovidius.ro
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Then f has finite limit at (0, . . . , 0) if and only if

α1 + · · ·+ αn > β1γ1 + · · ·+ βmγm.

Proof. We use the well-known characterization for the existence of the limit
of a function defined on Rn: a function f : Rn → R has the limit l ∈ R at
(0, . . . , 0) if and only if for all sequences

(
x1k, . . . , x

n
k

)
k∈N ⊂ Rn,

(
x1k, . . . , x

n
k

)
̸=

(0, . . . , 0) for all k ∈ N∗, and lim
k→∞

(
x1k, . . . , x

n
k

)
= (0, . . . , 0), it follows that

lim
k→∞

f
(
x1k, . . . , x

n
k

)
= l.

Let us suppose that there exists lim
(x1,...,xn)→(0,...,0)

f (x1, . . . , xn) = l ∈ R.

Since n ≥ 2, lim
k→∞

( 1k , 0, . . . , 0︸ ︷︷ ︸
n−1 times

) = (0, . . . , 0︸ ︷︷ ︸
n times

) and ( 1k , 0, . . . , 0︸ ︷︷ ︸
n−1 times

) ̸= (0, . . . , 0) for

all k ∈ N∗, we deduce lim
k→∞

f
(
1
k , 0, . . . , 0

)
= l, and using that f

(
1
k , 0, . . . , 0

)
=

0 for all k ∈ N∗, we obtain l = 0. From lim
k→∞

(
1
k , . . . ,

1
k

)
= (0, . . . , 0) it follows

that lim
k→∞

f
(
1
k , . . . ,

1
k

)
= l = 0. Using the equality

f

(
1

k
, . . . ,

1

k

)
=
k−(α1+···+αn)+β1γ1+···+βmγm

nγ1+···+γm

we obtain lim
k→∞

k−(α1+···+αn)+β1γ1+···+βmγm

nγ1+···+γm = 0 and hence

α1 + · · ·+ αn > β1γ1 + · · ·+ βmγm.

Thus, if f has finite limit at (0, . . . , 0), then

α1 + · · ·+ αn > β1γ1 + · · ·+ βmγm.

Conversely, let us suppose that α1 + · · ·+ αn > β1γ1 + · · ·+ βmγm.

Let (x1, . . . , xn) ∈ Rn. We have 0 ≤ |x1|βi ≤ |x1|βi + · · · + |xn|βi and
since γi > 0, we deduce

0 ≤ |x1|βiγi ≤
(
|x1|βi + · · ·+ |xn|βi

)γi
for all i = 1, . . . ,m.

Multiplying these inequalities we get

|x1|β1γ1+···+βmγm ≤
m∏
i=1

(
|x1|βi + · · ·+ |xn|βi

)γi
. (1)

Set g(x1, . . . , xn) =
m∏
i=1

(
|x1|βi + · · ·+ |xn|βi

)γi
. From (1) we obtain

|x1| ≤ [g (x1, . . . , xn)]
1

β1γ1+···+βmγm and, since α1 > 0, we have

|x1|α1 ≤ [g (x1, . . . , xn)]
α1

β1γ1+···+βmγm .
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Similarly we get

|xi|αi ≤ [g (x1, . . . , xn)]
αi

β1γ1+···+βmγm

for all i = 1, . . . ,m.
Multiplying the inequalities we deduce

|x1|α1 · · · |xn|αn ≤ [g (x1, . . . , xn)]
α1+···+αn

β1γ1+···+βmγm . (2)

Then, for (x1, . . . , xn) ∈ Rn − {(0, . . . , 0)} from (2) we deduce

|f (x1, . . . , xn)| =
|x1|α1 · · · |xn|αn

g (x1, . . . , xn)
≤ [g (x1, . . . , xn)]

α1+···+αn
β1γ1+···+βmγm

−1
. (3)

Since lim
(x1,...,xn)→(0,...,0)

g (x1, . . . , xn) = 0 and

α1 + · · ·+ αn

β1γ1 + · · ·+ βmγm
− 1 > 0,

it follows that

lim
(x1,...,xn)→(0,...,0)

[g (x1, . . . , xn)]
α1+···+αn

β1γ1+···+βmγm
−1

= 0. (4)

From (3) and (4) we obtain

lim
(x1,...,xn)→(0,...,0)

f (x1, . . . , xn) = 0.

In conclusion, the function f has a finite limit at (0, . . . , 0) if and only
if α1 + · · ·+ αn > β1γ1 + · · ·+ βmγm and in this case the limit is 0. 2

We use in the sequel the result proved in Proposition 1 for the study of
the continuity and Fréchet differentiability of f on Rn.

Proposition 2. Let n, m, α1, . . . , αn be positive integers, n ≥ 2, β1, . . . ,
βm, γ1, . . . , γm be positive real numbers and f : Rn → R defined by

f (x1, . . . , xn) =


x
α1
1 ···xαn

n
m∏
i=1

(|x1|βi+···+|xn|βi)
γi

if (x1, . . . , xn) ̸= (0, . . . , 0) ,

0 if (x1, . . . , xn) = (0, . . . , 0) .

Then
(i) f is continuous at (0, . . . , 0) if and only if

α1 + · · ·+ αn > β1γ1 + · · ·+ βmγm.

(ii) f is Fréchet differentiable at (0, . . . , 0) if and only if

α1 + · · ·+ αn > β1γ1 + · · ·+ βmγm + 1.
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Proof. (i) If f is continuous at (0, . . . , 0), then

lim
(x1,...,xn)→(0,...,0)

f (x1, . . . , xn) = f (0, . . . , 0) .

From Proposition 1 it follows that α1 + · · · + αn > β1γ1 + · · · + βmγm.
Conversely, if α1 + · · · + αn > β1γ1 + · · · + βmγm then we have shown in
Proposition 1 that lim

(x1,...,xn)→(0,...,0)
f (x1, . . . , xn) = 0 = f (0, . . . , 0) and thus

f is continuous at (0, . . . , 0).
(ii) As it is well known, see [1], f is Fréchet differentiable at (0, . . . , 0)

if and only if there exist ∂f
∂x1

(0, . . . , 0) ∈ R, . . . , ∂f
∂xn

(0, . . . , 0) ∈ R and

lim
(x1,...,xn)→(0,...,0)

f (x1, . . . , xn)−
n∑

i=1

∂f
∂xi

(0, . . . , 0)xi√
x21 + · · ·+ x2n

= 0.

For x1 ̸= 0 we have f (x1, 0, . . . , 0) = 0 and since f (0, 0, . . . , 0) = 0 we obtain
∂f
∂x1

(0, . . . , 0) = 0. In a similar way ∂f
∂xi

(0, . . . , 0) = 0 for all i = 1, . . . , n.

Thus f is Fréchet differentiable at (0, . . . , 0) if and only if

lim
(x1,...,xn)→(0,...,0)

f (x1, . . . , xn)√
x21 + · · ·+ x2n

= 0,

that is,

lim
(x1,...,xn)→(0,...,0)

xα1
1 · · ·xαn

n

(|x1|2 + · · ·+ |xn|2)
1
2

m∏
i=1

(
|x1|βi + · · ·+ |xn|βi

)γi = 0.

By using the Proposition 1 this is equivalent to α1 + · · ·+ αn > β1γ1 + · · ·+
βmγm + 1. 2

From Proposition 2 we obtain a different proof of the following result
(see [2]).

Corollary 3. Let n ≥ 2 be a positive integer and f : Rn → R defined by

f (x1, . . . , xn) =

{
x1···xn

x2
1+···+x2

n
if (x1, . . . , xn) ̸= (0, . . . , 0) ,

0 if (x1, . . . , xn) = (0, . . . , 0) .

Then:
(i) f is continuous at (0, . . . , 0) if and only if n ≥ 3.
(ii) f is Fréchet differentiable at (0, . . . , 0) if and only if n ≥ 4.

Among many other possible examples we give

Corollary 4. Let n ≥ 2 be a positive integer and f : Rn → R defined by

f (x1, . . . , xn) =

{
x1···xn

(x2
1+···+x2

n)(x4
1+···+x4

n)
if (x1, . . . , xn) ̸= (0, . . . , 0) ,

0 if (x1, . . . , xn) = (0, . . . , 0) .
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Then:
(i) f is continuous at (0, . . . , 0) if and only if n ≥ 7.
(ii) f is Fréchet differentiable at (0, . . . , 0) if and only if n ≥ 8.
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Between the 21st and the 24th of May 2014, the national phase of the
student contest Traian Lalescu took place in Timişoara.

Over 60 students participated at the contest, representing 12 universi-
ties from 6 cities: Bucureşti, Cluj, Constanţa, Craiova, Iaşi and Timişoara.

The contest was divided in 4 sections: A – mathematics faculties, B –
technical education, electrical engineering, 1st year, C – technical education,
mechanical and construction engineering, 1st year, D – technical education,
2nd year.

The subjects were proposed, discussed and chosen in the morning of the
contest, by commissions responsible for each section. There was one member
representing each university in each commission.

As far as the organization of the contest is concerned, apart from the
contribution of the West University in Timişoara, which provided optimal
conditions for the contest, accommodation and meals, the Ministry of Edu-
cation and Research and the Traian Lalescu Foundation also contributed to
the event.

We are next going to present the statements and the solutions to the
problems given in sections A and B of the contest. For the official solutions,
please refer to the following web page: http://cntl.math.uvt.ro/
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Section A

Problem 1. Let I be a nondegenerate interval of the real axis, let f : I → R
be a function of class C1 on I, and let g : I → R be the function defined
by g(x) = |f(x)|. Prove that there exists an at most countable set Ef ⊆ I
such that g is differentiable on I \ Ef . Provide an example of a function
f : [0, 1] → R such that f is of class C1 and Ef is infinite.

Tiberiu Trif

Although the problem was considered easy by the members of the jury,
no student solved it completely. Two partial solutions were given.

Solution. Set

Ef := {x ∈ I | f(x) = 0 and f ′(x) ̸= 0}.
We claim that g is differentiable on I\Ef . Indeed, given any point x0 ∈ I\Ef ,
one has either f(x0) ̸= 0 or f(x0) = f ′(x0) = 0.

If f(x0) ̸= 0, then the continuity of f at x0 ensures the existence of a
positive real number r such that sgn f(x) = sgn f(x0) for all x ∈ J , where
J := (x0 − r, x0 + r) ∩ I. Then for all x ∈ J one has

g(x) =
(
sgn f(x)

)
f(x) =

(
sgn f(x0)

)
f(x),

whence g is differentiable at x0.
If f(x0) = f ′(x0) = 0, then g(x0) = 0, whence

g′+(x0) = lim
x↘x0

g(x)− g(x0)

x− x0
= lim

x↘x0

∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ = |f ′(x0)| = 0

and

g′−(x0) = lim
x↗x0

g(x)− g(x0)

x− x0
= − lim

x↗x0

∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ = −|f ′(x0)| = 0.

Consequently, g is differentiable at x0 and g′(x0) = 0.
It remains to show that the set Ef is at most countable. Let x ∈ Ef

be arbitrarily chosen. Since f ′(x) ̸= 0 and f ′ is continuous, one can find an
interval Jx centered at x such that f ′(y) ̸= 0 for all y ∈ I∩Jx. It follows that
f is strictly monotone on I ∩Jx, whence f(y) ̸= 0 for all y ∈ I ∩Jx \{x}. Set

ax := sup {y ∈ I | y < x and f(y) = 0},
bx := inf {y ∈ I | y > x and f(y) = 0},

with the convention that ax = −∞ if f(y) ̸= 0 for all y < x (respectively

bx = ∞ if f(y) ̸= 0 for all y > x). After that, set Ax :=
(
x+ax

2 , x+bx
2

)
. It is

immediately seen that the family of open intervals (Ax)x∈Ef
has the following

properties:

(i) x ∈ Ax for all x ∈ Ef ;
(ii) Ax ∩Ay = ∅ for all x, y ∈ Ef with x ̸= y.
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For every x ∈ Ef select qx ∈ Ax ∩Q. Since the function x 7→ qx is injective,
we conclude that cardEf ≤ cardQ = ℵ0.

In the case of the function f : [0, 1] → R, defined by

f(x) :=

{
x3 sin(π/x) if x ∈ (0, 1],

0 if x = 0,

one has

f ′(x) =

{
3x2 sin(π/x)− πx cos(π/x) if x ∈ (0, 1],

0 if x = 0,

whence f is continuously differentiable on [0, 1]. In addition, cardEf = ℵ0

because Ef =
{
1, 1

2 ,
1
3 , . . . ,

1
n , . . .

}
. �

Problem 2. How many solutions does the equation x2013 = 1 have in Z2014?

Alexandru Gica

The members of the jury ranked this problem as a medium one. It was
completely solved by only one student (Mădălina Bolboceanu). There were
also two partial solutions.

Solution. Note first that 2014 = 2 × 19 × 53 is the prime decomposition of
2014. It is well known that the function φ : Z2014 → Z2 × Z19 × Z53 defined
by φ(x) := (u, v, w), where (u, v, w) is the unique triple in Z2 × Z19 × Z53

such that x ≡ u (mod 2), x ≡ v (mod 19), and x ≡ w (mod 53), is a ring
isomorphism. We have

x2013 = 1 ⇔ φ(x2013) = φ(1) ⇔ φ(x)2013 = (1, 1, 1)

⇔

 u2013 = 1 in Z2,
v2013 = 1 in Z19,
w2013 = 1 in Z53.

(1)

Therefore, the number n of solutions to x2013 = 1 in Z2014 equals n = n1n2n3,
where ni represents the number of solutions to the ith equation in the system
(1), i ∈ {1, 2, 3}.

Clearly, n1 = 1 because u = 1 is the unique solution to the first equation
in (1). On the other hand, if w is a solution to the third equation in (1), then
w ̸= 0. By Fermat’s little theorem it follows that w52 = 1. Since 52 and 2013
are co-prime, there exist two integers a and b such that 52a + 2013b = 1.

Therefore, we have w =
(
w52
)a(

w2013
)b

= 1, hence w = 1 is the unique
solution to the third equation in (1). Consequently, n3 = 1. Finally, let v be
an arbitrary solution to the second equation in (1). Then v ̸= 0 and v18 = 1
by Fermat’s little theorem. Since (2013, 18) = 3, there exist two integers c

and d such that 18c + 2013d = 3. Then we have v3 =
(
v18
)c(
v2013

)d
= 1.
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Conversely, if v3 = 1 in Z19, then v2013 = (v3)671 = 1. Consequently, the
second equation in (1) is equivalent to

v3 = 1 in Z19. (2)

But (2) is equivalent to (v − 1)(v2 + v + 1) = 0, i.e., to v = 1 or

v2 + v + 1 = 0 in Z19. (3)

Multiplying both sides in (3) by 4, we see that (3) is equivalent to

(2v + 1)2 = 16 in Z19 ⇔ (2v − 3)(2v + 5) = 0 in Z19.

The last equation has the solutions v = 11 and v = 7 in Z19. In conclusion,
we have n2 = 3, whence n = 3. �

Problem 3. a) Prove that the center of a parallelogram which is inscribed
in an ellipse coincides with the center of the ellipse.

b) Prove that if a rectangle is inscribed in an ellipse which is not a
circle, then its sides must be parallel to the symmetry axes of the ellipse.

c) Find the smallest area of an ellipse which is circumscribed to a given
rectangle.

Gabriel Mincu

The members of the jury ranked this problem as a medium one. It was
completely solved by only one student (Eduard Valentin Curcă). There was
also one partial solution.

Solution. a) Let E be an ellipse, and let P be a parallelogram inscribed in
E. Further, let π be a plane such that π is parallel to the small semi-axis of
E, and the projection of E onto π is a circle C. Taking into account that
the lines’ parallelism is preserved by the projection onto π, it follows that
the projection of P onto π is a parallelogram P ′, which is inscribed in C.
But the only parallelograms that can be inscribed in a circle are rectangles.
Hence P ′ must be a rectangle and the center of P ′ coincides with the center
of C. Consequently, the center of P coincides with the center of E.

b) Choose a Cartesian coordinate system whose origin coincides with
the rectangle’s center and whose axes are parallel to the rectangle’s sides.
Let A(x0, y0), B(−x0, y0), C(−x0,−y0), and D(x0,−y0) be the rectangle’s
vertices, and let

E : ax2 + bxy + cy2 + dx+ ey + f = 0

be the equation of the ellipse. By A,B,C,D ∈ E it follows that

ax20 + bx0y0 + cy20 + dx0 + ey0 + f = 0, (1)

ax20 − bx0y0 + cy20 − dx0 + ey0 + f = 0, (2)

ax20 + bx0y0 + cy20 − dx0 − ey0 + f = 0, (3)

ax20 − bx0y0 + cy20 + dx0 − ey0 + f = 0. (4)
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By subtracting side by side the equations (1) and (3), respectively (2) and
(4), we get

dx0 + ey0 = 0 and − dx0 + ey0 = 0,

whence dx0 = ey0 = 0. Therefore, we have d = e = 0. The equations (1),
(2), (3), and (4) reduce now to

ax20 + bx0y0 + cy20 + f = 0,

ax20 − bx0y0 + cy20 + f = 0.

