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Functions for which mixed partial derivatives are distinct
DUMITRU PopaY)

Abstract. Let h: R®* — R be a function of class C* and let f : R* — R,

2 2
L1 5 )
h| 7= 5= n17 if (z1,2 0,0),
f<ww2>={ (x%mg P ) (21,22) # (0,0)
0 if (x1,22)=1(0,0).
We find necessary and sufficient conditions for f to be continuous at (0, 0),

there exist E?—Jl (0,0), be Fréchet differentiable at (0,0) and having partial
derivatives ~22f (0,0) L (0,0). We also show that this result can

Oxq10xo ’ Qzodzy
be extended to a real linear space endowed with a scalar product.

Keywords: Fréchet differentiable, mixed partial derivative, Schwartz and
Young theorem, Hilbert spaces, real-valued functions
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INTRODUCTION

The Schwarz theorem asserts that if f : R — R is twice Fréchet dif-
ferentiable at a point a € R?, then f”(a) is symmetric, i.e., f’ (a) (z,y) =

f"(a) (y,x) for all z,y € R2. In particular, there exist &ff (a) 01 (a)

2 ; 0xo ' Oxo0x1
and 88 S (a) = agafxl (a), see [2, Propozitia 11, p. 100]. Also the Young

2102

theorem asserts that if f : R? — R is such that there exist 6‘%, (%f;, and there

: : : Ff . 2 : Ff .2
exists aznd is cont;nuous ooz R* — R, then there exists Fugdar - R* — R
*f _ _9f

and oA = 5,9, See [2, Propozitia 10, p. 99]. As it is well known, the
Young theorem and Fubini’s theorem are equivalent and true; for more de-
tails see [1] and the references therein. The standard example of a function

f : R? — R for which there exist 8:;:812ng (0,0), 89?226];1 (0,0) and are different
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r1xo(25—2
is f (z1,29) = { g+1x 2)1f(m1,x2) # (0’0); see [2, p. 113, exercise 1], [5,
0 if(z1,22) = (0,0)

p. 186, exercise 6], [6, Example 2.7.1, p. 61]. In this paper we extend the
above example, and further we show that this can be also extended to the
context of real Hilbert spaces.

The notation and definitions used in this paper are standard; see [2, 3,
4,5, 7.

Throughout this paper we denote by e; = (1,0,0), e2 = (0,1,0) and
e3 = (0,0, 1) the standard unit vectors in R3.

1. THE REAL CASE

Proposition 1. Let h: R? — R be a function of class C' and let f : R? — R
defined by

Z‘2 $2 .
Flanay =4t (7 g ) i (21.22) # (0,0),
’ 0 if  (w122) = (0,0).
Then:
(1) fis contmuous at (0,0) if and only if h (y1,1 — y1,0) = 0 for all y1 € [0,1].
(1) there exists ax (0,0) if and only if h (e1) = 0. In this case a L (0,0)=0.
(1) there exists ax (0,0) if and only if h (e2) = 0. In this case a L (0,0)=0.
(iv) f is Fréchet differentiable at (0,0) if and only if h (y1,1 —y1,0) =0 for
all y1 € [0,1].
(v) there eists 5 é{; (0,0) if and only if h (e2) = 0. In this case
1
0

0 Oh
81'181;2 (07 0) = 8y3 (e )
(vi) there exists 836 8x (0,0) if and only if h (e1) = 0. In this case

8$28$1 (0 0) Byg (62)

Proof. First we recall a well known result h is of class C'! if and only if there

: : Oh  Oh 3
exist and are continuous Dyr 6y2, Byg :R° — R.

(i) Let us suppose that f is continuous at (0,0). Then
lim  f(z1,22) = f(0,0) =0.

(z1,22)—(0,0)
In particular, limof (0,z9) = 0. Since for all xy # 0, f(0,22) = h(0,1,0),
Tro—r
it follows that h(0,1,0) = 0. Let 0 < y; < 1. Then, as it is well known,

lim f (xl,xl 1;191) =0, ie., lim h (yl, yl,xm/l y1> = 0. Since h is
11%0 x1~>

continuous,
1—wy
lim h<y1, ylﬂ%\/ > =h(y1,1—y1,0),
210 U1
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thus h (y1,1 —y1,0) = 0.
Conversely, suppose that h (y1,1 —y1,0) = 0 for all y; € [0, 1].

Let ¢ : [0,1] x R — R be the function
h(yul—y1y3) —h(y1-91,0)

¥ (y1,y3) = on B :
— 1—1,0 if =0
ay (yh Y1, )7 1 Y3

ys # 0

Let us note that since h and - are continuous it follows that v is continuous.

Also h (y1,1 —y1,y3)— h(ybl Y1,0) = y3¢ (y1,y3) for all (y1,y3) € [0,1]xR
and by hypothesis

h(y1,1—y1,y3) = y3¢ (y1,y3) for all (y1,y3) € [0,1] x R.