By subtracting side by side the last two equations we get bx0y0 = 0, whence
b = 0. In conclusion, the equation of E must have the form

E : ax2 + cy2 + f = 0.

This means that the symmetry axes of E coincide with the coordinate axes,
hence they are parallel to the rectangle’s sides.

c) Choose a Cartesian coordinate system whose origin coincides with
the ellipse’s center and whose axes coincide with the ellipse’s symmetry axes.
Then the equation of E is of the form

E :
x2

a2
+
y2

b2
= 1.

Let 2ℓ and 2L denote the lengths of the sides of the rectangle which is in-
scribed in E. Since (L, ℓ) ∈ E, it follows that

L2

a2
+
ℓ2

b2
= 1. (5)

So we have to find the smallest value of A(E) = πab, when a and b satisfy
(5). Note that

A(E) = πLℓ
a

L
· b
ℓ
=

πLℓ
L
a · ℓ

b

≥ πLℓ

1
2

(
L2

a2
+ ℓ2

b2

) = 2πLℓ.

Consequently, the smallest possible area of E equals 2πLℓ and it is attained
when L

a = ℓ
b = 1√

2
, i.e., when the semi-axes of the ellipse have the lengths

a = L
√
2 and b = ℓ

√
2, respectively. �

Problem 4. Let m and n be positive integers, and let A ∈ Mn(C) be a
matrix such that Am = In. Prove that

rank (A− ε0In) + rank (A− ε1In) + · · ·+ rank (A− εm−1In) = n(m− 1),

where {ε0, ε1, . . . , εm−1} = {z ∈ C | zm = 1}.
Dan Moldovan and Vasile Pop
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Although the members of the jury ranked this problem as a difficult one,
it was completely solved by four students (Mihai Florin Barbu, Mădălina Bol-
boceanu, Eduard Valentin Curcă, and Petre Claudiu Mı̂ndrilă). The solution
below was given by Mădălina Bolboceanu.

Solution. Let mA ∈ C[X] denote the minimal polynomial of A, and let pA ∈
C[X] denote the characteristic polynomial of A. Note that the polynomial
f := Xm − 1 has the simple roots ε0, ε1, . . . , εm−1. Since f(A) = 0, we must
have mA | f , hence there exist r ∈ N as well as i1, . . . , ir ∈ {0, 1, . . . ,m− 1},
i1 < · · · < ir, such that mA = (X−εi1) · · · (X−εir). Taking into account the
Frobenius theorem (mA and pA have the same irreducible factors), it follows
that pA = (X − εi1)

αi1 · · · (X − εir)
αir , with αi1 + · · ·+ αir = n. Further, let

J be the Jordan normal form of A. Since each factor X − εij appears in mA

at power one, it follows that all Jordan blocks corresponding to εij have the
size of one, their number being αij . Consequently, J has the form

J = diag
(
εi1 , . . . , εi1︸ ︷︷ ︸

αi1

, εi2 , . . . , εi2︸ ︷︷ ︸
αi2

, . . . , εir , . . . , εir︸ ︷︷ ︸
αir

)
,

i.e., A is diagonalizable. Let S ∈ Mn(C) be an invertible matrix such that
A = S−1JS. For every k ∈ {0, 1, . . . ,m− 1} one has

rank (A− εkIn) = rank
(
S−1(J − εkIn)S

)
= rank (J − εkIn)

=

{
n if k ̸∈ {i1, . . . , ir},

n− αij if k = ij .

Consequently

m−1∑
k=0

rank (A− εkIn) =
∑

k ̸∈{i1,...,ir}

rank (A− εkIn) +

r∑
j=1

rank (A− εijIn)

= n(m− r) +

r∑
j=1

(n− αij )

= nm− nr + nr −
r∑

j=1

αij = nm− n = n(m− 1).

Section B

Problem 1. Let a > 0, and let f : R2 → R be the function defined by

f(x, y) = e−x−y + a
√
x2 + y2 for all (x, y) ∈ R2.

Prove that f has a unique local extremum and that this is a global minimum.

Cristian Ghiu

This is a standard problem concerning the local extremum points of a
function of several variables. It was considered easy by the members of the
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jury. However, due to the technicalities encountered during the problem solv-
ing process, it turned out to be difficult. The scores obtained by the contestants
were low.

Solution. The restriction of f to R2 \ {(0, 0)} is a C1 function, hence every
local extremum of f must be either a critical point, or the point (0, 0). Every
critical point of f is solution to the system

∂f

∂x
= 0

∂f

∂y
= 0

⇔


−e−x−y + a

x√
x2 + y2

= 0

−e−x−y + a
y√

x2 + y2
= 0

⇔


x = y ̸= 0

−e−2x +
a√
2
· x
|x|

= 0
⇔


x = y > 0

e−2x =
a√
2

(1)

Since x > 0, it follows that a <
√
2, and in this case f has a unique critical

point, namely

(x, y) = (c, c), with c =
1

2
ln

√
2

a
> 0.

If a ≥
√
2, then f does not have critical points.

Case I. a ≥
√
2. In this case f does not have critical points. Only (0, 0)

could be a local extremum for f .
From the inequalities

√
2
√
x2 + y2 ≥ |x+ y| (2)

e−x−y ≥ 1− x− y (3)

it follows that

f(x, y) = e−x−y +
√
2
√
x2 + y2 + (a−

√
2)
√
x2 + y2

≥ 1− x− y + |x+ y|+ 0 ≥ 1 = f(0, 0).

Hence (0, 0) is a global minimum point for f .

Case II. a <
√
2. In this case (c, c) and (0, 0) could be local extremum

points for f . Since a = e−2c
√
2, we have

f(x, y) = e−2c(e2c−x−y +
√
2
√
x2 + y2). (4)

By (2) and

e2c−x−y ≥ 1 + 2c− x− y (5)

we deduce that

f(x, y) ≥ e−2c(1 + 2c− x− y + |x+ y|) ≥ e−2c(1 + 2c) = f(c, c).

Therefore, (c, c) is a global minimum point for f .
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We claim that (0, 0) is not a local extremum for f . Indeed, we have

f(x, x)− f(0, 0) = e−2x + a
√
2|x| − 1. (6)

By (6) it follows that f(x, x)− f(0, 0) > 0, ∀ x < 0. Hence (0, 0) cannot be
a local maximum for f .

On the other hand, if x > 0, then

f(x, x)− f(0, 0) = e−2x + a
√
2x− 1 = x

(
e−2x − 1

x
+ a

√
2

)
. (7)

Since

lim
x→0

(
e−2x − 1

x
+ a

√
2

)
= −2 + a

√
2 < 0,

there exists r > 0 such that

e−2x − 1

x
+ a

√
2 < 0, ∀ x ∈ (−r, r) \ {0}. (8)

By (7) and (8) it follows that f(x, x)− f(0, 0) < 0, ∀ x ∈ (0, r). Hence (0, 0)
cannot be a local minimum for f . �

Problem 2. a) Determine a, b ∈ R such that∫ π

0
(ax+ bx2) cosnxdx =

1

n2
for all n ∈ N∗.

b) Prove that lim
n→∞

(
1

12
+

1

22
+ · · ·+ 1

n2

)
=
π2

6
.

Cristian Vladimirescu

This problem deals with the computation of the sum of the series
∞∑
n=1

1
n2 by

means of Fourier series. It did not raise special difficulties for the students.

Solution. a) For every n ∈ N∗ one has

1

n2
=

1

n

∫ π

0
(sinnx)′(ax+ bx2)dx =

1

n2

∫ π

0
(cosnx)′(a+ 2bx)dx

=
1

n2
[(−1)n(a+ 2bπ)− a] .

From this equality it follows immediately that a = −1 and b =
1

2π
.

b) By a) we deduce that

n∑
k=1

1

k2
=

∫ π

0

(
x2

2π
− x

) n∑
k=1

cos kxdx.
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Since

n∑
k=1

cos kx =


sin

nx

2
cos

(n+ 1)x

2

sin
x

2

, x ∈ (0, π],

n, x = 0,

=


1

2
ctg

x

2
sinnx+

1

2
cosnx− 1

2
, x ∈ (0, π],

n, x = 0,

it follows that the function f : [0, π] → R, defined by

f(x) :=

n∑
k=1

cos kx for all x ∈ [0, π],

is continuous on [0, π]; notice that

n∑
k=1

1

k2
=

∫ π

0

(
x2

2π
− x

)
f(x)dx.

The function g : [0, π] → R, defined by

g(x) =


1

2

(
x2

2π
− x

)
ctg

x

2
, x ∈ (0, π],

−1, x = 0,

is continuously differentiable on [0, π].
Therefore, we have

n∑
k=1

1

k2
=

∫ π

0
g(x) sinnxdx+

∫ π

0

1

2

(
x2

2π
− x

)
cosnxdx−

−
∫ π

0

1

2

(
x2

2π
− x

)
dx

=
1

n

∫ π

0
g′(x) cosnxdx− 1

n
+

1

2n2
+
π2

6

and

lim
n→∞

n∑
k=1

1

k2
=
π2

6
,

because

lim
n→∞

1

n

∣∣∣∣∫ π

0
g′(x) cosnxdx

∣∣∣∣ ≤ lim
n→∞

1

n

∫ π

0
|g′(x)|dx = 0. �
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Problem 3. Consider the vector space V = C[0, 2π] and the endomorphism
T : V → V defined by

T (f)(x) =

∫ 2π

0
4 sin3(x+ y)f(y)dy, f ∈ C[0, 2π], x ∈ [0, 2π].

a) Determine 2014 linearly independent functions in KerT .
b) Determine all nonzero eigenvalues of T , as well as their corresponding

eigenvectors.

Vasile Pop

This problem deals with the theory of linear integral operators of the type

T (f)(x) =
∫ b
a K(x, y)f(y)dy, in the special case when the kernel K(x, y) =

n∑
i=1

ai(x)bi(y) is degenerated. The problem reduces to solving a simple Fred-

holm integral equation.

Solution. Since

4 sin3 x = 3 sinx− sin 3x and sin(x+ y) = sinx cos y + cosx sin y,

we have

T (f)(x) =

(∫ 2π

0
3 cos yf(y)dy

)
sinx+

(∫ 2π

0
3 sin yf(y)dy

)
cosx

+

(∫ 2π

0
− cos 3yf(y)dy

)
sin 3x+

(∫ 2π

0
− sin 3yf(y)dy

)
cos 3x

(∗)
= I1(f) sinx+ I2(f) cosx+ I3(f) sin 3x+ I4(f) cos 3x, x ∈ [0, 2π].

a) f ∈ kerT ⇔ I1(f) = I2(f) = I3(f) = I4(f) = 0.
Note that the functions sin 2x, cos 2x, sin 4x, cos 4x, sin 5x, cos 5x, . . .,

sin 1009x, cos 1009x are linearly independent and that all the above four
integrals vanish because∫ 2π

0
sin kx sin pxdx =

∫ 2π

0
cos kx cos pxdx =

∫ 2π

0
sin kx cos pxdx = 0

for all k, p ∈ N, k ̸= p.
b) If λ is a nonzero eigenvalue of T , then the corresponding eigenvectors

belong to the image of T : T (f) = λf ⇒ f = T

(
1

λ
f

)
.

According to (∗), the image g = T (f) of every function f is a linear
combination of the functions sinx, cosx, sin 3x, cos 3x. Therefore, every
eigenvector is of the form

f(x) = a sinx+ b cosx+ c sin 3x+ d cos 3x, x ∈ [0, 2π].

For such a function we obtain

I1(f) = 3πb, I2(f) = 3πa, I3(f) = −πd, I4(f) = −πc.
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Then the equality T (f) = λf , with λ ∈ R∗ eigenvalue of T and f a corre-
sponding eigenvector, is equivalent to the system

λa = 3πb, λb = 3πa, λc = −πd, λd = −πc.
We get

(λ2 − 9π2)ab = 0 and (λ2 − π2)cd = 0.

If λ ̸= ±π and λ ̸= ±3π then a = b = c = d = 0 ⇒ f = 0 (which is
not convenient). Thus we have the nonzero eigenvalues λ1 = π, λ2 = −π,
λ3 = 3π, λ4 = −3π with the corresponding eigenvectors

f1(x) = a(sin 3x− cos 3x), f2(x) = a(sin 3x+ cos 3x),
f3(x) = a(sinx+ cosx), f4(x) = a(sinx− cosx),

for all x ∈ [0, 2π] and a ∈ R∗. �
Problem 4. Let a, b, c, and n be positive integers such that

0 ≤ a+ b− n ≤ c ≤ a ≤ b ≤ n.

Prove that for every matrix C ∈ Mn(C) with rankC = c there exist two
matrices A,B ∈ Mn(C) such that rankA = a, rankB = b, and C = AB.

Vasile Pop

This problem is a converse of Sylvester’s rank inequality: if A,B ∈
Mn(C), then rankA + rankB − n ≤ rank (AB) ≤ min {rankA, rankB}. In
particular, it asserts that every natural number c ∈ [a + b − n, a] equals the
rank of the product of two matrices whose ranks are a and b, respectively.

Solution. Since rankC = c, there exist two invertible matrices P and Q in
Mn(C) such that

C = P

[
Ic 0
0 0

]
Q,

where Ic denotes the identity matrix of size c.
We denote by [a1, . . . , an] the diagonal matrix having on its main diag-

onal the entries a1, . . . , an. Set D = [1, . . . , 1︸ ︷︷ ︸
c

, 0, . . . , 0︸ ︷︷ ︸
n−c

]. Then C = PDQ.

It suffices to prove that there exist a matrix A1 of rank a and a matrixB1

of rank b such that A1B1 = D. Then the matrices A := PA1 and B := B1Q
(with rankA = rankA1 = a and rankB = rankB1 = b) satisfy C = AB.

Set

A1 := [1, . . . , 1︸ ︷︷ ︸
a

, 0, . . . , 0︸ ︷︷ ︸
n−a

] = [1, . . . , 1︸ ︷︷ ︸
c

, 1, . . . , 1︸ ︷︷ ︸
a−c

, 0, . . . , 0︸ ︷︷ ︸
n−a

]

and
B1 := [1, . . . , 1︸ ︷︷ ︸

c

, 0, . . . , 0︸ ︷︷ ︸
n−b

, 1, . . . , 1︸ ︷︷ ︸
b−c

].

Since a+ b− n ≤ c ⇔ a− c ≤ n− b, it follows that A1B1 = D. �
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NOTE MATEMATICE

A new proof of Finsler-Hadwiger reverse inequality in
non-obtuse triangles

Roberto Bosch1)

Abstract. In this note we give a new proof of Finsler-Hadwiger reverse
inequality in non-obtuse triangles.

Keywords: reverse Finsler-Hadwiger inequality, non-obtuse triangles, sta-
tionary points

MSC: 51M04

Dedicated to professor Henry Ricardo, Medgar Evers College (CUNY), NY, USA.

In general the Finsler-Hadwiger reverse inequality states that in any
triangle ABC with sides a, b, c the following inequality is valid

a2 + b2 + c2 ≤ 4
√
3S + k

[
(a− b)2 + (b− c)2 + (c− a)2

]
,

where S denotes the area of the triangle ABC and k = 3 [3]. For non-obtuse
triangles the constant k was improved in paper [2] to k = 2 and later to

k = 6−
√
6

2 , and at the end it is conjectured that k = 2−
√
3

3−2
√
2
is optimal. This

conjecture was verified in [1]. Here we present a new proof using calculus
and trigonometry.

We shall prove the following result:

Theorem 1. In any non-obtuse triangle ABC the following inequality holds

a2 + b2 + c2 ≤ 4
√
3S +

2−
√
3

3− 2
√
2

[
(a− b)2 + (b− c)2 + (c− a)2

]
,

where a, b, c are the sides and S is the area. The constant 2−
√
3

3−2
√
2
is optimal

and it is attained for a right angled isosceles triangle.