Let (1, 22) € [—1,1]% with (z1,22) # (0,0). Then
2 2

2
x] x5 x]
T1,%x9) = h T1To | = X129 ——, T1X9
f( ’ ) ( 2 29 ) 1/} <x% 1_27 )

a;1+x2 r1 + x5 5

g
5 5, L172
ﬂ:% —|—x%

< Jzimg| sup 1V (y1,y3)| = M |z120]
(ylyy3)€[071]><[_1’1]

and

|f(931,902)|

| 7122

(since 1 is continuous and [0,1] x [—1,1] is a compact set, by the Weier-
strass theorem the supremum is finite and attained). From here we get that

lim  f(z1,22) =0= f(0,0), i.e., f is continuous at (0,0).
(1’1,1’2)*}(0,0)

(74) By definition there exists aanl (0,0) if and only if the real function

h (61) if I 7& 0
0 if Ir1 = 0

Thus, as it is easy to prove, there exists (‘%‘fl (0,0) if and only if h(e1) =0

x1 — f(x1,0) is derivable at 0. Now, f(z1,0) = {

and moreover, ax (0,0) = 0.

(797) By definition there exists (‘%J; (0,0) if and only if the real function
h(e2) if 2 #0
0 if z9=0"
exists a L (0,0) if and only if h (e3) = 0 and moreover, &E (0,0) = 0.
(w) Suppose that f is Fréchet differentiable at (0,0). Then, as it is well
known, f is continuous at (0, 0) and from (i) we deduce that h (y1,1 — y1,0) =
0 for all y; € [0,1].
Conversely, assume that h (y1,1 — y1,0) = 0 for all y; € [0,1]. Then, in
particular, h(e;) = h (1,0, 0) = 0 h(e2) = h(0,1,0) = 0, and from (73) and
(731) we have % (0,0) =0, 52-(0,0) = 0. As it is well known f is Fréchet

’ 3:82

x9 — f(0,x2) is derivable at 0. Since f (0, z2) = { there
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differentiable at (0,0) if and only if

0 0
) = £ 0,0) = 22 00001 = 2L 0.0)22
lim =0,
(z1,22)—+(0,0) \/ .Tl + IIZ'Q

i J(z1,m2) . ] .
L€ " (@, $121_>(0 0 Vaital = 0. To prove this, we recall that in (i) we have

shown that

|f (1, 29)| < M |z129| for all (z1,25) € [—1,1] with (x1,22) # (0,0)

and, since il < 1, we deduce

a:%—&-x%
P @u2)l il for all (21, 29) € [=1,1)% with (21, 22) £ (0,0).
NE R
From h t that i flares)
rom here we ge a (96173221)11_1)(070) T%ﬂ"%

(v ) Let us suppose that there exists 8;:()128];2 (0,0). In particular, there
exists 2L (0,0) and by (iii), h (ez) = 0 and 2L (0,0) = 0.
Conversely, let us suppose that h (e2) = 0. Let (x1,22) # (0,0). By the
chain rule we have
of _ oh 8y1 oh ayg oh 8y3
81’2 8y1 8332 8y2 8952 6y3 81‘2

ie.,
of 22319 Oh 223wy oh e Oh
o e g
Oxo (:c% + x%)g oy (:p% + x%)2 0yo 0ys3
Above we used the usual convention that we wrote 3 f instead of (ml, x2)
1,2 2
and 2 I h instead of 88;1 ( Qim%, x2+m2,x1x2>, etc. Then
T (1,0) = dyz = :ml-a—(el) for z; € R.
L2 0 for 21 =0 Y3
By definition, we have
of of
o moy-mﬂ&@@“m_&mmﬁ) L fea).
0x10x9 T 2150 T 0ys3

(v ) Let us suppose that ax ax (0,0) exists. Then, in particular, there
exists 8 L (0,0), which by (ii) gives us h(e;) = 0 and 8f -(0,0) =0.
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Conversely, let us suppose that h(e;) = 0. Let (z1,22) # (0,0). By the
chain rule we have
of Oh Oy, Oh Oy = Oh Oy
dor Oy 0w Oy Ow | Dys Owy’
ie.,
of 2x1x§ oh 21‘1.’15'% oh b oh
Or1 (2 +42)° O (a2 +a2)? Oy Oy
with the same convention as above. Then

of x99 (0,1,0) for a2 #0 oh
__J — Y3 r = . — f R
0x1 (0,22) { 0 for z9=0 2 Oys3 (e2) for x5 €
Thus, by definition we have
2 AL (0, 29) — 2L (0,0
8 f (0’ 0) — hm axl ( ’ 2) 85!31 ( Y ) — % (62) ]
0x9011 z2—0 T2 0ys3

a

Taking h : R® — R, h (y1,%2,%3) = (y1 — y2) y3 in Proposition 1, we get
the Dieudonné’s example.

2. REAL HILBERT SPACES

One of the main features of the example given in Proposition 1 is that
it can be extended to the context of real Hilbert spaces, more precisely to
real linear spaces endowed with a scalar product. Even, maybe, for some
readers this extension is almost obvious, we give the full details. We recall
some definitions and results. Throughout the rest of the paper we denote
by H a real linear space endowed with a scalar product (,), ||z| = /{(x,x)
for all x € H and By = {z € H | ||z|| < 1} is the closed unit ball of H. By
Iy : H — H we denote the identity operator, i.e., Iy (x) = x for z € H
and L(H) = {A: H — H | Ais linear and continuous} endowed with the
operator norm.

Let f: H — R and a € H. By definition, the function f is Fréchet
differentiable at a if and only if there exists f’ (a) € H such that

o @) = F@) = (' (@), 7~ a)

=0.
va lz = all

We need the following results:

R1) Let o : H = R, ¢ (x) = ||z||*. Then ¢’ (a) = 2a for all a € H. This
follows simply by definition.

R2) If we have the maps H I, R % R such that f is Fréchet differen-
tiable at @ € H, and ¢ derivable at f (a), then o f is Fréchet differentiable
at a and (o f) (a) = ¢ (f (a)) f (a). This is the well known theorem of
differentiability of the composition of functions, see [2, 3, 4, 5, 7].
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R3) If A > 0, then P : H — R defined by P (z) = Hznéﬂ is Fréchet
differentiable at © € H and P’ (z) = _(IIHQQ#)Z' This follows from R1) and

R2).
Let f: H — H and a € H. By definition, the function f is Fréchet
differentiable at a if and only if there exists f’ (a) € L (H) such that

o L@ = f @)~ 1 (@ (@~ a)

a—a l = all

see [2, 3, 4, 5, 7].

R4) Let Ae L(H) and f: H— H, f(z) = A(x). Then f is Fréchet
differentiable at every a € H and f’(a) = A for all « € H. In particular,
if ce Rand f: H— H is defined by f (z) = cx, then f'(a) = eIy for all
a € H. This follows by definition; see [2, 3, 4, 5, 7.

On the cartesian product H x H we consider the natural scalar product

((w1,22), (y1,92)) = (21, 91) + (22, Y2) -

Let f: Hx H — R and (a1,a2) € H x H. We say that f is Fréchet
differentiable at (a1, a2) with respect to the first variable if and only if the
function v, : H — R, vi (1) = f(x1,a2), is Fréchet differentiable at a;.
Similarly, f is Fréchet differentiable at (a1,a2) with respect to the second
variable if and only if the function ve : H — R, v (z2) = f (a1, x2), is Fréchet
differentiable at as.

Let f: Hx H — R and (a1,a2) € H x H. We say that f is twice
Fréchet differentiable at (a1, az2) with respect to the variables x1 and x5 if and

only if there exists (rj% : Hx H — H and the function g; = a‘% :HxH — H
991

is Fréchet differentiable with respect to 1 at (aj, az). In this case, For (a) def
62

78:}018];2 (al,az) cL (H)

Indeed, let us note that f : H x H — H is twice Fréchet differentiable
with respect to x1 at (a1, a2) if and only if the function v; : H — H defined

2

by vy (1) = ngQ (1, a2) is Fréchet differentiable at a, so % (a1,a2) =
vi (a1) € L (H).

Similarly, the function f : H x H — R is twice Fréchet differentiable
at (a1,a2) € H x H with respect to the variables xo and x; if and only if

there exists aan : H x H — H and the function gy = aa—f :HxH — H is
1 X1
Jg2

Fréchet differentiable with respect to z2 at (a1,az). In this case, 52 (a) def
82
Wéfxl (al, a2) €L (H)

R5) The chain rule. Let us consider the maps H x H LAY R, HxH L1 R,
HxHBR R XS Randlet f: Hx H — R be defined by

[ (x1,22) = h (y1 (v1,22) , y2 (71, 22) , Y3 (21, 72))
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and (aj,a2) € H x H. If y1, y9, y3 are Fréchet differentiable at (a1, as2)
and h is Fréchet differentiable at (y; (a1, a2),y2 (a1,a2),ys (a1,a2)), then f
is Fréchet differentiable at (a1, a2) and the chain rule holds:

of _ Oh Oy Oh %_{_(% Oys

dr1  Oy1 Ox1  Oyo Ox1  Oys Oz’
Of _Oh oy Oh oy Oh oy

dry Oy dxa ' Jya Oxg  Jyz Ox’
with the usual convention that by 8‘% (respectively g—;) we understand
5L (a1, as) (respectively S (1, (a17a2) Y2 (a1, a2) ,y3 (a1, a2))); see [2, 3, 4,
5, 7]. Let us note that gﬁ = 8y1 h(y1 (a1, a2) ,y2 (a1,a2) , y3 (a1, a2)) € R,
W = 9N (ay,a3) € H.
We also need the following well known result.

R6) If f : H x H — R is such that there exists lim f(x,y) € R,
(z,)—(0,0)
then li , =lim f (ny,y) = lim x,y) for all m,n € R.
en lim f (2, mz) = lim, f (ny, y) (w,y)ﬁ(o’o)f( y)
With this preparation we are ready to prove the extension of Proposition
1 to Hilbert spaces.

Proposition 2. Let (H,(,)) be a real linear space endowed with a scalar
product, h : R3 — R a function of class C' and let f: H x H — R,

[ENE [EXNE .
f(xl,m):{ h(llx1\\2+||xzu2’||x1||2+nx2n2’<x1’x2>> if (21,22) #(0,0)
0 if (z1,72) = (0,0)

Then:

(1) f is contz’nuous at (0,0) if and only if h (y1,1 — y1,0) = 0 for all y1 € [0,1].
(17) there exists 6z (0,0) if and only if h (e1) = 0. In this case 8 L (0,0) = 0.
(1) there exists 895 (0,0) if and only if h (e2) = 0. In this case 8 L (0,0) = 0.

(tv) f is Fréchet differentiable at (0,0) if and only if h (y1,1 —y1,0) =0 for
all y1 € [0, 1].