Proof. Using the formulas a = 2R sinA, b = 2R sinB, c = 2R sinC and mov-
ing everything to the right side we rewrite the inequality as

f(A,B,C) = − sin2A− sin2B − sin2C + 2
√
3 sinA sinB sinC

+
2−

√
3

3− 2
√
2
[(sinA− sinB)2 + (sinB − sinC)2 + (sinC − sinA)2] ≥ 0,

with 0 ≤ A,B,C ≤ π
2 and A + B + C = π. These restrictions are the

intersection of a cube ([0, π2 ] × [0, π2 ] × [0, π2 ]) and a plane, so the resulting

1)Archimedean Academy 12425 SW 72nd St, Miami, FL, USA, 33183,
bobbydrg@gmail.com
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region in R3 is a compact set K. Since f is continuous, its minimum on K
exists. To find this value we consider the system of equations

∂f

∂A
=
∂f

∂B
=
∂f

∂C
= 0,

that is to say

cosA

[
− sinA+

√
3 sinB sinC +

2−
√
3

3− 2
√
2
(2 sinA− sinB − sinC)

]
= 0,

cosB

[
− sinB +

√
3 sinA sinC +

2−
√
3

3− 2
√
2
(2 sinB − sinA− sinC)

]
= 0,

cosC

[
− sinC +

√
3 sinA sinB +

2−
√
3

3− 2
√
2
(2 sinC − sinB − sinA)

]
= 0.

Supposing A,B,C ̸= π
2 and solving the system with the aid of Maple, the

solutions are found to be (π, 0, 0), (0, π, 0), (0, 0, π) and (−π, π, π), (π,−π, π),
(π, π,−π). None of them is on the considered region K, so that A = π

2
or B = π

2 or C = π
2 . In any case we are on the boundary of the region.

Assuming C = π
2 (similarly for A and B), we need to prove that

−2 + 2
√
3 sinA cosA+

2−
√
3

3− 2
√
2
[4− 2(sinA cosA+ sinA+ cosA)] ≥ 0,

which is equivalent to

4− 2
√
3

3− 2
√
2
− 1 +

(
√
3− 2−

√
3

3− 2
√
2

)
sinA cosA− 2−

√
3

3− 2
√
2
(sinA+ cosA) ≥ 0,

with 0 ≤ A ≤ π
2 . Define

g(A) =
4− 2

√
3

3− 2
√
2
−1+

(
√
3− 2−

√
3

3− 2
√
2

)
sinA cosA− 2−

√
3

3− 2
√
2
(sinA+cosA).

The function g is increasing on
[
π
4 ,

π
2

]
because

g′(A) = (cosA− sinA)

[(
√
3− 2−

√
3

3− 2
√
2

)
(cosA+ sinA)− 2−

√
3

3− 2
√
2

]
≥ 0,

(note that tanA ≥ 1 and cosA + sinA ≤
√
2). Observing that one also has

g(A) = g(π2 −A), it follows

g(A) ≥ g
(π
4

)
= 0 for 0 ≤ A ≤ π

2
.



32 Note Matematice

It just remains to show that k = 2−
√
3

3−2
√
2
is sharp, which is equivalent to

find A,B,C such that

h(A,B,C) =
sin2A+ sin2B + sin2C − 2

√
3 sinA sinB sinC

(sinA− sinB)2 + (sinB − sinC)2 + (sinC − sinA)2
> k − ε

for any ε > 0. This is clear from h
(
π
2 ,

π
4 ,

π
4

)
= k. 2
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A computational proof of the Cayley-Hamilton theorem

Constantin-Nicolae Beli1)

Abstract. We give a computational proof of the Cayley-Hamilton theorem
which states that if A is a square matrix over some field K and PA is its
characteristic polynomial PA(X) = det(XI −A), then PA(A) = 0.

Keywords: characteristic polynomial, Cayley-Hamilton theorem

MSC: 15A15, 15A24

Let K be a field. If m,n ≥ 1 then we denote by {em,n
i,j | 1 ≤ i ≤ m, 1 ≤

j ≤ n} the canonical basis ofMm,n(K), where em,n
i,j has 1 on the (i, j) position

and 0 everywhere else. We have el,mi,j e
m,n
k,l = δj,ke

l,n
i,l .

If n0, . . . , ns ≥ 1 and for 1 ≤ t ≤ s we have At = (ati,j) ∈ Mnt−1,nt(K)

then At =
∑
i,j
ati,je

nt−1,nt

i,j , where i goes from 1 to nt−1 and j from 1 to nt.

We get A1 · · ·As =
∑
a1i1,j1 · · · a

s
is,js

en0,n1
i1,j1

· · · ens−1,ns

is,js
, with 1 ≤ it ≤ nt−1 and

1 ≤ jt ≤ nt ∀t. But

en0,n1
i1,j1

· · · ens−1,ns

is,js
= δj1,i2 · · · δjs−1,ise

n0,ns

i1,js
=

{
en0,ns

i1,js
if jt = it+1 ∀1 ≤ t < s,

0 otherwise .

1) Simion Stoilow Institute of Mathematics of the Romanian Academy, Bucharest, Ro-
mania, constantin.beli@imar.ro
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It follows that A1 · · ·As =
∑
a1k0,k1a

2
k1,k2

· · · asks−1,ks
en0,ns

k0,ks
, where 1 ≤ kt ≤

nt for all t with 0 ≤ t ≤ s. In particular, the (i, j) entry of A1 · · ·As is∑
k0=i, ks=j

a1k0,k1 · · · a
s
ks−1,ks

.

When we take A1 = · · · = As = A = (ai,j) ∈Mn(K) we get:

Lemma 1. For any s ≥ 0 and 1 ≤ i, j ≤ n the (i, j) entry of As is∑
k0=i, ks=j

s∏
t=1

akt−1,kt, where 1 ≤ kt ≤ n for all t with 0 ≤ t ≤ s.

This result also holds when s = 0 because, if we make the convention
that any sum over an empty set is 0 and any product over an empty set is 1,
we have ∑

k0=i, k0=j

0∏
t=1

akt−1,kt =

{
1 if i = j,

0 if i ̸= j.

Indeed if i = j then
∑

k0=i, k0=j

has only one term, corresponding to k0 = i,

and this term is
0∏

t=1
akt−1,kt = 1, and if i ̸= j then the sum is taken over the

empty set so it is 0.
Given a cyclic permutation σ ∈ Sn, we denote by {σ} the set of all ele-

ments of σ, by ℓ(σ) the length of σ, ℓ(σ) = |{σ}|, and put P (σ) := {(h, σ(h)) |
h ∈ {σ}}. So if σ = (h1, . . . , hq) then {σ} = {h1, . . . , hq}, ℓ(σ) = q, and
P (σ) = {(h1, h2), (h2, h3) . . . , (hq, h1)}.

Lemma 2. If PA(X) = cnX
n + · · ·+ c0 then

ct =
∑

{σ1,...,σm}

(−1)m
∏

(h,l)∈P (σ1)∪···∪P (σm)

ah,l,

where {σ1, . . . , σm} covers all sets of mutually disjoint cyclic permutations in
Sn such that ℓ(σ1) + · · ·+ ℓ(σm) = n− s.

Proof. We have XI−A = (a′i,j), where a
′
i,i = X−ai,i and a′i,j = −ai,j if i ̸= j.

Hence PA(X) = det(XI−A) =
∑

σ∈Sn

ε(σ)
n∏

h=1

a′h,σ(h) =
∑

σ∈Sn

ε(σ)
∑

b1,...,bn

n∏
h=1

bh,

where bh = −ah,σ(h) if σ(h) ̸= h and bh ∈ {−ah,h, X} if σ(h) = h.
For a given σ ∈ Sn and a choice of b1, . . . , bn the set {1, . . . , n} writes

as a disjoint union J ∪ J ′ such that bh = −ah,σ(h) for h ∈ J and bh = X for
h ∈ J ′. Moreover J ′ is contained in Fix(σ), the set of all fixed points of σ.
It follows that

PA(X) =
∑
σ,J,J ′

ε(σ)
∏
h∈J

(−ah,σ(h))X |J ′| =
∑
σ,J,J ′

(−1)|J |ε(σ)
∏
h∈J

ah,σ(h)X
n−|J |,

where σ covers Sn and (J, J ′) covers all partitions of {1, . . . , n} into two sets
such that J ′ ⊆ Fix(σ). But for σ, J, J ′ with these properties σ decomposes
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uniquely as a product of mutually disjoint cycles σ = σ1 · · ·σm with {σ1} ∪
· · · ∪ {σm} = J . (Every h ∈ J ∩ Fix(σ) is included as a cycle of length
one in {σ1 · · ·σm}). The mapping (σ, J, J ′) 7→ {σ1 · · ·σm} is one-to-one as
if {σ1 · · ·σm} of mutually disjoint cycles from Sn then σ, J, J ′ are given by
σ = σ1 · · ·σn, J = {σ1} ∪ · · · ∪ {σm} and J ′ = {1, . . . , n} \ J . Then we get
|J | = |{σ1}|+ · · ·+ |{σm}| = ℓ(σ1) + · · ·+ ℓ(σm). Therefore

(−1)|J |ε(σ) = (−1)|J |(−1)(ℓ(σ1)−1)+···+(ℓ(σm)−1) = (−1)m.

Also

{(h, σ(h)) | h ∈ J} =

m∪
r=1

{(h, σ(h)) | h ∈ {σr}}

=
m∪
r=1

{(h, σr(h)) | h ∈ {σr}} =
m∪
r=1

P (σr).

In conclusion:

PA(X) =
∑

{σ1,...,σm}

(−1)m
∏

(h,l)∈P (σ1)∪···∪P (σm)

ah,l

Xn−ℓ(σ1)−···−ℓ(σm).

In order to obtain the monomial csX
s of PA(X) we have to restrict

ourselves to terms corresponding to sets {σ1, . . . , σm} with n− ℓ(σ1)− · · · −
ℓ(σm) = s, i.e., with ℓ(σ1) + · · ·+ ℓ(σm) = n− s. Hence we get our result. 2

From Lemma 1 and 2 we get that the (i, j) entry of the matrix PA(A) =

cnA
n + · · ·+ c0I, viz.,

n∑
s=0

csA
s(i, j), is

n∑
s=0

 ∑
h0=i, hs=j

s∏
t=1

aht−1,ht

 ∑
ℓ(σ1)+···+ℓ(σm)=n−s

(−1)m
∏

(k,l)∈P (σ1)∪···∪P (σm)

ak,l


=
∑

α∈Si,j

F (α),

where Si,j is the set of all (h0, . . . , hs, {σ1, . . . , σm}) with 1 ≤ ht ≤ n for all t
with 0 ≤ t ≤ s, h0 = i, hs = j, and σr are mutually disjoint cycles from Sn
such that s+ ℓ(σ1) + · · ·+ ℓ(σm) = n and F : Si,j → K is given by

(h0, . . . , hs, {σ1, . . . , σm}) 7→ (−1)m
s∏

t=1

aht−1,ht

∏
(k,l)∈P (σ1)∪···∪P (σm)

ak,l.

Remark. If α = (h0, . . . , hs, {σ1 . . . , σm}) ∈ Si,j then either there are

0 ≤ v < u ≤ s with hv = hu or {h0, . . . , hs} ∩
m∪
r=1

{σr} ̸= ∅. Otherwise we
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would have |{h0, . . . , hs} ∪
m∪
r=1

{σr}| = s + 1 +
m∑
r=1

ℓ(σr) = n + 1, which is

impossible since {h0, . . . , hs} ∪
m∪
r=1

{σr} ⊆ {1, . . . , n}.

Definition. We now define ϕ : Si,j → Si,j as follows.

Let α∈Si,i, α = (h0, . . . , hs, {σ1 . . . , σm}). If there are v < u with hv=hu we
consider such v, u with u minimal. Hence h0, . . . , hu−1 are mutually distinct.
We have two cases:

(I) If {h0, . . . , hu−1} ∩
m∪
r=1

{σr} = ∅ then hv, . . . , hu−1 are mutually dis-

tinct and they don’t belong to any of {σ1}, . . . , {σm}.
Hence σm+1 := (hv, . . . , hu−1) is a cycle in Sn disjoint form σ1, . . . , σm.

Then we define ϕ(α) = (h0, . . . , hv = hu, hu+1, . . . , hs, {σ1, . . . , σm, σm+1}).
(II) If {h0, . . . , hu−1} ∩

m∪
r=1

{σr} ̸= ∅ (or if v, u are not defined) then let

w be minimal such that hw ∈
m∪
r=1

{σr}. Let x with hw ∈ {σx}. Then we write

σx = (k1, . . . , kq) with k1 = hw. We define

ϕ(α)=(h0, . . . , hw=k1, . . . , kq, k1 = hw, hw+1, . . . , hs, {σ1, . . . , σ̂x. . . . , σm}) .

(The existence of w from the case (II) when v, u are not defined is
ensured by the Remark above.)

Our definition is good in the sense that ϕ(α) ∈ Si,j . Indeed, the condi-
tion h0 = i, hs = j from the definition of Si,j is obviously satisfied by ϕ(α)
in both cases (I) and (II). For the condition s+ ℓ(σ1) + · · ·+ ℓ(σm) = n note
that when going from α to ϕ(α) in the case (I) by removing hv, . . . , hu−1

from h0, . . . , hs we decreased s by u − v but by adding σm+1 to the set
{σ1, . . . , σm} we increased ℓ(σ1)+ · · ·+ ℓ(σm) by u−v = ℓ(σu+1). In the case
(II) by adding k1, . . . , kq to h0, . . . , hs we increased s by q and by removing
σx from {σ1, . . . , σm} the sum ℓ(σ1) + · · · + ℓ(σm) decreased by ℓ(σx) = q.
In both cases the sum s + ℓ(σ1) + · · · + ℓ(σm) = n is left unchanged by the
transformation α 7→ ϕ(α).

Lemma 3. (i) F ◦ ϕ = −F .
(ii) ϕ ◦ ϕ = id.

Proof. Let α ∈ Si,j , α = (h0, . . . , hs, {σ1, . . . , σm}).
(i) If α is in the case (I) of the definition of ϕ then after the trans-

formation α 7→ ϕ(α) the factors ahv,hv+1 , . . . , ahu−1,hu = ahu−1,hv were re-

moved from
s∏

t=1
aht−1,ht but they were added to

∏
(k,l)∈P (σ1)∪···∪P (σm)

ak,l as∏
(k,l)∈P (σm+1)

ak,l = ahv ,hv+1 · · · ahu−2,hu−1ahu−1,hv . If α is in the case (II)
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then the factors
∏

(k,l)∈P (σx)

ak,l = ak1,k2 · · · akq−1,kqakq ,k1 are removed from

∏
(k,l)∈P (σ1)∪···∪P (σm)

ak,l but they are added to
s∏

t=1
aht−1,ht .

In both cases the product
s∏

t=1
aht−1,ht

∏
(k,l)∈P (σ1)∪···∪P (σm)

ak,l from the

definition of F (α) is preserved. However the factor (−1)m from F (α) is
replaced in F (ϕ(α)) by (−1)m±1 = −(−1)m. Therefore F (ϕ(α)) = −F (α).

(ii) We consider the two cases from the definition of ϕ.
If α is in the case (I) then hv ∈ {σm+1}. Since v ≤ u− 1 we have that

h0, . . . , hv are different from each other and {h0, . . . , hv−1} ∩
m∪
r=1

{σr} = ∅.

We also have {h0, . . . , hv−1}∩{σm+1} = {h0, . . . , hv−1}∩{hv, . . . , hu−1} = ∅.
Therefore ϕ(α) is in the case (II) with w = v and x = m + 1. Then
ϕ(ϕ(α)) is obtained from ϕ(α) by removing σm+1 = (hv, . . . , hu−1) from
{σ1, . . . , σm, σm+1} and by inserting the sequence hv, . . . , hu−1 into
h0, . . . , hv−1, hv = hu, hu+1, . . . , hs, between hv−1 and hu.

This means ϕ(ϕ(α)) = α.
If α is in the case (II) then h0, . . . , hw are different from each other and

{h0, . . . , hw−1} ∩
m∪
r=1

{σr} = ∅. In particular,

{h0, . . . , hw−1} ∩ {k1, . . . , kq} = {h0, . . . , hw−1} ∩ {σx} = ∅.

Thus h0, . . . , hw−1, hw = k1, . . . , kq are different from each other. Also
{k1, . . . , hq} ∩

∪
r ̸=x

{σr} = {σx} ∩
∪
r ̸=x

{σr} = ∅.