(v ) there exists

ax ax (0,0) if and only if h (e2) = 0. In this case

8x18x2 (0 0) (61) IH

vl there exzsts B 0,0) if and only if h(e1) = 0. In this case
éhc oz

83028901 (0,0) = (62)IH

Proof. Agaln h is of class C! if and only if there exist and are continuous

Oh  Oh 3
8y1’8y2’8y3 R7 =R

(7) Let us suppose that f is continuous at (0,0). Then
lim o)f (x1,22) = f(0,0) = 0.

(a:l ,:l?z)—>(0,
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In particular, limof (0,22) = 0. Since for all 9 # 0, f(0,22) = h(0,1,0),
Tro—
it follows that h(0,1,0) = 0. Let 0 < y; < 1. Then, from R6 we have
lim f (ml, 1—%1) =0, ie, lim h (y1,1 — 1, |z ﬂ) — 0. Since
xr1—r

x1—0 Y1 Y1
h is continuous,

. 1-—
lim <y1,1 - ,/yl> — Ry 1 -1, 0),
x1—0 yl

thus A (y1,1 —y1,0) = 0.
Conversely, suppose that h (y1,1 —y1,0) = 0 for all y; € [0, 1].
Let ¢ : [0,1] x R — R be defined by

h(y1,1—y1,y3)—h(y1,1—y1,0) i y37é0
>

w(y17y3): Ys .
%(9171—111,0) it y3=0.

Let us note that since h and % are continuous, v is continuous. Also

h(y1,1—=y1,93) — h(y1,1 —y1,0) = y3¢ (y1,y3) for all (y1,y3) € [0,1] xR
and by hypothesis

h(yi,1—y1,y3) = y3¥ (y1,y3) for all (yi,y3) €[0,1] x R.
Let (xl,xg) € By x By with (.%'1,.7}2) 7& (0,0). Then

2 2
flonay) = h( [EA 2| <W2>)

1 |® + 2l 21 ))® + |lz2))*

EAlE
= (1, 2) Y | —5——, (z1,22) | .
21 ||* + |||

From Cauchy-Bunyakovsky-Schwarz inequality we have |(x1, zo)| < ||z1|| ||22]]
and since (x1,z2) € By X By we deduce |(z1,x2)| < 1, i.e., (z1,22) € [-1,1].
We have

2
)] = ar,z)] |w (”‘“’ <x1,xz>>‘

2 27
[+ [lz]]
< Ky, 22)| sup ¥ (y1,y3)| = M ||z} 2] -
(yl,yg)E[D,l]X[—l,l]

Now we get that lim  f(z1,22) =0= f(0,0), i.e., f is continuous at
(1’1,1’2)—)(0,0)
(0,0).

(i7) By definition there exists 2L (0,0) if and only if the function

Z1

H > 21— f(x1,0) € R is Fréchet differentiable at 0.

[ h(er) if x1#0
Now, f(1,0) = { 0 if ;=0
rentiable at 0, then it is continuous at 0 and thus h (e;) = 0. Conversely, if

h(e1) = 0 then f (z1,0) =0 for all 21 € H and thus 2L (0,0) = 0.

. If this function is Fréchet diffe-
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(7i1) By definition there exists (%2 (0,0) if and only if the function

H > x5+ f(0,z2) € R is Fréchet differentiable at 0.

From f(0,z2) = { h (062) g iz f 8 , as in (i7) we deduce that there
exists a L (0,0) if and only if A (e2) = 0 and moreover a— (0,0) = 0.

(w) Let us suppose that f is Fréchet differentiable at (0,0). Then f
is continuous at (0,0) and from (i) we deduce h(y1,1 —y1,0) = 0 for all
Y1 € [0, 1].

Conversely, let us suppose that h(y;,1 —y1,0) = 0 for all y; € [0, 1].
Then, in particular, h(el) =h(1,0,0) =0, h(e2) = h(0,1,0) = 0 and from
(13) and (i77) we get (0 0) =0, (%J; (0,0) = 0. As it is well known, f is
Fréchet differentiable at (0,0) if and only if

fare) = £(0,0) = (55 10,0),21) = ($£(0,0) .2

lim =0
(21,22)—(0,0) 1| + [|za]>
(see [2, 3, 4, 5, 7]), which is equivalent to _ flaws) . To

(xl,x2 (0,0) Vll1]*+|z2|*
prove this, recall that since h (y1,1 —y1,0) = 0 for all y; € [0,1], in () we
have shown that

‘f (131,1‘2)| S M ||{L‘1” ||£L'2H fOI“ all (1'1,1'2) S BHXBH With (1’1,1’2) 75 (0,0) .

Since ——ZUL <1 we deduce
Va2 +lzel?
F @02 vl for all (21,2) € Byx By with (z1,22) £ (0,0)
2 2
[z [l” 4 [|z2]l
From here we get lim L)

(21,22)—(0,0) V/llw1]*+]|z2|®
2
( ) Let us suppose that there exists 83?17822 (0,0). In particular, there
exist 8 L (0,0) and, by (iii), h (e2) = 0 and 3‘% (0,0) =0.
Conversely, let us suppose that h(ez) = 0. Let (x1,22) € H x H,
(x1,22) # (0,0). By the chain rule R5, we have
of _ Oh Oy  Oh Oyp Oh Oys
83?2 8y1 8%2 8y2 8x2 ay3 83?2

i.e., by R3

2 ||z ||? 2 || ||?
of __0Oh [21]]” @2 o oh [[21]]” @2 +@ 2.

dry 0 d 0
2O (g o)’ P2 ()’ O
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Above we used the usual convention that we wrote aa zf instead of (ml, T3)
oh 3h (21 szll

and dy1 instead of (Hle 2 lz2l® Nz )P4zl <:E1,$2>>, ete. Then

0y gy B (L0.0)m for w20 _ 0n

Oy 0 for 1 =0 8 Y3

(61)171 for x1 € H.

From R4 we deduce ax dzz (0, 0) 8y (e1) In.

(vz) Let us suppose that &B am (0,0) exists. Then in particular, there

exists a L (0,0) which by (i) gives us h (e1) = 0 and (0 0) =0.
Conversely, let us suppose that h(e;) = 0. Let (x1,22) € H x H,
(x1,22) # (0,0). By the chain rule R5 we have

Of _Oh oy Oh oy Oh Oy
8$1 8y1 8:61 8y2 8:751 ayg 8.%17
i.e., by R3
of _oh  2|zo|’m oh 2 ||zo||® 21 oh
900 (gt o)’ O (o aal?)” O
with the same convention as above. Then

af (0,%2) :{ Jys (0 1 0) 9 for xo 75 0 oh

)

=—1(0,1,0) zo for x5 € H.

O 0 for x9 =0 0ys
From R4 we deduce ax a,p (0,0) = ayg (62) Iy O
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Evaluation of an integral with fractional part function
Ovipiu Furpur?)

Abstract. In this article we evaluate the following class of fractional part

integrals
v (17
I, = — s d
P,q /0 {m} z,

where p,q > 1 are integers and {z} denotes the fractional part of z. We
prove that I, 4 equals a series involving the product of the reciprocal of a
special binomial coefficient and an expression involving the Riemann zeta
function.

Keywords: Fractional part integrals, binomial coefficients, Riemann zeta
function.

MSC: 40A05, 40A10, 11MO06

1. INTRODUCTION AND THE MAIN RESULT

In the footnote of Question 892996 in Mathematics Stack Exchange it
is mentioned as an open problem, proposed by O. Oloa, the evaluation of the

following class of fractional part integrals
1

e [ (2o

where p,q > 1 are integers and {z} denotes the fractional part of x.

In this paper we prove that I, , equals a series involving the product
of the reciprocal of a special binomial coefficient and an expression involving
the Riemann zeta function.

The main result of this article is the following theorem.

Theorem 1. Let p,q > 1 be integers and let I, ; be the integral in (1). Then,

o0

1 . 1 1

Ip,qzz(qﬂ')(C(J-i-l)—l—W ———— pjﬂ),
j=1 \j

where ¢ denotes the Riemann zeta function.

Proof. We change variables z = i and we get

> {y} Oo/’““ (y — k)1

_Z/ (u+k)? / §u+k du.

1>Department of Mathematics, Technical University of Cluj-Napoca, Romania,
Ovidiu.Furdui@math.utcluj.ro, ofurdui@yahoo.com
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On the other hand,

0

and this implies that

o) 1 [e§) 00 00 o)
_ —(u+k)t dt = te— Ut —kt dt
5 g / e t / e e
p (u+k)? = Jo 0 p

It follows, based on Tonelli Theorem [4, p. 309], that

1 0 o—(utp)t 0 opt 1
I,, = u t—r dt du = t ule ™" dy | dt.
P,q 1— 1 _ et
0 0 0 S 0

Let
1
Jg = / ule "t duy.
0
Integrating by parts we get the recurtrence formula J, = —% + 4Jg-1. Let
ag = qtq—q! and we note that a, = —% : Z—i + ag—1. This implies that
et (14 N a1 PSS O 1—et
a, = ——— J— — e J—
E t \q'  (¢— 1)! 1! t
e ! ? td
- 1 =
L ( it )
B et = tq+J
ot
]:1
Thus,

Jg = qle _tz PR

and this implies that

oo —(p+1)t j s
e
I, = !/ Ej
P 0o l—et (q+J

1

00 o—(pt1)t
]

0 1—e_t



O. FURDUI, EVALUATION OF AN INTEGRAL WITH FRACTIONAL PART FUNCTION 13

On the other hand,

0 o—(pt1)t oo >
/ t———dt = / e~ PHEN " ety
o l-—e 0

m=0

o o)
-y / permtgy
m=0 0

(p+1+m)i=z - 71 /OO Jeo—
= . e *d (3)
Z (p + 14+ m)]+1 0 x x

m=0

. — 1
“TUHD 2 Gyt

m=0
. . 1 1

Combining (2) and (3) we get that

o0

1 . 1 1
Ip7q:Z(q+j) <C(J+1)—1—2j+1—"'—pj+1>,

Jj=1\

and the theorem is proved. O

The following special cases are worth mentioning.