Hence {h0, . . . , hw−1, hw = k1, . . . , kq} ∩
∪
r ̸=x

{σr} = ∅. It follows that

ϕ(α) is in the case (I) with v = w, u = w + q. Then ϕ(ϕ(α)) is ob-
tained from ϕ(α) by removing the sequence k1, . . . , kq from the sequence
h0, . . . , hw = k1, . . . , kq, k1 = hw, hw+1, . . . , hs and adding (k1, . . . , kq) = σx
to {σ1, . . . , σ̂x, . . . , σm}. Hence ϕ(ϕ(α)) = α. 2

Now we are in a position to complete our proof for the Cayley-Hamilton
theorem.

We define on Si,j the relation ∼ given by α ∼ β if β = ϕa(α) for some
a. Then ∼ is an equivalence relation and the class of α is {α, ϕ(α)}. Note
also that α ̸= ϕ(α). If α1, . . . , αN is a system of representatives for ∼ then
Si,j = {α1, ϕ(α1), . . . , αN , ϕ(αN )}. It follows that for any i, j the (i, j) entry

of PA(A) is
∑

α∈Si,j

F (α) =
N∑
k=1

(F (αk) + F (ϕ(αk))) = 0. Thus PA(A) = 0.

Note added in proof. After the submission of this note, an inductive
proof of the Cayley-Hamilton theorem has been published [1].
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Existence of a Hamiltonian path in a plane configuration

Marius Cavachi1)

Abstract. We prove the existence of a hamiltonian path in a plane con-
figuration given by intersecting circles.

Keywords: Circle, hamiltonian path

MSC: 05C10, 05C38

The following result has been previously published in [1] as a problem.

Theorem. Consider a finite set of plane circles whose interiors have non–
empty intersection such that any two circles intersect and any three do not
pass through the same point. Then the graph whose vertices are intersection
points of circles in the set and whose edges are the resulting circle segments
admits a hamiltonian path.
Proof. Consider for a fixed integer n, two configurations of circles, {Ai} and
{Bi}, as in the hypothesis, with i ∈ {1, . . . , n} and assume that all Ai and
Bi contain Q as an interior point. (By hypothesis all Ai contain a point
Q in interior and all Bi contain a point Q′ in interior. But by translating

the configuration {Bi} by the vector
−−→
Q′Q we may assume that Q′ = Q.)

The aim is to take {Ai} as a particular configuration that we can show it
has a hamiltonian path with certain properties to be described momentarily
and then deform it continuously into an arbitrary configuration {Bi}, while
showing that the existence of a hamiltonian path is preserved along the way.

Consider S a sphere of center O, tangent to the plane P of the two
configurations at Q and let P be the antipodal of Q. Denote by π : S\{P} →
P the stereographic projection from P and denote by Ci and Di the inverse
images via π of Ai and Bi respectively. If Oi is the center of Ci, then for
t ∈ [0, 1], construct Ci(t) to be the circle on S, centered on Oi(t) that is
defined on [OOi] by |OOi(t)| = (1− t) |OOi| and such that the plane of Ci is
parallel to that of Ci(t). Similarly, construct the circles Di(t).

By infinitesimally perturbing the two configurations without affecting
the existence of a hamiltonian path, we can assume that:

• Any three of the circles Ci(1) (or Di(1)) have empty intersection.
• The intersection of any four planes determined by the circles Ci (or
Di) is also empty.

1) Department of Mathematics, Ovidius University of Constanţa, Constanţa, Romania,
mcavachi@yahoo.com
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If M is in the intersection of two circles Ci, then for t ∈ [0; 1], we have
that M(t) ∈ [OM ] defined by |OM(t)| = (1 − t)|OM | is contained in the
intersection of the two discs bounded by the corresponding circles in the
configuration Ci(t). It follows that for fixed t, any two circles Ci(t) intersect.
Also, any four of the circles Ci(t) have empty intersection, otherwise if M(t)
is a common point, then M constructed by reverting the above procedure
lies in the intersection of the planes containing the Ci, contradicting our
assumptions.

As t varies, the circles Ci slide continuously into the circles Ci(1). We can
deform the configuration {Ci(1)} into {Di(1)} and by reverting the sliding
described above, we deform into the configuration {Di}. Applying π, we
obtain a continuous deformation of {Ai} into {Bi} realized by a moving
circle configuration {Ei(s)} with s ∈ [0; 1] (unrelated to t) having Ei(0) = Ai

and Ei(1) = Bi. As s varies, the graph determined by the configuration
Ei(s) only modifies its isomorphism class when one of the circles crosses an
intersection point of two others in the configuration. We remark that for any
s, the circles Ei := Ei(s) have pairwise nonempty intersection and that Q is
an interior point. (For more details see [3].)

For k ∈ {1, . . . , n}, denote by Mk the set of plane points contained in
the interior of at least k of the circles Ei. The sets Mk are easily seen to be
open and star shaped with respect to Q. If Fk denotes the boundary of Mk,
one notices that F1, F3, F5, . . . are disjoint cycles and their union contains all
the vertices of the graph.

Remark 1. If two circles Ei and Ej cross each other in a point S then
there is some k such that of the two segments on Ei and the two segments
on Ej based in S one belongs to Fk and the other to Fk+1.

We will prove that there exists a hamiltonian path for the graph deter-
mined by the configuration Ei displaying the following properties:

(1) For all odd k, the path contains all but one of the edges of the cycle
Fk.

(2) The path contains exactly one edge ℓk belonging to Fk+1 that con-
nects Fk to Fk+2 for k + 2 ≤ n.

(3) The edge ℓk does not lie on the same circle in the configuration as
any of the two edges it is adjacent to on the path.

Remark 2. The conditions above are very restrictive. Suppose that
S′, S, T, T ′ are consecutive points on some cycle FK with k odd we know that
ST is the segment of Fk missing from the hamiltonian path than the point
of the path following S′, S is uniquely defined. Indeed, by Remark 1, S′S
and ST belong to different circles, Ei and Ej , respectively. The other two
segments that form at S belong to Fk−1 or Fk+1 and they are candidates at
being ℓk or ℓk−2, respectively. But one of these segments lies on Ei, same as
SS′ so it does not qualify by the third rule above. So the remaining segment,
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say SS′′ is the edge ℓk or ℓk−2. Similarly, the point T ′′ on the path following
T ′, T is uniquely determined. Of course ST can be the segment of Fk missing
from the path only if SS′′ and TT ′′ belong one to Fk−1 and the other to Fk+1

so that one of them is ℓk−2 and the other ℓk.
Also if we now that ℓk = ST for some segment ST on Fk+1 then the

point S′ following T, S on the path is uniquely determined. Indeed, suppose
that ST lies on Ei and Ei crosses Ej at S. Then, by Remark 1, of the three
other segments that meet at S one lies on Ej and belongs to Fk+1. The other
two belong to Fk or Fk+2 an lie one on Ei, the other on Ej . The only one that
qualifies to be SS′ is the segment on Ej belonging to Fk or Fk+2. Similarly
the point T ′ following S, T on the path is uniquely determined. Note that
the segment ST belonging to Fk+1 with k odd qualifies to be ℓk only if SS′

and TT ′ with S′, T ′ defined as above belong one to Fk and the other to Fk+2.
As a consequence, a hamiltonian path satisfying the three rules is uniquely

determined if for some odd k we know ℓk or the edge of the cycle Fk missing
from the path.

Now we are ready to construct Ai verifying all three rules above. This
happens for example when one of the circles in Ai contains no point of in-
tersection of any two other circles in its interior, as in the following pictures
which constructs a unique path subject to the conditions 1 - 3:

Figure 1

Then it is enough to check that when one of the circles Ei crosses
an intersection point of two other circles in the configuration we can still
construct a hamiltonian path verifying the properties 1 - 3. Note that at
each of these crossings the structure of the edges is not altered with the
exception of a small triangle, which collapses to a point at some s and then
expands to a different small triangle. At each crossing the status of each large
segment of circle will be the same, i.e. it will an edge of the path after the
crossing if and only if it was an edge of the path before the crossing. What
changes is only the status of the three edges of the small triangles.

Note that the nine segments that occur in each case belong to three
consecutive cycles which are Fk, Fk+1 and Fk+2 or Fk−1, Fk and Fk+1, for
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some odd k. The hamiltonian path may contain all segments belonging to
Fk and Fk+2 that occur or all but one.

The possible cases (or their inverses) are illustrated below in Figures
2-5. (See also Remark 2.) Note that we never try to construct a hamiltonian
path for those (finitely many) s for which three circles in the configuration
intersect thus leaving the hypothesis of the problem, but we study what
happens when we are ,,near“ such an s, as suggested by the term ,,cross“.
Also, by our assumptions, there is no s such that four of the circles Ei(s)
intersect.

As s varies, we move from Ai to Bi and have proved the existence of
a hamiltonian path, with the required properties, in the graph associated to
the configuration Bi. �

Figure 2

Figure 3

Figure 4



M. Cavachi, Proposed Problem 41

Figure 5

Editor’s note. In an editorial comment [2] serious doubts has been
raised about the correctness of the above result. We consider the result holds
true and decided to publish it as a mathematical note.
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PROPOSED PROBLEMS

417. Calculate ∫ 1

0

∫ 1

0

log(1 + x)− log(1 + y)

x− y
dxdy.

Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca,

Romania and Cornel Vălean, Teremia Mare, Timiş, Romania.

418. (i) Let R = k[X,Y ]/(XY 2), k a field. Denote by x and y the residue
class of X and Y modulo the ideal (XY 2), respectively. Show that the
elements x and x(1 + y) are associates, that is, xR = x(1 + y)R, but there is
no invertible element u ∈ R such that ux = x(1 + y).

(ii) Show that we can not find such elements in Z/nZ.
Proposed by Cornel Băeţica, Faculty of Mathematics and Informa-

tics, University of Bucharest, Bucharest, Romania.

419. Suppose that n ≥ 1 and f : Rn → Rn is a function such that the image
under f of the interior of any sphere S of codimension 1 is the interior of a
sphere of codimension 1 of the same radius. Prove that f is an isometry.

Proposed by Marius Cavachi, Ovidius University of Constanţa,

Constanţa, Romania.

420. Let a, b, c, d ∈ R, c, d ̸= 0, such that a
c <

b
d . We consider the Maclaurin

expansion e
az+b
cz+d =

∑
n≥0

anz
n.

(i) Find an exact formula as a finite sum for an.
(ii) Determine the asymptotic behaviour of an as n→ ∞.
Try to solve (ii) without using the result from (i).
Proposed by Constantin-Nicolae Beli, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.

421. (i) Let f : R3 → R be a continuous function. Find the value of the
limit

lim
n→∞

n2
y

x2+y2≤1, 0≤z≤1

(√
x2 + y2 + z

2

)n

f (x, y, z) dxdydz.
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(ii) Let f : R4 → R be a continuous function. Find the value of the limit

lim
n→∞

n2
∫∫∫∫

x2+y2≤1, z2+t2≤1

(√
x2 + y2 +

√
z2 + t2

2

)n

f (x, y, z, t) dxdydzdt.

Proposed by Dumitru Popa, Ovidius University of Constanţa, Con-

stanţa, Romania.

422. Find a sequence (xn)n≥1 of real numbers with the following properties:
xn ↘ 0,

√
n/(x1 + · · ·+ xn) → 0 and x[

√
n]/xn → 1, where [

√
n] denotes the

integer part of
√
n.

Can you find a sequence with the above properties, in which
√
n is

replaced by lnn?
Proposed by George Stoica, University of New Brunswick, Saint

John, Canada.

423. Determine all differentiable functions f : [0,∞) → R with f(0) = 0
such that

a) f ′ is strictly positive and increasing,
b)
∫ x
0 (f

′(t))2dt ≥ f(x+ f(x))− f(x) ∀x ∈ [0,∞).
Florin Stănescu, Şerban Cioculescu School, Găeşti, Dâmboviţa,

Romania.

424. Let f, g ∈ C[X] be monic polynomials of the same degree with the
property that |f(z)| = |g(z)| = 1 for an infinity of values of z ∈ C. Prove
that f = g.

Proposed by Marius Cavachi, Ovidius University of Constanţa,

Constanţa, Romania.

425. Let n ≥ 2 and a1, . . . , an ≥ 0 be integers and let b1, . . . , bn and λ
be positive real numbers. Find the necessary and sufficient condition for the

function f : Rn\{(0, . . . , 0)} → R defined by f (x1, ..., xn) =
x
a1
1 ···xan

n

(|x1|b1+···+|xn|bn)
λ

to have a finite limit in (0, . . . , 0).
Proposed by Dumitru Popa, Ovidius University of Constanţa, Con-

stanţa, Romania.

426. Find all functions f : R → R, continuous in at least one point, and that
satisfy the following inequalities: f(x−1) ≤ f(x)−1, f(x+

√
2) ≤ f(x)+

√
2

for x ∈ R.
Proposed by George Stoica, Department of Mathematical Sciences,

University of New Brunswick, Canada

427. Let F be a field of characteristic ̸= 2, and let E/F be a finite mul-
tiquadratic extension so that G := Gal(E/F ) ∼= Zn

2 . Let a ∈ E× with the
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property that as−1 ∈ (E×)2 ∀s ∈ G. Prove that there are bs ∈ E× with

s ∈ G such that as−1 = b2s ∀s ∈ G and bstub
−1
st b

−1
su b

−1
tu bsbtbu = b

(s−1)(t−1)
u

∀s, t, u ∈ G.
How many (bs)s∈G ∈ (E×)G with the properties above exist?

Here we use the exponential notation: if c ∈ E× and x =
∑
s∈G

nss ∈ ZG then

cx :=
∏
s∈G

s(c)ns .

Proposed by Constantin-Nicolae Beli, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.

428. Show that f(x) = x4n − 3x3n +4x2n − 2xn +1 is irreducible in Z[x] for
all integers n ≥ 1.

Proposed by Cornel Băeţica, Faculty of Mathematics and Informa-

tics, University of Bucharest, Bucharest, Romania.

SOLUTIONS

393. Let A,B,C,D be four distinct points in a plane Π, which are not the
vertices of a parallelogram. Let H be one of the half-spaces bounded by Π.

(i) In H we consider the semicircles of diameters AB and CD that are
orthogonal on Π. Prove that in H there is exactly one semicircle with the
diameter situated on Π that is orthogonal on the two semicircles and on Π.

We denote by C(AB,CD) the semicircle from (i). Define similarly
C(AC,BD) and C(AD,BC).

(ii) Prove that C(AB,CD), C(AC,BD), and C(AD,BC) pass through
the same point.

(iii) Prove that C(AB,CD), C(AC,BD), and C(AD,BC) are orthog-
onal on each other.

Proposed by Sergiu Moroianu, Simion Stoilow Institute of Mathe-

matics of the Romanian Academy, Bucharest, Romania.

Solution by the author. We use the Poincaré half-space model of the
hyperbolic (or non-euclidean) space. In this model the space is the open eu-
clidean half-space H. The hyperbolic planes are euclidean half-planes inside
H orthogonal on Π and bounded by a line lying in Π, or half-sphere inside H
bounded by a disc lying in Π. The hyperbolic lines are euclidean half-lines
inside H orthogonal on Π, bounded by a point on Π, or semicircles in H or-
thogonal on Π, bounded by a diameter lying in Π. This representation of the
hyperbolic space inside the euclidean space does not preserve the distances
but it is conformal, i.e., it preserves the angles. In particular two perpen-
dicular hyperbolic lines will be represented by two euclidean semicircles or
half-lines orthogonal on each other in euclidean sense.

The points on Π do not belong to the hyperbolic space, but can be
regarded as directions of hyperbolic lines. Two distinct hyperbolic half-lines
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are said to have the same direction if they become closer and closer (with
respect to the hyperbolic distance) when we move towards infinity. This
happens precisely when one of the two half-lines is a last parallel to the other
one in the following sense: if we have a line ℓ and a point P /∈ ℓ then in
the plane containing ℓ and P there are two half-lines ℓ′, ℓ′′ passing through
P with the property that all the lines through P which separate ℓ′ from ℓ′′

intersect ℓ, while the lines through P which do not separate ℓ′ from ℓ′′ are
parallel to ℓ. Moreover, when we move to infinity in each of the two directions
on such a parallel line, the distance to ℓ tends to ∞. The lines ℓ′, ℓ′′ are called
the last parallels to ℓ passing through P . When we move to infinty on ℓ′, ℓ′′,
the points become closer and closer to ℓ (the distance from these points and
ℓ tends to 0). A line is uniquely determined by the two directions. In the
Poincaré model a line represented by a semicircle of diameter AB ⊂ Π has
A and B as directions. A line represented by a vertical half-line bounded by
a point A ∈ Π has A as one of the directions and ∞ (the point at infinty) as
the other direction. So by A∞ we mean the vertical half-line perpendicular
on Π at A.