Corollary 2. Special integrals with fractional part.
(a) Let g > 1 be an integer. Then,

[ w=% s ci+n-
=S +1) = 1).
o (& j:l(qurj)
(b) Let p > 1 be an integer. Then,

1 00

v (1 1 1 1

- =y —(¢G+1)—-1—— — - — —

[t et (rn-1-ga - )
=Hp,—Inp—7~,

where Hy, denotes the pth harmonic number and «y is the Euler-Mascheroni
constant.
(c) Let p > 1 be an integer. Then,

/oé{i}QdQC:?imbm(“j““zfﬂ"'pfﬂ)

=In(2r) — v+ Hp +2plnp — 2p — 2Inpl.
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Proof. Part (a) of the corollary follows from the theorem by taking p = 1.
In particular, when ¢ = 1 we recover an integral of de la Vallée Poussin
([L pb. 32]a [37 pp. 109_111])

1 Ci+1)—1
/0{ } EZ: TSI

1

where the last equality follows by direct calculation or based on [2, Identity
(151), p. 174].
(b) The first equality of part (b) follows from the theorem by taking

q = 1. To prove the second equality we observe that
1

! 1 [t
/p{}dx:/ {p}dy:Hp—lnp—%
o (¥ DJo ¥y

since (see [2, Problem 2.5, p. 100])

/;{Z}dy p(Hp —Inp — 7). (4)

(c) The first equality of part (c) of the corollary follows from the theorem
by taking ¢ = 2. To prove the second equality we note that

1

5 (1 2 1 1 2
/p {} dzL‘—/ {p} dy =In(27) — v+ Hp +2plnp — 2p — 21Inpl,
0 T pPJo LY

since (see [2, Problem 2.6, p. 100])

1 2
/ {Z} dy =p(In(27) — v+ Hp, +2plnp —2p — 2Inp!), (5)
0
and the corollary is proved. O

Remark 3. We mention that integrals (4) and (5) can be evaluated by direct
computation by reducing the integral to a series and then by calculating the
nth partial sum of the series [2, pp. 113-114]. Other integrals, single, double
or multiple, involving the fractional part function as well as open problems
can be found in [2, Chapter 2].

Theorem 4. Let m > 0 and p,q > 1 be integers. Then,

v 1)¢
Ip7m7q:/0 xm{x} dx

- m—l—j . 1 1
- m_|_1lz (g+7)! < m+]+1)_1_2m+j+1_“'_pm+j+l>’

where ¢ denotes the Riemann zeta function.

Proof. The proof of this theorem, which is similar to the proof of Theorem
1, is left to the interested reader. O
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The limit, continuity and Fréchet differentiability
of some functions on R"

DuMITRU Popral)

Abstract.  We give necessary and sufficient conditions such that the
function f : R™ — R defined by
a1 an
m o if (331,...,.7: )#(0770)
far,an) = I (mlPibetlen) )7 !

0 if  (z1,...,20)=(0,...,0)
has a finite limit at (0,...,0), is continuous and Fréchet differentiable at
0,...,0).

Keywords: Fréchet differentiable, mixed partial derivative, real-valued
functions

MSC: Primary 26B05; Secondary 54C30.

In the study of Fréchet differentiability, one of the standard examples
is the following: the function f : R? — R defined by

Ty :
f2,y) = V12 if (z,y)#(0,0)
0 if (z,9)=(0,0)
is continuous at (0,0), there exist % (0,0) and g—; (0,0), but f is not Fréchet
differentiable at (0,0). In this note we study the existence of the limit,
continuity and Fréchet differentiability of some functions which extend the
above example. The notations are standard, see [1].

Proposition 1. Let n, m, a1,...,a, be positive integers, n > 2, By, ...,
Bms Y1y - - -5 Ym be positive real numbers and f : R™ — R defined by
a1 gon
_ 1;1. T — if (x1,...,2n) # (0,...,0),
flze, ... xn) = 11 (Jz |7 t|an] i) T
0 if (z1,...,2n) =(0,...,0).

1>Department of Mathematics, Ovidius University of Constanta, Romania,
dpopa@univ-ovidius.ro
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Then f has finite limit at (0,...,0) if and only if
ap+ -+ ap > b+ + B Yme

Proof. We use the well-known characterization for the existence of the limit
of a function defined on R"”: a function f : R® — R has the limit [ € R at
(0,...,0) if and only if for all sequences (:c,}/,, e ,:zZ)keN C R™, (xk, e ,xﬁ) #+
(0,...,0) for all k£ € N*, and kh_}r{)lo (mi,,xﬁ) = (0,...,0), it follows that

: 1 ny
klg](r)lof (xk, e ,mk) =1
Let us suppose that there exists lim f(z1,...,zy) =1 €R.
(z1,e-xn)—(0,...,0)
Since n > 2, hm ,0,...,0)=(0,...,0) and (£,0,...,0 0,...,0) for
> n (7 ) = ( ) (% ) # ( )
n—1 times n times n—1 times
all k£ € N*, we deduce lim f (l ) = [, and using that f (% .,0) =
0 for all k € N*, Weobtaml—O From 11m ( v"'?E) = (0,...,0) it follows

that 1 =1=0. th lit
a kgrolof(k, ,k) Using eequaly

1 1 Lk~ (at-Fan)+B171++Bmym
f <l<:’ T k:> - nt+m

k—(a1++an)+B1v1+ - +Bmym

T = 0 and hence

we obtain lim
k—oo

ay+ -t ap >5171+"‘+Bm7m~
Thus, if f has finite limit at (0,...,0), then
ar+ -+ an > i+ + B yme

Conversely, let us suppose that a3 + -« -+ Ocn > ﬂlfyl “o 4 B Ym-
Let (z1,...,2,) € R™. We have 0 < ]acl\ <)% + -+ + |2n) and
since 7; > 0, we deduce

s ] A\ Vi

foralli=1,...,m
Multiplying these inequalities we get
m
. N i
|m1\’8”1+ +BmYm < H <|x1\ﬁl N |$n\ﬁl) ) (1)

=1

1 Bi Bi\" |
Set g(x1,...,2,) = [] (|:c1\ e |y 1) . From (1) we obtain
i=1
1
|z1| < [g (z1,...,2p)] Pt +Pmrm and, since a3 > 0, we have

531

21| < [g (21, .. ., @p)]FooTTPmam
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Similarly we get
= R Y R
foralli=1,...,m.
Multiplying the inequalities we deduce
a1+ tan

’J)l’al - ’xn’a" < [g (.1‘1, o ,xn)]m .

Then, for (z1,...,z,) € R" —{(0,...,0)} from (2) we deduce

_ bl o

’f(xl,---,l'n)’ -

g(x1,...,2p)

Since lim g(x1,...,2n) =0 and
(#1,0sn)—(0,...,0)

ap+ - +oy

<[g(x1,... @n)|Frnt+Bmim

(2)

3)

B+t B 17O
it follows that
oyt tan
<x1,...,xii§3(o,...,0) [g (@1, ..., my)]Pront48mam = = 0. (4)
From (3) and (4) we obtain
. T AC T e
In conclusion, the function f has a finite limit at (0,....,0) if and only

ifoag+---+ap,> P17+ + Bmym and in this case the limit is 0.

a

We use in the sequel the result proved in Proposition 1 for the study of

the continuity and Fréchet differentiability of f on R™.
Proposition 2. Let n, m, a1, ..., a, be positive integers, n > 2,

Bms Y1, - -+, Ym be positive real numbers and f : R™ — R defined by
il

1 ' RS Rad 1 0,
f (1‘1, T 7$n) = Z.I;Il(|51?1|ﬁi-&-~~-+|91;n|3i)”Yi if (xl T ) - (
0 if (z1,...,2,) =(0,...

AL...p0n
n

Then
(1) f is continuous at (0,...,0) if and only if

ar+- ot an > 0171+ + B yme
(ii) f is Fréchet differentiable at (0,...,0) if and only if

ar+-tan > im+ o+ Bnym + L

B, -,

70)7

,0).
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Proof. (i) If f is continuous at (0,...,0), then

lim x1,...,2p) = f(0,...,0).
(ml,...,:pn)—>(07m’0)f( 1 ) f( )

From Proposition 1 it follows that a3 + -+ + a > Biv1 + - + B Ym-
Conversely, if a1 +-- -+ ap > Biv1 + - - - + BmYym then we have shown in

Proposition 1 that lim f(z1,...,2y) =0= f(0,...,0) and thus
(z1,e-xn)—(0,...,0)

f is continuous at (0,...,0).

(17) As it is well known, see [1], f is Fréchet differentiable at (0,...,0)
if and only if there exist %(O,...,O) eER, ..., %(0,...,0) € R and

Fl@n,.mn) =Y 5L(0,...,0) 2
lim = = 0.
(z1,...,xn)—(0,...,0) ;p% + .+ ,f%

For x; # 0 we have f (x1,0,...,0) = 0 and since f (0,0,...,0) = 0 we obtain
%(0,...,0) = 0. In a similar way %(0,...,0) =0forali=1,...,n
Thus f is Fréchet differentiable at (0,...,0) if and only if

lim @1, 2n) =0,
(@1,...,2n)—(0,...,0) $%+---+x%
that is,
(1 ...:cnl)n—1>(0...0) 2 9,1 M 3; 5\
OO (g P )3 T (ol e )
i=1

By using the Proposition 1 this is equivalent to ay + -+ -+, > B1y1 + -+
BmYm + 1. O

From Proposition 2 we obtain a different proof of the following result
(see [2]).
Corollary 3. Let n > 2 be a positive integer and f : R" — R defined by

vz
f(-'Ifl,---,-’En): 224t Zf (1'1,...,1‘”)#(0,...,0),
0 if (z1,...,2,) =(0,...,0).
Then:
(1) f is continuous at (0,...,0) if and only if n > 3.
(13) f is Fréchet differentiable at (0,...,0) if and only if n > 4.

Among many other possible examples we give
Corollary 4. Let n > 2 be a positive integer and f : R™ — R defined by
Lt if (z1,...,25) # (0,...,0),

= 2ot ) (2t tad
fz,. .. xn) { ( )é ) if (x1,...,25)=(0,...,0).
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Then:
(i) f is continuous at (0,...,0) if and only if n > 7.
(ii) f is Fréchet differentiable at (0,...,0) if and only if n > 8.
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Traian Lalescu national mathematical contest for university
students, Timisoara 2014

VasiLE Pop!), TIBERIU TRIF?

Abstract. This note presents the solutions to the problems proposed at
the 2014 edition of the Traian Lalescu national mathematical contest for
university students, hosted by the West University in Timigoara between
the 21st and the 24th of May 2014.

Keywords: Function of class C!, countable set, minimal polynomial, Jor-
dan normal form, rank of a matrix, Sylvester’s theorem.

MSC: 11C08, 11C20, 26A27.