Two distinct lines ℓ, ℓ′ in hyperbolic space can be in precisely one of the
following three positions:

(I) ℓ ∩ ℓ′ = {P} for some point P . In this case the only line orthogonal
on both ℓ and ℓ′ is the line orthogonal on the plane supporting ℓ and ℓ′

passing through P .
(II) ℓ∩ℓ′ = ∅ and ℓ, ℓ′ are not last parallel to each other (see above), i.e.,

they don’t meet at infinity. In this case there are exactly two points M ∈ ℓ,
N ∈ ℓ′ such that the distance |MN | is minimum (it follows then that MN is
orthogonal on both ℓ, ℓ′). Conversely, if M ∈ ℓ, N ∈ ℓ′ such that MN ⊥ ℓ, ℓ′

then |MN | is the smallest distance between a point of ℓ and a point of ℓ′.
Hence again there is a unique line orthogonal on both ℓ and ℓ′.

(III) ℓ and ℓ′ meet at infinity. Then there is no line orthogonal on
both ℓ and ℓ′. In our case the semicircles of diameters AB and CD ortho-
gonal on Π are the lines AB and CD from the hyperbolic space and, since
{A,B}∩{C,D} = ∅, AB and CD are not last parallel to each other, so they
are in one of the cases (I) and (II) above. Therefore there is a unique hyper-
bolic line C(AB,CD) orthogonal on both AB and CD. If C(AB,CD) is a
vertical half-line O∞ then the fact that O∞ is orthogonal on the semicircles
of diameters AB and CD means that O is the midpoint of both segments
AB and CD, so A,C,B,D are the vertices of a parallelogram, which contra-
dicts the hypothesis. So C(AB,CD) is a semicircle with the diameter on Π
orthogonal on Π, as required. Similarly we have the semicircles C(AC,BD)
and C(AD,BC).

We denote by M,N,P,Q,R, S the points where the lines C(AB,CD),
C(AC,BD) and C(AD,BC) intersect orthogonally AB, CD, AC, BD, AD
and BC, respectively. We denote by O,O′, O′′ the midpoints of MN , PQ
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and RS, respectively. Since M,N ∈ C(AB,CD), we have O ∈ C(AB,CD)
and, similarly, O′ ∈ C(AC,BD) and O′′ ∈ C(AD,BC).

We consider the hyperbolic symmetry σ with respect to the line
C(AB,CD). Since the lines AB and CD touch C(AB,CD) orthogonally in
M and N the symmetry σ acts on AB and CD as the symmetry with respect
to M and N , respectively. Hence σ preserves AB and CD but reverses the
directions. Hence σ permutes A,B and C,D. It follows that σ(AC) = BD
and σ(BD) = AC. Since C(AC,BD) is the only line orthogonal on AC and
BD and it touches AC and BD in P and Q, σ will preserve C(AC,BD), but
permutes P and Q. Since σ(P ) = Q we have that the midpoint O′ of PQ
belongs to C(AB,CD), so O′ ∈ C(AB,CD) ∩ C(AC,BD). Also if P ̸= Q
then the line PQ = C(AC,BD) is orthogonal on C(AB,CD).

By a similar reasoning, O ∈ C(AB,CD) ∩ C(AC,BD) and if M ̸= N
then C(AB,CD) ⊥ C(AC,BD). Hence O,O′ ∈ C(AB,CD) ∩ C(AC,BD)
and if M ̸= N or P ̸= Q then C(AB,CD) ⊥ C(AC,BD). So if M ̸= N
or P ̸= Q then C(AB,CD) ⊥ C(AC,BD) and C(AB,CD) ∩ C(AC,BD) =
{O} = {O′}. The remaining case M = N = O and P = Q = O′ does not
occur. Indeed, if O ̸= O′ then from O,O′ ∈ C(AB,CD) ∩ C(AC,BD) we
get C(AB,CD) = C(AC,BD) =: ℓ. But this implies that ℓ is orthogonal on
both AB and AC, which is impossible since AB and AC are in the case (III)
above (they meet at infinity at A), so there is no common orthogonal line.
If O = O′ then AB and AC have a common point M = P and a common
direction A, so AB = AC and, so B = C. Contradiction.

By the same argument, O′′ = O = O′, C(AD,BC) ∩ C(AB,CD) =
C(AD,BC) ∩ C(AC,BD) = {O′′} and also C(AD,BC) ⊥ C(AB,CD),
C(AC,BD). This means that C(AB,CD), C(AC,BD) and C(AD,BC) are
orthogonal on each other and they pass through the same point O = O′ = O′′.

Notes. (1) We do not need the condition that A,B,C,D are not
the vertices of a parallelogram if we allow C(AB,CD), C(AC,BD) and
C(AD,BC) to be vertical half-lines, not only semicircles.

(2) We may obtain a similar result if we choose D = ∞. Then the
semicircles AD,BD,CD become the vertical lines A∞, B∞ and C∞.

(3) The point O is clearly the hyperbolic midpoint of the segmentsMN ,
PQ and RS, but this is not easy to state in terms of euclidean geometry.

394. Find all polynomials P ∈ Z[X] such that a2+b2+c2 | f(a)+f(b)+f(c)
for any a, b, c ∈ Z

Proposed by Vlad Matei, student, University of Wisconsin,

Madison, USA.

Solution by V. Makanin, Sankt Petersburg, Russia. The answer is f =
mX2, for m ∈ Z.
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First we have (for a = b = c = 0) that 0 divides 3f(0), thus f(0) = 0.
Then a2 + b2 + c2 | f(a) + f(b) + f(c) and a2 + b2 + c2 | f(−a) + f(b) + f(c)
imply a2 + b2 + c2 | f(a) − f(−a) for all integer a, b, c, and from here we
easily infer that f(a) = f(−a) for all a. As f is an even polynomial, there
must exist g (with integer coefficients and with g(0) = 0, of course) such that
f(X) = g(X2). The hypothesis becomes a2 + b2 + c2 | g(a2) + g(b2) + g(c2)
for all a, b, c ∈ Z.

Now we have that (a2 + b2)2 + c2 = (a2 − b2)2 + (2ab)2 + c2 divides
g
(
(a2−b2)2

)
+g
(
(2ab)2

)
+g(c2) and (a2+b2)2+c2 = (a2+b2)2+c2+02 divides

g
(
(a2 + b2)2

)
+ g(c2) + g(0) = g

(
(a2 + b2)2

)
+ g(c2), therefore (a2 + b2)2 + c2

divides g
(
(a2+ b2)2

)
− g
(
(a2− b2)2

)
− g
(
(2ab)2

)
for all a, b, c ∈ Z. Obviously,

this implies that for all a, b ∈ Z we have

g
(
(a2 − b2)2 + (2ab)2

)
= g
(
(a2 + b2)2

)
= g
(
(a2 − b2)2) + g((2ab)2

)
.

Further let us consider someN of the formN=4p21 · · · p2k, with p1, . . . , pk
distinct primes. There are 2k distinct pairs (a, b) of positive integers such that
N = (2ab)2. If (a, b) and (c, d) are two such pairs, we have ab = cd. If we
also have (a2 − b2)2 = (c2 − d2)2, we see immediately that either a = c
and b = d, or a = d and b = c. Consequently there still remain 2k−1

distinct values of (a2− b2)2 when (a, b) runs over all solutions of (2ab)2 = N .
Chose k such that 2k−1 is greater than the degree of g; then the equality
g(x+N) = g(x) + g(N) is assured for at least deg(g) + 1 values of x (x is of
the form (a2 − b2)2, with (2ab)2 = N), meaning that it is true for all x. But
in that case, by differentiation we get g′(x + N) = g′(x) for all x, yielding
that g′ (the derivative of g) is constant, hence g is of the form mX, for some
integer m (actually g = mX + n, but we already know g(0) = 0). This gives
for f the form f = mX2, and it is easy to check that these polynomials are
indeed solutions of the problem. �

395. Let z1, z2, . . . , zn ≥ 1. Prove the following inequality:
n∑

i=1

1

1 + zi
+

n(n− 2)

1 +
n∏

i=1
z
1/n
i

≥ (n− 1)

n∑
i=1

1

1 +
∏
j ̸=i

z
1/(n−1)
j

.

Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA

and Ştefan Spătaru, International Computer High School of Bucharest,

Bucharest, Romania.

Solution by V. Makanin, Sankt Petersburg, Rusia. Let f be a convex
function on the interval I; then for every x1, x2, . . . , xn ∈ I the inequality

n∑
i=1

f(xi) + n(n− 2)f

(
1

n

n∑
i=1

xi

)
≥ (n− 1)

n∑
i=1

f

 1

n− 1

∑
1≤j≤n, j ̸=i

xj


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holds. This generalization of Popoviciu’s inequality was proved by Vasile
Ĉırtoaje and can be found, with proof (based on Karamata’s inequality), in
his book Algebraic Inequalities, GIL Publishing House, 2006, pp. 193–195.
Now consider the function f : [0,∞) → R defined by f(x) = 1/(1 + ex) and
note that f is convex on [0,∞), having the second derivative

f ′′(x) =
ex(ex − 1)

(1 + ex)3
≥ 0 for all x ≥ 0.

Then apply the above generalization of Popoviciu’s inequality to f and to
the numbers xi = log zi ≥ 0 in order to obtain the desired inequality. �

396. Let F be a field and let V be an F -vector space. We denote, as usual,
by T (V ), S(V ) and Λ(V ) the tensor, symmetric and exterior algebras over
V .

Let IS′ be the subgroup of T (V ) generated by x1⊗· · ·⊗xn−xσ(1)⊗· · ·⊗
xσ(n) with x1, . . . , xn ∈ V and σ ∈ An. Then IS′ is a homogeneous ideal in
T (V ) and we denote by S′(V ) = T (V )/IS′ . Then S′(V ) is a graded algebra,
S′(V ) =

⊕
n≥0 S

′n(V ). We denote by ⊙ the product on S′(V ). Hence if

x1, . . . , xn ∈ V then the image of x1 ⊗ · · · ⊗ xn ∈ T (V ) in S′(V ) = T (V )/IS′

is x1 ⊙ · · · ⊙ xn.
(i) For n ≥ 1 let ρS′n,Sn : S′n(V ) → Sn(V ) be the linear map given by

x1 ⊙ · · · ⊙ xn 7→ x1 · · ·xn. For any integer n greater than or equal to 2 find
a linear map ρΛn,S′n : Λn(V ) → S′n(V ) such that the short sequence

0 → Λn(V )
ρΛn,S′n
−−−−−→ S′n(V )

ρS′n,Sn

−−−−−→ Sn(V ) → 0

is exact.
(ii) If F = F2 prove that for any positive integer n there is a linear map

ρSn,Λn : Sn(V ) → Λn(V ) with x1 · · ·xn 7→ x1 ∧ · · · ∧ xn. If n = 2, 3 find a
linear map ρTn−1,Sn : Tn−1(V ) → Sn(V ) such that the short sequence

0 → Tn−1(V )
ρTn−1,Sn

−−−−−−→ Sn(V )
ρSn,Λn

−−−−→ Λn(V ) → 0

is exact.
Proposed by Constantin-Nicolae Beli, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.

Solution by the author. By definition, we have S(V ) = T (V )/IS and
Λ(V ) = T (V )/IΛ, where IS and IΛ are the bilateral ideals of T (V ) generated
by {x⊗y−y⊗x | x, y ∈ V } and {x⊗x | x ∈ V }, respectively. It turns out that
IS′ is also a bilateral ideal. To prove this we must show that β ⊗α⊗ γ ∈ IS′

whenever α is a generator of IS′ and β, γ are generators of T (V ). We may take
α = x1⊗· · ·⊗xn−xσ(1)⊗· · ·⊗xσ(n), β = y1⊗· · ·⊗ym and γ = z1⊗· · ·⊗zk,
where xi, yi, zi ∈ V and σ ∈ An. Since σ ∈ An the mapping yi 7→ yi,
xi 7→ xσ(i), zi 7→ zi is an even permutation of y1, . . . , ym, x1, . . . , xn, z1, . . . , zk.
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Therefore β ⊗ α ⊗ γ = y1 ⊗ · · · ⊗ ym ⊗ x1 ⊗ · · · ⊗ xn ⊗ z1 ⊗ · · · ⊗ zk − y1 ⊗
· · · ⊗ ym ⊗ xσ(1) ⊗ · · · ⊗ xσ(n) ⊗ z1 ⊗ · · · ⊗ zk.

We denote by InS , I
n
Λ, I

n
S′ the homogeneous components of degree n of

IS , IΛ, IS′ .
Note that if xi = xj for some i ̸= j then x1⊗· · ·⊗xn−xσ(1)⊗· · ·⊗xσ(n)

belongs to InS′ for any σ ∈ Sn, not merely for σ ∈ An. Indeed, if σ ∈ Sn \An

then let τ be the transposition (i, j). Then for any k we have xτ(k) = xk
(xτ(i) = xj = xi, xτ(j) = xi = xj and τ(k) = k for k ̸= i, j). It follows
that xτσ(k) = xσ(k) ∀k. But τ, σ ∈ Sn \ An, so τσ ∈ An. It follows that
x1⊗ · · ·⊗xn−xσ(1)⊗ · · ·⊗xσ(n) = x1⊗ · · ·⊗xn−xτσ(1)⊗ · · ·⊗xτσ(n) ∈ InS′ .

Let (ei)i∈I be a basis for V . On I we define a total order relation ≤.
Let An = {(i1, . . . , in) ∈ In : i1 ≤ . . . ≤ in}, Bn = {(i1, . . . , in) ∈ In : i1 <
. . . < in} and Cn = An \Bn. Let f : Bn → Λn(V ) be given by f(i1, . . . , in) =
ei1∧· · ·∧ein and h : An → Sn(V ) be given by h(i1, . . . , in) = ei1 · · · ein . Then
(f(b))b∈Bn is a basis for Λn(V ) and (h(a))a∈An is a basis for Sn(V ).

We now assume that n ≥ 2 and we obtain a basis for S′n(V ). For
any α ∈ Tn(V ) we denote by [α] its class in S′n(V ), [α] = α + InS′ . Since
InS′ is generated, as a group, by x1 ⊗ · · · ⊗ xn − xσ(1) ⊗ · · · ⊗ xσ(n), with
xi ∈ V and σ ∈ An, it will be generated, as a vector space, by ei1 ⊗ · · · ⊗
ein − eiσ(1)

⊗ · · · ⊗ eiσ(n)
, with (i1, . . . , in) ∈ In and σ ∈ An. On the basis

X = {ei1 ⊗ · · · ⊗ ein : (i1, . . . , in) ∈ In} of Tn(V ) we define the equivalence
relation ∼, ei1 ⊗ · · · ⊗ ein ∼ ej1 ⊗ · · · ⊗ ejn if (j1, . . . , jn) = (σ(i1), . . . , σ(in))
for some σ ∈ An. Then I

n
S′ is generated by elements of the form α−β, where

α, β ∈ X, with α ∼ β. It follows that a basis of S′n(V ) = Tn(V )/InS′ is
{[α] | α ∈ Y }, where Y is a system of representatives for X/ ∼.

Let α ∈ X, α = ej1 ⊗ · · · ⊗ ejn , with (j1, . . . , jn) ∈ In. Then by
arranging j1, . . . , jn in increasing order we obtain a sequence i1 ≤ . . . ≤ in,
i.e., (i1, . . . , in) ∈ An, and there is σ ∈ Sn with is = jσ(s) ∀s. We consider
two cases.

If j1, . . . , jn are mutually distinct then i1 < . . . < in, i.e., (i1, . . . , in) ∈
Bn, and the permutation σ satisfying (i1, . . . , in) = (jσ(1), . . . , (jσ(n))) is
unique. If σ ∈ An then ej1 ⊗· · ·⊗ejn ∼ ei1 ⊗· · ·⊗ein . If σ ∈ Sn \An then let
τ = (1, 2) and we have τσ ∈ An. Since (i2, i1, i3, . . . , in) = (iτ(1), . . . , iτ(n)) =
(jστ(1), . . . , jστ(n)), we have ej1 ⊗ · · · ⊗ ejn ∼ ei2 ⊗ ei1 ⊗ ei3 ⊗ · · · ⊗ ein .

If j1, . . . , jn are not mutually distinct then there is some s with is = is+1,
so (i1, . . . , in) ∈ An \ Bn = Cn. Let τ = (s, s + 1). Since is = is+1, we have
(i1, . . . , in) = (iτ(1), . . . , iτ(n)) = (jστ(1), . . . , jστ(n)). Therefore in both cases
σ ∈ An and στ ∈ An we have ej1 ⊗ · · · ⊗ ejn ∼ ei1 ⊗ · · · ⊗ ein .

In conclusion, a set of representatives forX/∼ is Y = {ei1⊗· · ·⊗ein , ei2⊗
ei1 ⊗ ei3 ⊗ · · ·⊗ ein : (i1, . . . , in) ∈ Bn}∪ {ei1 ⊗ · · ·⊗ ein : (i1, . . . , in) ∈ Cn}.
We define g1, g2 : Bn → S′n(V ) and g : Cn → S′n(V ) by g1(i1, . . . , in) =
ei1 ⊙ · · · ⊙ ein , g2(i1, . . . , in) = ei2 ⊙ ei1 ⊙ ei3 ⊙ · · · ⊙ ein , and g(i1, . . . , in) =
ei1 ⊙ · · · ⊙ ein . Since the projection Tn(V ) → Tn(V )/InS′ = S′n(V ) is given
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by [x1 ⊗ · · · ⊗ xn] = x1 ⊙ · · · ⊙ xn, the basis {[α] : α ∈ Y } of S′n(V ) can be
written as {g1(b), g2(b) : b ∈ Bn} ∪ {g(c) : c ∈ Cn}.

Note that one has InS′ ⊆ InS because both are generated by expressions
of the type x1 ⊗ · · · ⊗ xn − xσ(1) ⊗ · · · ⊗ xσ(n), with σ ∈ An in the case of
InS′ and with σ ∈ Sn in the case of Ins . Thus the map ρS′n,Sn : S′n(V ) =
Tn(V )/InS′ → Sn(V ) = Tn(V )/InS given by x1 ⊙ · · · ⊙ xn 7→ x1 · · ·xn is well
defined and surjective. We write ρS′n,Sn in the bases {g1(b), g2(b) : b ∈ Bn}∪
{g(c) : c ∈ Cn} and {h(a) : a ∈ An} for S′n(V ) and Sn(V ), respectively. If
b = (i1, . . . , in) ∈ Bn then ρS′n,Sn(g1(b)) = ρS′n,Sn(g2(b)) = ei1 · · · ein = h(b)
and if c = (i1, . . . , in) ∈ Cn then ρS′n,Sn(g(c)) = ei1 · · · ein = h(c). A typical
element α ∈ S′n(V ) has the form α =

∑
b∈Bn

(αbg1(b) + βbg2(b)) +
∑
c∈C

γcg(c),

where αb, βb, γc ∈ F are almost all zero. We have ρS′n,Sn(α) =
∑

b∈Bn

(αb +

βb)h(b) +
∑

c∈Cn

γch(c). It follows that α ∈ ker ρS′n,Sn iff αb + βb = 0 ∀b ∈ Bn

and γc = 0 ∀c ∈ Cn. Hence

ker ρS′n,Sn = {
∑
b∈Bn

(αbg1(b)− αbg2(b)) : αb ∈ F almost all zero}.

We now define the map ρΛn,S′n . Note that the map ϕ : V n → S′n(V )
given by (x1, . . . , xn) 7→ x1⊙· · ·⊙xn−x2⊙x1⊙x3⊙· · ·⊙xn is multilinear and
alternate. (If xi = xj then x2⊙x1⊙x3⊙· · ·⊙xn writes as xσ(1)⊙· · ·⊙xσ(n),
where σ = (1, 2), and it is equal to x1⊙· · ·⊙xn, even though σ ∈ Sn \An by
a remark we made above.) Hence it induces a map ρΛn,S′n : Λn(V ) → S′n(V )
given by x1 ∧ . . . ∧ xn 7→ x1 ⊙ · · · ⊙ xn − x2 ⊙ x1 ⊙ x3 ⊙ · · · ⊙ xn.

We write ρΛn,S′n in the bases {f(b) : b ∈ Bn} and {g1(b), g2(b) :
b ∈ Bn} ∪ {g(c) : c ∈ Cn} for Λn(V ) and S′n(V ), respectively. If b =
(i1, . . . , in) ∈ Bn we have ρΛn,S′n(f(b)) = e11 ⊙ · · · ⊙ ein − ei2 ⊙ e11 ⊙ ei3 ⊙
· · · ⊙ ein = g1(b) − g2(b). A typical element of Λn(V ) has the form α =∑
b∈Bn

αbf(b), where αb ∈ F are almosts all zero, and we have ρΛn,S′n(α) =∑
b∈Bn

αb(g1(b)−g2(b)) =
∑

b∈Bn

(αbg1(b)−αbg2(b)). Then α ∈ ker ρΛn,S′n iff αb =

0 ∀b ∈ Bn, i.e., iff α = 0. Thus ρΛn,S′n is injective. We also have Im ρΛn,S′n =
{
∑

b∈Bn

(αbg1(b) − αbg2(b)) : αb ∈ F almost all zero} = ker ρS′n,Sn . Therefore

the sequence from (i) is exact.
For (ii) we note that the bilateral ideal IΛ of T (V ) contains all ex-

pressions of the form x ⊗ y + y ⊗ x with x, y ∈ V . But since we are in
characteristic 2 we have x ⊗ y + y ⊗ x = x ⊗ y − y ⊗ x, so IΛ contains the
bilateral ideal generated by these expressions, which is IS . Hence we have
a surjective linear map ρS,Λ : S(V ) = T (V )/IS → Λ(V ) = T (V )/IΛ given
by x1 · · ·xn 7→ x1 ∧ · · · ∧ xn. The maps ρSn,Λn are just the homogeneous
components of ρS,Λ.
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We now assume that n ≥ 2 and write ρSn,Λn in terms of the bases
{h(a) : a ∈ An} and {f(b) : b ∈ Bn}. If a = (i1, . . . , in) ∈ An = Bn ∪ Cn

then ρSn,Λn(h(a)) = ei1 ∧ · · · ∧ ein . If a ∈ Bn then ρSn,Λn(h(a)) = f(a). If
a ∈ Cn then is = is+1 for some s, so ρSn,Λn(h(a)) = 0. A typical α ∈ Sn(V )
has the form α =

∑
a∈A

αah(a), where αa ∈ F are almost all zero, and we have

ρSn,Λn(α) =
∑

a∈Bn

αaf(a). Thus α ∈ ker ρSn,Λn iff αa = 0 ∀a ∈ Bn. It follows

that ker ρSn,Λn = {
∑

c∈Cn

αch(c) : αc ∈ F almost all zero}. Thus h(c), c ∈ Cn,

are a basis for ker ρSn,Λn .
Note that all the reasoning above apply for F arbitrary of characteristic

2, not merely F = F2. From now on we assume that F = F2.
Take first n = 2. Then C2 = {(i, i) : i ∈ I}, so a basis for ker ρS2,Λ2

is made of h(i, i) = e2i with i ∈ I. We define ρT 1,S2 : T 1(V ) = V → S2(V )

by x 7→ x2. We have ρT 1,S2(x + y) = (x + y)2 = x2 + 2xy + y2 = x2 +

y2 = ρT 1,S2(x) + ρT 1,S2(y) and if λ ∈ F then ρT 1,S2(λx) = (λx)2 = λx2 =

λρT 1,S2(x). (In F = F2 we have λ2 = λ.) Thus ρT 1,S2 is linear. We have

ρT 1,S2(ei) = e2i , so the basis {ei : i ∈ I} of V is sent bijectively by ρT 1,S2 to

the basis {e2i : i ∈ I} of ker ρS2,Λ2 . Thus ρT 1,S2 is a bijection between V and
ker ρS2,Λ2 . Since also ρS2,Λ2 is surjective, the sequence

0 → V
ρT1,S2

−−−−→ S2(V )
ρS2,Λ2

−−−−→ Λ2(V ) → 0

is exact.
If n = 3 then ρT 2,S3 : T 2(V ) = V ⊗ V → S3(V ) will be defined as the

composition V ⊗V
ρT1,S2⊗1V
−−−−−−−→ S2(V )⊗V m−→ S3(V ), where m : S2(V )⊗V =

S2(V )⊗S1(V ) → S3(V ) is just the multiplication from S(V ). More precisely,
ρT 2,S3 is given by x⊗y 7→ x2y. (We havem(ρT 1,S2⊗1V (x⊗y)) = m(x2⊗y) =
x2y.) An element from the canonical basis ej1 ⊗ ej2 , with j1, j2 ∈ I is sent
by ρT 2,S3 to e2j1ej2 , which can be written as h(c) for some c ∈ Cn. Namely,

c = (j1, j1, j2) if j1 ≤ j2 and c = (j2, j1, j1) if j1 > j2. Conversely, if
c = (i1, i2, i3) ∈ Cn then i1 ≤ i2 ≤ i3 and i1 = i2 or i2 = i3. Then
h(c) = ei1ei2ei3 , which can be written as e2j1ej2 = ρT 2,S3(ej1 ⊗ ej2) for some

unique j1, j2 ∈ I. Namely (j1, j2) = (i1, i3) if i1 = i2 and (j1, j2) = (i2, i1)
if i1 < i2 = i3. Hence the basis {ej1 ⊗ ej2 : j1, j2 ∈ I} of V ⊗ V is sent
bijectively by ρT 2,S3 to the basis {h(c) : c ∈ C3} of ker ρS3,Λ3 . Thus ρT 2,S3

is a bijection between V ⊗ V and ker ρS3,Λ3 . Since ρS3,Λ3 is also surjective,

the sequence 0 → V ⊗ V
ρT2,S3

−−−−→ S3(V )
ρS3,Λ3

−−−−→ Λ3(V ) → 0 is exact. �

397. Let n ≥ 1 be an integer and let f : Rn → Rn be a function with the
property that the image under f of any sphere S of codimension 1 is a shere
of codimension 1 of the same radius. Prove that f is an isometry.
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Proposed by Marius Cavachi, Ovidius University of Constanţa,

Constanţa, Romania.

Solution by the author. If a, b ∈ Rn, a ̸= b, then a, b are antipodal points
on a sphere S of radius |b − a|/2. Then f(a), f(b) belong to f(S), which is
again a sphere of radius |b−a|/2. Hence |f(b)− f(a)| is less than or equal to
the diameter |b − a| of f(S). So the inequality |f(b) − f(a)| ≤ |b − a| holds
for all a, b ∈ Rn.

If d ∈ f(S) is the antipodal point of f(a) then |d− f(a)| = |b− a|. Let
c ∈ S such that f(c) = d. We have |b−a| = |d−f(a)| = |f(c)−f(a)| ≤ |c−a|.
But a, c belong to the sphere S of radius |b− a|/2, so |c− a| ≥ |b− a| implies
that |c − a| = |b − a| and c is the antipodal point of a on S, i.e., c = b. It
follows that d = f(c) = f(b), so |f(b)− f(a)| = |d− f(a)| = |b− a|. Hence f
is an isometry. �

398. Let A ∈ Mn(Q) be an invertible matrix.
a) Prove that if for every k ∈ N∗ there exists Bk ∈ Mn(Q) such that

Bk
k = A, then all the eigenvalues of A are equal to 1.

b) Is the converse of a) true?
Proposed by Victor Alexandru, Cornel Băeţica, Gabriel Mincu,

University of Bucharest, Bucharest, Romania

Solution by the authors. a) Let PA = det(XIn−A) be the characteristic
polynomial of A. We will denote by p1, p2, . . . , pr ∈ N the primes that divide
at least one of the denominators of the coefficients of PA and put

R =
{a
s
∈ Q : a ∈ Z, s = pα1

1 pα2
2 . . . pαr

r , α1, . . . , αr ∈ N
}
.

It is easy to see that R is a subring of Q and PA ∈ R[X].
Let k ≥ 1 be fixed. We denote by α1, . . . , αn the roots of PA and

by β1, . . . , βn the roots of PBk
. Then if we order well these roots we have

αi = βki . (We have Bk
k = A.) We denote PA = Xn+an−1X

n−1+ · · ·+a0 and
PBk

= Xn+ bn−1X
n−1+ · · ·+ b0. Note that PBk

(X) = (X −β1) · · · (X −βn)
divides PA(X

k) = (Xn − α1) · · · (Xk − αn) = (Xk − βk1 ) · · · (Xk − βkn). It
follows that for any N ≥ 1 we have NnPBk

(X/N) | NknPA(X
k/Nk), i.e.,

Xn+Nbn−1X
n−1+ · · ·+Nnb0 divides Xkn+Nkan−1X

k(n−1)+ · · ·+Nkna0.
Since ai ∈ R, if we take N = (p1 · · · pr)s for some large enough s we have
N ikan−i ∈ Z for 1 ≤ i ≤ n, so NknPA(X

k/Nk) ∈ Z[X]. By Gauss’s Lemma
this implies NnPBk

(X) ∈ Z[X], whence N ibn−i ∈ Z for 1 ≤ i ≤ n. But this
implies that bn−i ∈ R for 1 ≤ i ≤ n, so PBk

∈ R[X].
We now consider a prime q ∈ N \ {p1, . . . , pr}. The function ϕ : Z →

R/qR given by a 7→ a + qR is a ring homomorphism. We have a ∈ kerϕ iff
a ∈ qR, i.e., iff a = q b

N , where N has the form N = pα1
1 · · · pαr

r , so (q,N) = 1.
Then q | qb = aN implies q | a, so a ∈ qZ. Conversely, if a ∈ qZ then a ∈ qR



Solutions 53

(we have Z ⊆ R), so kerϕ = qZ. Thus ϕ induces an injective morphism
ϕ : Z/qZ → R/qR given by a+ qZ 7→ a+ qR. We claim that this morphism
is also surjective, so it is an isomorphism. An element in R has the form b

N ,
where N has the form N = pα1

1 · · · pαr
r , so (q,N) = 1. Then there is some

a ∈ Z with Na ≡ b (mod q), so Na = b + qc for some c ∈ Z. It follows
that a = b

N + q c
N ∈ b

N + qR, so ϕ(a + qZ) = a + qR = b
N + qR. So ϕ is an

isomorphism. For any a ∈ R we denote by a its class in R/qR ∼= Z/qZ = Fq,

i.e., a = ϕ
−1

(a+ qR). Similarly, if P ∈ R[X] we denote by P the polynomial

in R/qR[X] ∼= Fq[X] obtained by applying ϕ
−1

to the coefficients of P .
If (X − X1) · · · (X − Xn) = Xn + Sn−1X

n−1 + · · · + S0 and (X −
Xk

1 ) · · · (X−Xk
n) = Xn+Tn−1X

n−1+· · ·+T0 with Si, Ti ∈ Z[X1, . . . , Xn] then
by Viète’s formulas and the fundamental theorem of the symmetric polyno-
mials we have Ti = Qi(S0, . . . , Sn−1), where Q0, . . . , Qn−1 ∈ Z[X0, . . . , Xn−1].
Since PBk

= Xn + bn−1X
n−1 + · · · + b0 = (X − β1) · · · (X − βn) and PA =

Xn+an−1X
n−1+· · ·+a0 = (X−βk1 ) · · · (X−βkn), we have bi = Si(β1, . . . , βn)

and ai = Ti(β1, . . . , βn), so ai = Qi(b0, . . . , bn−1) for 0 ≤ i ≤ n − 1. Let
now ν1, . . . , νn be the roots of PBk

. We have (X − ν1) · · · (X − νn) = Xn +

bn−1X
n−1+· · ·+b0 and if we denote (X−νk1 ) · · · (X−νkn) = Xn+cn−1X

n−1+

· · · + c0 then, by the same reasoning as above, ci = Qi(b0, . . . , bn−1) =

Qi(b0, . . . , bn−1) = ai. Thus (X − νk1 ) · · · (X − νkn) = Xn + an−1X
n−1 +

· · · + a0 = PA, i.e., the roots of PA are the kth powers of the roots of PBk
,

same as for PA and PBk
.

We now assume that, besides q /∈ {p1, . . . , pr}, q is not a divisor of
the numerator of a0, that is, a0 /∈ qR, so a0 ̸= 0. (By hypothesis a0 =
(−1)n detA ̸= 0.) It follows that the roots νk1 , . . . , ν

k
n of PA are not zero, so

νi ̸= 0 ∀i. We take k = qm − 1, where m = lcm (1, 2, . . . , n). Now, it is well
known that Fqt is the splitting field of every irreducible polynomial of degree
t over Fq. Consequently, every root νi of the nth degree polynomial PBk

∈
Fq[X] belongs to Fqt for some 1 ≤ t ≤ n. Then t | m, so νi ∈ Fqt ⊆ Fqm . Since

νi ̸= 0 we have νi ∈ F∗
qm . But k = qm − 1 = |F∗

qm |, so νki = 1. It follows that

PA = (X − νki ) · · · (X − νki ) = (X − 1)n, which implies that ai = (−1)n−i
(
n
i

)
,

so ai − (−1)n−i
(
n
i

)
∈ qR. This means that ai − (−1)n−i

(
n
i

)
writes as a

fraction with the numerator divisible by q. Since this happens for an infinity
of primes q (all q not dividing p1 · · · pr or the numerator of a0) we must have
ai−(−1)n−i

(
n
i

)
= 0. It follows that PA = Xn+an−1X

−1+· · ·+a0 = (X−1)n.
Hence the conclusion.

b) Yes, the converse of a) is also true. We have (A− I)n = PA(A) = 0,
i.e., Bn = 0, where B = A− I.
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We use the binomial formula (1 + X)1/k =
∑
i≥0

( 1
k
i

)
Xi, which implies

1 +X =

(∑
i≥0

( 1
k
i

)
Xi

)k

. This formula holds not only for X ∈ R (or C) with

|X| < 1 but also as an equality of formal series. Since (1+X)1/k ≡
n−1∑
i=0

( 1
k
i

)
Xi

(mod Xn), we have

(
n−1∑
i=0

( 1
k
i

)
Xi

)k

≡ 1 +X (mod Xn), so

(
n−1∑
i=0

( 1
k
i

)
Xi

)k

=

1 +X +XnQ(X) for some Q ∈ Z[X].

It follows that

(
n−1∑
i=0

( 1
k
i

)
Bi

)k

= I + B + BnQ(B) = I + B = A. So

we found Bk ∈ Mn(Q) with Bk
k = A, namely Bk =

n−1∑
i=0

( 1
k
i

)
Bi. (Note that

Bi = 0 for i ≥ n, so we may also write Bk =
∑
i≥0

( 1
k
i

)
Bi.) �

Note. We can remove the condition that A is invertible, but then the
necessary and sufficient condition is that µA, the minimal polynomial of A,
has the form (X − 1)l or X(X − 1)l for some l.

Let m (0 ≤ m ≤ n) be the multiplicity of the root 0 in PA. Since the
roots of PA are the kth powers of the roots Bk the multiplicity of 0 in Bk is
againm. Moreover, if PA = XmP ′

A and PBK
= XmP ′

BK
then P ′

A and P ′
BK

are

monic, of degree n−m and with rational coefficients and the roots of P ′
A are

kth powers of the roots of P ′
BK

. Then by the same reasoning from the solution

of Problem 398 a) we have P ′
A = (X − 1)n−m. Thus PA = Xm(X − 1)n−m.

We may assume that m ≥ 1 since otherwise PA = (X − 1)n, i.e., µA =
(X−1)l for some l, a case already considered. Now by considering the Jordan
canonical form we can write Bk ∼ B′

k⊕B′′
k , where B

′
k is the sum of all Jordan

blocks corresponding to the eigenvalue 0 and B′′
k is the sum of the Jordan

blocks corresponding to nonzero eigenvalues. Since the multiplicity of 0 in
PBk

is m, the matrix B′
k is m×m and PB′

k
= Xm, so B′m

k = 0.

We take k = m and we have A = Bm
m ∼ (B′

m ⊕B′′
m)m = B′m

m ⊕B′′m
m =

0m ⊕ B′′m
m. (By 0m we denote the m×m zero matrix.) Then µ0m = X and

P0m = Xm, which, together with PA = Xm(X − 1)n−m, implies PB′′m
m

=

(X − 1)n−m, so µB′′m
m

= (X − 1)l for some l ≤ n −m. Since µ0m = X and

µB′′m
m
= (X − 1)l, we have µA = X(X − 1)l.
We now prove the sufficiency. We keep the notation B = A − I from

the solution of part b) of Problem 398.
The case µA = (X − 1)l is just Problem 398 b). Namely, the matrix

Bk ∈ Mn(Q) satisfying Bk
k = A is Bk =

l−1∑
i=0

( 1
k
i

)
Bi =

∑
i≥0

( 1
k
i

)
Bi.
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If µA = X then A = 0, so we just take Bk = 0.
Suppose now that µA = X(X − 1)l with l ≥ 1, so PA = Xm(X − 1)n−m

with 1 ≤ m < n. We use the Jordan canonical form and therefore write
A = S(A′ ⊕ A′′)S−1, where S ∈ GLn(Q) and A′ and A′′ are the sum of the
Jordan blocks corresponding to the eigenvalue 0 or 1, respectively. Then
µA′ = X, so A′ = 0m, and µA′′ = (X − 1)l.

Then for any k ≥ 1 we have A′′ = B′′k
k, where B

′′
k =

l−1∑
i=0

( 1
k
i

)
B′′i, with

B′′ = A′′ − In−m. Then we take Bk = S(0m ⊕ B′′
k)S

−1, for which we have

Bk
k = S(0m ⊕B′′

k)
kS−1 = S(0km ⊕B′′k

k)S
−1 = S(0m ⊕A′′)S−1 = A.

In fact Bk can be expressed as a polynomial in A, as in the case µA =
(X − 1)l. To do this we regard A as a linear function A : Qn → Qn. Since
µA = X(X − 1)l we can write Qn = V0 ⊕ V1, where V0 = kerA = Im (A− I)l

and V1 = ker(A − I)l = ImA are invariant subspaces of Qn, i.e., AVλ ⊆ Vλ
for λ = 0, 1. We will look for a Bk such that Vλ are invariant relative to Bk.
Then Bk

k = A is equivalent to Bk
k|Vλ

= A|Vλ
for λ = 0, 1.

On V0 = kerA we have A|V0
= 0, so when we take Bk|V0

= 0 we have

Bk
k|V0

= A|V0
. On V1 = ker(A− I)l we have (A|V1

− I|V1
)k = 0. Then by the

case µA = (X − 1)l if Bk|Vi
=

l−1∑
i=0

( 1
k
i

)
Bi

|V1
then Bk

k|V1
= A|V1

.

In conclusion, in order that Bk
k = A it is enough that Bk(x) = 0 if x ∈ V0

and Bkx =

(
l−1∑
i=0

( 1
k
i

)
Bi

)
x if x ∈ V1. Let x ∈ Qn be arbitrary. Then x = x0+

x1, where x0 = (I−A)lx and x1 = (I− (I−A)l)x = (I− (−B)l)x. Note that

x0 ∈ Im (A−I)k = V0 and x1 = A

(
l∑

i=1

(
l
i

)
(−A)i−1

)
x ∈ ImA = V1. It follows

that Bkx = Bkx0+Bkx1 = 0+

(
l−1∑
i=0

( 1
k
i

)
Bi

)
x1 =

(
l−1∑
i=0

( 1
k
i

)
Bi

)
(I− (−B)l)x.

In conclusion, Bk =

(
l−1∑
i=0

( 1
k
i

)
Bi

)
(I − (−B)l).

There is a direct proof of the fact that Bk defined above works. We
have 0 = A(A− I)l = (B+ I)Bl. Then for any s ≥ l we have (B+1)Bs = 0,
i.e., Bs = −Bs+1. It follows that (−B)l = (−B)l+1 = (−B)l+2 = . . .. Hence
for any s, t ≥ l we have (−B)s = (−B)t, so Bs = (−1)t−sBt. In particular,
(−B)r = (−B)2r, so (I − (−B)l)2 = I − 2(−B)l + (−B)2r = I − (−B)l, i.e.,
I − (−B)l is idempotent. As seen in the solution of Problem 398 b) we have
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(
l−1∑
i=0

( 1
k
i

)
Xi

)k

= 1 +X +X lQ(X) for some Q ∈ Z[X]. It follows that

Bk
k =

(
l−1∑
i=0

( 1
k

i

)
Bi

)k

(I − (−B)l)k = (I +B +BlQ(B))
(
I − (−B)l

)
= I +B − (I +B)(−B)l +Bl

(
I − (−B)l

)
Q(B).

From (I +B)(−B)l = (−1)l(B + I)Bl = 0 and

Bl
(
I − (−B)l

)
= (−1)l(−B)l

(
I − (−B)l

)
= (−1)l

(
(−B)l − (−B)2l

)
= 0

it then results Bk
k = I +B = A.

Note that Bk also writes as

l−1∑
i=0

( 1
k

i

)
Bi
(
I − (−B)l

)
=

l−1∑
i=0

( 1
k

i

)(
Bi − (−1)l−iBl

)
.

(We have Bl = (−1)iBl+i, so Bi(−B)l = (−1)lBl+i = (−1)l−iBl.) Also if

i ≥ l then Bi − (−1)l−iBl = 0, so we have Bk =
∑
i≥0

( 1
k
i

)(
Bi − (−1)l−iBl

)
.

Also, in both cases when µA = (X−1)l or X(X−1)l we have µA divides
X(X−1)n, so A(A−I)n = 0. It follows that we can use the formula above for

Bk with l = n: Bk =
n−1∑
i=0

( 1
k
i

)(
Bi − (−1)n−iBn

)
=
∑
i≥0

( 1
k
i

)(
Bi − (−1)n−iBn

)
,

which works in all cases.

399. Let n ≥ 3 and let P = anX
n+ · · ·+a0 ∈ R[X] with ai > 0 ∀i such that

all the roots of P ′ are real. If 0 ≤ a < b prove that∫ b
a

1
P ′(x)dx∫ b

a
1

P ′′(x)dx
≥ P ′(b)− P ′(a)

P (b)− P (a)
.

Proposed by Florin Stănescu, Şerban Cioculescu School, Găeşti, Dâm-

boviţa, Romania.

Solution by the author. Let x1, . . . , xn−1 be the roots of P ′. Since the
coefficients of P ′ are iai > 0 for 1 ≤ i ≤ n, we have xi < 0 ∀i. We have
for all positive x P ′′(x)/P ′(x) =

∑n−1
j=1 (x− x1)

−1, whence (P ′′(x)/P ′(x))′ =

−
∑n−1

j=1 (x−x1)−2 < 0. Hence the function ϕ : [0,∞) → (0,∞), ϕ(x) = P ′′(x)
P ′(x) ,

is strictly decreasing. Now P ′′ is strictly increasing and positive on [0,∞).
(It has positive coefficients.) Hence 1

P ′′ is positive and strictly decreasing on
[0,∞), same as ϕ. By Chebyshev inequality we have∫ b

a

1

P ′(x)
dx =

∫ b

a
ϕ(x) · 1

P ′′(x)
dx ≥ 1

b− a

∫ b

a
ϕ(x)dx

∫ b

a

1

P ′′(x)
dx. (1)
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On the other hand P ′ is positive and strictly increasing on [0,∞). Since
ϕ and P ′ have opposite monotony, by Chebyshev’s inequality we also have∫ b

a
P ′′(x)dx =

∫ b

a
ϕ(x)P ′(x)dx ≤ 1

b− a

∫ b

a
ϕ(x)dx

∫ b

a
P ′(x)dx. (2)

From (1) and (2) we conclude that∫ b
a

1
P ′(x)dx∫ b

a
1

P ′′(x)dx
≥ 1

b− a

∫ b

a
ϕ(x)dx ≥

∫ b
a P

′′(x)dx∫ b
a P

′(x)dx
=
P ′(b)− P ′(a)

P (b)− P (a)
.

Note that
∫ b
a ϕ(x)dx = logP ′(x)

∣∣b
a
= log

(
P ′(b)
P ′(a)

)
. �

Solution by V. Makanin, Sankt Petersburg, Russia. We need the fol-
lowing result.

Lemma. Let f and g be continuous real functions defined on an interval
I and assuming positive values. Suppose that fg and f/g are both increasing
on I. Then for all a < b from I it holds∫ b

a (f(x))
−1dx∫ b

a (g(x))
−1dx

≥
∫ b
a g(x)dx∫ b
a f(x)dx

.

Proof. Fix, for the moment, a ∈ I and define

H(x) =

∫ x

a
f(t)dt

∫ x

a

1

f(t)
dt−

∫ x

a
g(t)dt

∫ x

a

1

g(t)
dt

for all x ≥ a in I. Simple calculations yield

H ′(x) =

∫ x

a

(
f(x)

g(x)
− f(t)

g(t)

)
f(x)g(x)− f(t)g(t)

f(x)f(t)
dt,

and, by the monotonicity and sign hypotheses, one sees that H ′(x) ≥ 0 for
all x ≥ a in I. Thus H increases for x ≥ a and, since H(a) = 0, we get
H(x) ≥ 0 for all x ≥ a. But for x = b this is clearly equivalent to the desired
inequality (where the denominators are positive). �

Now, for the solution, observe that f = P ′ and g = P ′′ are increasing
and positive on I = [0,∞) (as polynomial functions with all coefficients
positive). On the other hand, P ′ has all zeros real, thus negative (otherwise
P ′ wouldn’t be positive for x ≥ 0, but this is the case due to its positive
coefficients), let them be −z1, . . . ,−zn−1, with positive zi. Then

f(x)

g(x)
=
P ′(x)

P ′′(x)
=

(
1

x+ z1
+ · · ·+ 1

x+ zn−1

)−1

is definite and obviously increasing on [0,∞). The lemma therefore applies
to P ′ and P ′′ in place of f and g leading to the desired inequality. �
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Note. Here is a detailed proof for the formula for H ′(x) from V.
Makanin’s solution. If F1(x) =

∫ x
0 f(t)dt and F2(x) =

∫ x
0

1
f(t)dt then F

′
1(x) =

f(x) and F ′
2(x) =

1
f(x) , so the derivative of F1(x)F2(x) =

∫ x
0

1
f(t)dt

∫ x
0

1
f(t)dt

is

f(x)F2(x) +
1

f(x)
F1(x) = f(x)

∫ x

0

1

f(t)
dt+

1

f(x)

∫ x

0
f(t)dt

=

∫ x

0

(
f(x)

f(t)
+
f(t)

f(x)

)
dx.

A similar formula gives the derivative of
∫ x
0

1
g(t)dt

∫ x
0

1
g(t)dt, so

H ′(x) =

∫ x

0

(
f(x)

f(t)
+
f(t)

f(x)
− g(x)

g(t)
− g(t)

g(x)

)
dx.

But one calculates

f(x)

f(t)
+
f(t)

f(x)
− g(x)

g(t)
− g(t)

g(x)
=

(f(x)g(t)− f(t)g(x))(f(x)g(x)− f(t)g(t)

f(x)f(t)g(x)g(t)

=

(
f(x)

g(x)
− f(t)

g(t)

)
f(x)g(x)− f(t)g(t)

f(x)f(t)
.

This gives the formula for H ′(x).

400. For nonnegative integer n put S(n) :=
n∑

k=0

(−2)k
(
n
k

)(
2n−k
n−k

)
. Prove that

4(n+ 1)S(n) + (n+ 2)S(n+ 2) = 0 and conclude that

Sn =

{
(−1)n/2

(
n

n/2

)
if n is even

0 if n is odd
.

Proposed by Mihai Prunescu, Simion Stoilow Institute of Mathema-

tics of the Romanian Academy, Bucharest, Romania.

Solution by C.N. Beli. For any α ∈ Z and any k ∈ N we have(
α

k

)
=
α(α− 1) · · · (α− k + 1)

k!
= (−1)k

(−α+ k − 1) · · · (−α+ 1)(−α)
k!

= (−1)k
(
−α+ k − 1

k

)
.

It follows that S(n) = (−1)n
n∑

k=0

2k
(
n
k

)(−n−1
n−k

)
= (−1)nan, where we have put

f := (1 + 2x)n(1 + x)−n−1 = a0 + a1x+ · · · .
Similarly, S(n + 2) = (−1)n+2bn+2 = (−1)nbn+2, where we have put

g := (1+ 2x)n+2(1+ x)−n−3 = b0 + b1x+ · · · . Hence the relation we want to
prove is equivalent to 4(n+ 1)an + (n+ 2)bn+2 = 0.
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By Liouville’s theorem an = 1
2πi

∫
γ

f(z)
zn+1dz, where γ is a circle of radius

< 1
2 with the center at 0. Similarly for bn+2. Hence,

4(n+ 1)an + (n+ 2)bn+2 =
1

2πi

∫
γ

(
4(n+ 1)

f(z)

zn+1
+ (n+ 2)

g(z)

zn+3

)
dz.

It is readily seen that 4(n+ 1) f(z)
zn+1 + (n+ 2) g(z)

zn+3 can be written as

4(n+ 1)(1 + 2z)nz−n−1(1 + z)−n−1+ (n+ 2)(1 + 2z)n+2z−n−3(1 + z)−n−3.

Let ϕ = z(1+z). We have ϕ′ = 1+2z, so that (ϕ′)2 = 1+4ϕ. Therefore,

4(n+ 1)
f(z)

zn+1
+ (n+ 2)

g(z)

zn+3
= 4(n+ 1)(ϕ′)nϕ−n−1 + (n+ 2)(ϕ′)n+2ϕ−n−3

= 4(n+ 1)(ϕ′)nϕ−n−1 + (n+ 2)(ϕ′)n(1 + 4ϕ)ϕ−n−3

= (ϕ′)n((n+ 2)ϕ−n−3 + 4(n+ 2)ϕ−n−2 + 4(n+ 1)ϕ−n−1).

Let h = (1 + 2z)n+1z−n−2(1 + z)−n−2(−1− 2z − 2z2). From

h = (ϕ′)n+1ϕ−n−2(−2ϕ− 1) = (ϕ′)n+1(−ϕ−n−2 − 2ϕ−n−1)

we get

h′ = (n+ 1)ϕ′′(ϕ′)n
(
−ϕ−n−2 − 2ϕ−n−1

)
+ (ϕ′)n+1ϕ′

(
(n+ 2)ϕ−n−3 + 2(n+ 1)ϕ−n−2

)
= 2(n+ 1)(ϕ′)n(−ϕ−n−2 − 2ϕ−n−1)

+ (ϕ′)n(1 + 4ϕ)((n+ 2)ϕ−n−3 + 2(n+ 1)ϕ−n−2)

= (ϕ′)n((n+ 2)ϕ−n−3 + 4(n+ 2)ϕ−n−2 + 4(n+ 1)ϕ−n−1)

= 4(n+ 1)
f(z)

zn+1
+ (n+ 2)

g(z)

zn+3
.

It thus follows that 4(n+ 1)an + (n+ 2)bn+2 =
1

2πi

∫
γ h

′(z)dz = 0. �

401. Prove the following identities:

(i)
∑
p≥0

p

(
2a

a− p

)(
2b

b− p

)
=

ab

2(a+ b)

(
2a

a

)(
2b

b

)
,

(ii)
∑
p≥0

(2p+ 1)

(
2a+ 1

a− p

)(
2b+ 1

b− p

)
=

(2a+ 1)(2b+ 1)

a+ b+ 1

(
2a

a

)(
2b

b

)
,

with the convention that
(
m
n

)
= 0 if n < 0 or n > m.

Proposed by Ionel Popescu, Simion Stoilow Institute of Mathema-

tics of the Romanian Academy, Bucharest, Romania.

Solution by the author. Note that the general term in the first sum
vanishes for p outside the interval [1,min{a, b}] and in the second sum it
vanishes for p outside [0,min{a, b}]
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These identities can be checked with the help of the zb package written
for Mathematica. For details on this method we refer the reader to [1]. For
completeness we give here a more traditional proof.

The first identity is trivial when a = 0 or b = 0, so we may assume that
a, b ≥ 1. In this case it is equivalent to h(a, b) :=

∑
p≥0

f(a, b, p) = 1, where

f(a, b, p) =
2p(a+ b)

(
2a
a−p

)(
2b
b−p

)
ab
(
2a
a

)(
2b
b

) .

The idea of the zb method in our case is to write f(a + 1, b, p) − f(a, b, p)
in the form g(a, b, p + 1) − g(a, b, p) for some g satisfying g(a, b, p) = 0 for
p = 0 and for p ≫ 0. Then by summing over p going from 0 to ∞ one gets
h(a, b)− h(a+ 1, b) = 0, so h(a, b) is independent of a. Then our statement
follows from the obvious relation h(1, b) = 1. (In the sum giving h(1, b) the
only nonzero term is f(1, b, 1), which calculates easily, f(1, b, 1) = 1.)

So the whole point is to determine the function g(a, b, p) satisfying the
conditions above. We refer to [1] for details. Here we just give the results
obtained with Mathematica:

g(a, b, p) = −
2p(p− 1)

(
2a+1
a+p

)(
2b−1
b−p

)
a(2a+ 1)

(
2a
a

)(
2b
b

) .

We have g(a, b, p) = 0 for p = 0 and for p ≥ min{a + 2, b + 1} and, after
dividing by f(a, b, p), the relation f(a+ 1, b, p)− f(a, b, p) = g(a, b, p+ 1)−
g(a, b, p) is equivalent to f(a+1,b,p)

f(a,b,p) − 1 = g(a,b,p+1)
f(a,b,p) − g(a,b,p)

f(a,b,p) , i.e., to

a(a+ 1)(a+ b+ 1)

(a+ 1− p)(a+ 1− p)(a+ b)
− 1 =

= − (p+ 1)(b+ p)

2(a+ 1 + p)(a+ b)
+

(p− 1)(b+ p)

2(a+ 1− p)(a+ b)
,

which can be easily checked.
The proof of the second statement is done along the same lines. This

time one has

f(a, b, p) =
(2p+ 1)(a+ b+ 1)

(
2a+1
a−p

)(
2b+1
b−p

)
(2a+ 1)(2b+ 1)

(
2a
a

)(
2b
b

)
and the function g(a, b, p) satisfying g(a, b, p) = 0 for p = 0 and for p ≫ 0,
and f(a+ 1, b, p)− f(a, b, p) = g(a, b, p+ 1)− g(a, b, p) is

g(a, b, p) = −
p2(b+ 1)2

(
2a+2
a+1−p

)(
2b+1
b−p

)(
2a+2
a+1

)(
2b
b

) .

We leave the calculations to the reader. �
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402. Let a, b, λ ∈ R and u : [a, b] → R be a twice differentiable function
with u′(a) = u′(b) = 0.

(1) Prove that u′′(c) = λu(c)u′(c) for some c ∈ (a, b).
(2) If moreover u′′(a) = 0 prove that there exists d ∈ (a, b) such that

(d− a)u′′(d) = u′(d)
(
1 + λ(d− a)u(d)

)
.

Proposed by Cezar Lupu, University of Pittsburgh, USA.

Solution by the author. Let us consider the function ϕ : [a, b] → R
defined by

ϕ(t) = u′(t) · e−λ
∫ t
a u(x)dx, t ∈ [a, b].

A simple calculation of the derivative shows that

ϕ′(t) = e−λ
∫ t
a u(x)dx(u′′(t)− λu(t)u′(t)).

The condition u′(a) = u′(b) = 0 implies that ϕ(a) = ϕ(b) = 0, so, by
Rolle’s theorem, there exists c ∈ (a, b) such that ϕ′(c) = 0, which is equivalent
to u′′(c) = λu(c)u′(c).

For the second part of the problem, let us notice that ϕ′(a) = ϕ′(c) = 0
and by applying Flett’s mean value theorem (see Math. Gazette 42 (1958),

38–39), there exists d ∈ (a, b) such that ϕ′(d) = ϕ(d)−ϕ(a)
d−a , which is equivalent

to

(d− a)e−λ
∫ d
a u(x)dx(u′′(d)− λu(d)u′(d)) = u′(d)e−λ

∫ d
a u(x)dx,

and thus problem (2) is solved. �

403. A parabola P has the focus F at distance d from the directrix ∆. Find
the maximum length of an arc of P corresponding to a chord of length L.

Proposed by Gabriel Mincu, University of Bucharest, Romania.

Solution by the author. Let FE ⊥ ∆, E ∈ ∆, and let O be the midpoint
of EF . We consider a cartesian coordinate system with origin O, the x-axis
parallel to ∆, and such that yF = d

2 . Then ∆ = {(x,−d
2) | x ∈ R}.

The distance from a point of coordinates (x, y) and F is
√
x2 + (y − d

2)
2

and the distance to ∆ is |y+ d
2 |. Hence the parabola is given by the equation√

x2 + (y − d
2)

2 = |y + d
2 |, i.e., by y = ax2, with a = 1

2d .

For x, y ∈ R, x < y, we will denote by λ(x, y) the length of the arc cut
on P by the points of abscissae x and y. The required maximum will then be
the maximum of λ(x, y) with the constraint (y−x)2+(ay2−ax2)2 = L2. We

will prove that this maximum is reached for (x, y) =

(
−L
2
,
L

2

)
. To see this,
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let x, y ∈ R, x < y, and let M(x, ax2) and N(y, ay2) be the corresponding
points of P. We also denote by P and Q the points of P which have abscissae
−L

2 and L
2 , respectively. We have to analyse several cases:

Case I. If x ≤ −L
2 and y > L

2 (or x < −L
2 and y ≥ L

2 ), the length of the
chord MN exceeds L, so the pairs (x, y) of this type have no contribution to
the required maximum.

Case II. If −L
2 ≤ x < y ≤ L

2 , then λ(x, y) =
∫ y
x

√
1 + 4a2t2dt ≤∫ L/2

−L/2

√
1 + 4a2t2dt = λ

(
−L

2 ,
L
2

)
.

Case III. If x > −L
2 and y > L

2 , let us notice (bearing in mind that
x < y) that y is uniquely determined by x (since, if N1 and N2 were points

of P with abscissae
L

2
< y1 < y2 and such that MN1 = MN2, then the

isosceles triangle MN1N2 would have the obtuse angle M̂N1N2, which is
contradictory).

Let us notice that in this case some x’s may not have a corresponding
y, so that the chord MN has length L. Therefore, we must discuss two
subcases:

Subcase III.1. If the circle with centre Q and radius L intersects

P only in P and in a point R of abscissa r >
L

2
, then the distance from

any point M(x, ax2) of P with −L
2
< x <

L

2
to Q is less than L, so there

exists y > max

{
L

2
, x

}
such that MN = L. Since the uniqueness of y

in the conditions of Case III has been established, we obtain a functional

dependence y = φ(x), x ∈
(
−L
2
,∞
)
.

Let S = {(z, w) ∈ R : z > −L
2
, w >

L

2
, z < w} and g : S → R,

g(z, w) = (w − z)2 + (aw2 − az2)2 − L2. We notice that g is continuously

differentiable on S and
∂g

∂w
(z, w) = 2(w − z)[1 + 2a2w(z + w)] > 0. This

partial derivative is nowhere zero on S, so, according to the implicit function
theorem, in the vicinity of each point (z0, w0) such that g(z0, w0) = 0 we
may find continuously derivable functions ψ such that (z, ψ(z)) ∈ S and
g(z, ψ(z)) = 0 for all z in the domain of ψ. The last two conditions imply,
given the uniqueness discussed above, that for every such ψ and every x in
its domain we have ψ(x) = φ(x). The consequence of these considerations is

that φ is a continuously differentiable function on

(
−L
2
,∞
)
.

According to the definition of φ, (φ(x) − x)2 + a2(φ2(x) − x2)2 = L2,
whose derivative is 2(φ(x)−x)[φ′(x)−1+2a2(φ(x)+x)(φ(x)φ′(x)−x)] = 0.
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Since φ(x) > x and 1 + 2a2φ(x)(φ(x) + x) > 0, we obtain

φ′(x) =
1 + 2a2x(φ(x) + x)

1 + 2a2φ(x)(φ(x) + x)
.

Now, λ(x, y) = λ(x, φ(x)) =

∫ φ(x)

x

√
1 + 4a2t2dt, so we consider the function

F :

(
−L
2
,∞
)

→ R given by formula F (x) =

∫ φ(x)

x

√
1 + 4a2t2dt. We notice

that F is differentiable, with F ′(x) =
√
1 + 4a2φ2(x)φ′(x) −

√
1 + 4a2x2,

and F can be extended continuously to

[
−L
2
,∞
)

by putting F

(
−L
2

)
=∫ L/2

−L/2

√
1 + 4a2t2dt.

From the above we see that F ′(x) < 0 if and only if φ′(x) <
√

1+4a2x2

1+4a2φ2(x)
.

If φ′(x) < 0, this relation is obviously verified. If φ′(x) ≥ 0, the inequa-

lity is equivalent to

(
1 + 2a2x(φ(x) + x)

1 + 2a2φ(x)(φ(x) + x)

)2

<
1 + 4a2x2

1 + 4a2φ2(x)
. After cal-

culations, we see that this relation is equivalent to the obvious inequality
(φ(x) + x)(φ(x)− x)3 > 0.

Consequently, F is a strictly decreasing function on

[
−L
2
,∞
)
, so that

λ(x, y) = F (x) < F
(
−L

2

)
= λ

(
−L

2 ,
L
2

)
for all (x, y) in the condition of

Subcase III.1.
Subcase III.2. If the circle with centre Q and radius L intersects P

in four points: P , R of Subcase III.1 and two other points U , V of abscissae

u and v, respectively, and such that −L
2
< u ≤ v <

L

2
, the reasoning of

Subcase III.1 may still be applied to reach the conclusion that the function

given by x 7→
∫ φ(x)
x

√
1 + 4a2t2dt is strictly decreasing on

[
−L
2
, u

)
and on

[v,∞). Since, according to Case II, the value of this function at v does not

exceed λ

(
−L
2
,
L

2

)
, we draw in this case also the conclusion that one has

λ(x, y) ≤ λ

(
−L
2
,
L

2

)
. For a point with the abscissa x ∈ [u, v] the distance

to Q is ≥ L, so the distance to a point with abscissa y > L
2 is > L. Hence

these poins don’t count here.

Case IV. x < −L
2
, y <

L

2
reduces to Case III in view of the symmetry

of P with respect to the y-axis.

The required maximum is therefore λ
(
−L

2 ,
L
2

)
=
∫ L/2
−L/2

√
1 + 4a2t2dt =

2
∫ L/2
0

√
1 + 4a2t2dt.
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The last integral can be computed with the change of variables τ = 2at:

λ

(
−L
2
,
L

2

)
=

1

a

∫ aL

0

√
1 + τ2dτ =

L

2

√
1 + a2L2 +

1

2a
ln(aL+

√
1 + a2L2)

=
L
√
L2 + 4d2

4d
+ d ln

L+
√
L2 + 4d2

2d
.

404. Let F : Z× Z → Z be a function satisfying the following conditions:
1) | F (x, y) | ≥ | x | + | y | ∀x, y ∈ Z.
2) There are m,n ≥ 1 and the matrices A = (aij), B = (bij) ∈Mm,n(Z)

such that
F (x, y) = max

1≤i≤m
min

1≤j≤n
(aijx+ bijy) ∀x, y ∈ Z.

Prove that either F (x, y) ≥ 0 for all x, y ∈ Z or F (x, y) ≤ 0 for all x,
y ∈ Z. Give an example of a function F for each of these two cases.

Proposed by Şerban Basarab, Simion Stoilow Institute of Mathema-

tics of the Romanian Academy, Bucharest, Romania.

Solution by the author. We may extend the function F to the whole
R×R (with values in R) by the formula F (x, y) = max1≤i≤mmin1≤j≤n(aijx+
bijy) ∀x, y ∈ R. This function is obviously continuous. We also have
F (xz, yz) = zF (x, y) for any x, y, z ∈ R, z > 0, and F (0, 0) = 0.

Now for any a, b, c ∈ Z, c > 0, we have |a| + |b| ≤ F (a, b) = c|F (ac ,
b
c)|,

so |ac |+ | bc | ≤ |F (ac ,
b
c)|. Thus the inequality |F (x, y)| ≥ |x|+ |y| holds for any

x, y ∈ Q. By continuity it holds for any x, y ∈ R. In particular, F (x, y) ̸= 0
when (x, y) ̸= (0, 0). Hence 0 /∈ F (R2 \ {(0, 0)}). Now F is continuous and
R2 \ {(0, 0)} is connected. It follows that F (R2 \ {(0, 0)}) ⊆ R is a connected
set, thus an interval. As 0 /∈ F (R2 \ {(0, 0)}), F (R2 \ {(0, 0)}) is contained
in either (−∞, 0) or (0,∞), i.e., F (x, y) < 0 when (x, y) ̸= 0 or F (x, y) > 0
when (x, y) ̸= 0. Since also F (0, 0) = 0, we get the conclusion.

Examples of F with F (x, y) ≥ 0 ∀x, y ∈ Z or F (x, y) ≤ 0 ∀x, y ∈ Z
are F (x, y) = |x| + |y| and F (x, y) = −|x| − |y|, respectively. They clearly
satisfy condition 1). For condition 2) if we take m = 4, n = 1 and A =
(1, 1,−1,−1)T , B = (1,−1, 1,−1)T we get F (x, y) = max{x+ y, x− y,−x+
y,−x − y} = |x| + |y|; if we take m = 1, n = 4 and A = (1, 1,−1,−1),
B = (1,−1, 1,−1) we get F (x, y) = min{x + y, x − y,−x + y,−x − y} =
−|x| − |y|. �

Erratum.

Due to file mishandling, the print version of GMA 32(111) (2014), no. 1–2,
contains two articles with the same title Again on passing to the limit under
integral sign. The article authored by Mircea Merca is actually titled An
infinite family of inequalities involving cosecant sums. The Editors apologize
to both authors and readers for any inconvenience.