Between the 21st and the 24th of May 2014, the national phase of the
student contest Traian Lalescu took place in Timisoara.

Over 60 students participated at the contest, representing 12 universi-
ties from 6 cities: Bucuresti, Cluj, Constanta, Craiova, Iagi and Timigoara.

The contest was divided in 4 sections: A — mathematics faculties, B —
technical education, electrical engineering, 1st year, C — technical education,
mechanical and construction engineering, 1st year, D — technical education,
2nd year.

The subjects were proposed, discussed and chosen in the morning of the
contest, by commissions responsible for each section. There was one member
representing each university in each commission.

As far as the organization of the contest is concerned, apart from the
contribution of the West University in Timigoara, which provided optimal
conditions for the contest, accommodation and meals, the Ministry of Edu-
cation and Research and the Traian Lalescu Foundation also contributed to
the event.

We are next going to present the statements and the solutions to the
problems given in sections A and B of the contest. For the official solutions,
please refer to the following web page: http://cntl.math.uvt.ro/

DTechnical University of Cluj-Napoca, Department of Mathematics, Cluj-Napoca, Ro-
mania, vasile.pop@math.utcluj.ro

2>Babe§—Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania, ttrif@math.ubbcluj.ro
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Section A

Problem 1. Let I be a nondegenerate interval of the real axis, let f: [ — R
be a function of class C' on I, and let g : I — R be the function defined
by g(x) = |f(x)|. Prove that there exists an at most countable set Ey C I
such that g is differentiable on I\ Ey. Provide an example of a function
f:[0,1] = R such that f is of class C! and Ey is infinite.

Tiberiu Trif

Although the problem was considered easy by the members of the jury,
no student solved it completely. Two partial solutions were given.

Solution. Set
Ef:={xzel| f(z)=0and f'(z) # 0}.
We claim that g is differentiable on I\ E¢. Indeed, given any point xg € I\ Ey,
one has either f(zg) # 0 or f(xo) = f'(z0) = 0.
If f(zo) # 0, then the continuity of f at xo ensures the existence of a
positive real number r such that sgn f(z) = sgn f(xo) for all z € J, where
J = (xo — 1,20 + 1) N 1. Then for all z € J one has

g(x) = (sen f(2)) f(x) = (sgn f(x0)) f (),

whence g is differentiable at zg.
If f(zo) = f'(x0) =0, then g(zo) = 0, whence

g (x0) = lim o) - iff“’) = tim (A= S00) @l j;f"”“) — | (0)] = 0
and
o (o) = Jip L5520 =~ tyn [T =i =0

Consequently, g is differentiable at xo and ¢'(x¢) = 0.

It remains to show that the set E; is at most countable. Let x € Ef
be arbitrarily chosen. Since f’(x) # 0 and f’ is continuous, one can find an
interval J, centered at = such that f/(y) # 0 for all y € I'NJ,. It follows that
f is strictly monotone on I N.J,, whence f(y) # 0 for ally € INJ,\{z}. Set

ag = sup{y €l |y <z and f(y) =0},
by = inf{yel|y>xand f(y) =0},
with the convention that a, = —oo if f(y) # 0 for all y < = (respectively
by = o0 if f(y) # 0 for all y > ). After that, set A, = (&=, %) It is
immediately seen that the family of open intervals (A;).ck ; has the following
properties:
(i) = € A, for all z € Ey;
(ii) Az N Ay =0forall z,y € By with z # y.
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For every x € Ey select ¢, € A, N Q. Since the function z — ¢, is injective,
we conclude that card 'y < card Q = N,.
In the case of the function f : [0, 1] — R, defined by

[ a3sin(r/z) if x€(0,1],
f(f”)'_{ 0 if =0,

one has

;o | 3x%sin(n/z) — mxcos(n/x) if € (0,1],
fla) = { 0 if =0,

whence f is continuously differentiable on [0, 1]. In addition, card Ef = Rg
because Ey = {1 1,1 ..., ) O

5 99 3 L)

2013

Problem 2. How many solutions does the equation x = 1 have in Zog147?

Alexandru Gica

The members of the jury ranked this problem as a medium one. It was
completely solved by only one student (Maddlina Bolboceanu). There were
also two partial solutions.

Solution. Note first that 2014 = 2 x 19 x 53 is the prime decomposition of
2014. It is well known that the function ¢ : Zog14 — Zo X Z1g X Zs53 defined
by ¢(z) = (u,v,w), where (u,v,w) is the unique triple in Zs x Z1g X Zs3
such that z = u (mod 2), z = v (mod 19), and * = w (mod 53), is a ring
isomorphism. We have

PP 1 e o) =) e e = (1,1,1)

uPB =1 in Zo,
= 02013 =1 in Zog, (1)
w2013 =1 in Z53.

Therefore, the number n of solutions to 292 = 1 in Zag14 equals n = ninanas,

where n; represents the number of solutions to the ith equation in the system
(1), €{1,2,3}.

Clearly, n; = 1 because u = 1 is the unique solution to the first equation
in (1). On the other hand, if w is a solution to the third equation in (1), then
w # 0. By Fermat’s little theorem it follows that w®? = 1. Since 52 and 2013
are co-prime, there exist two integers a and b such that 52a + 20136 = 1.
Therefore, we have w = (w52)a(w2013)b = 1, hence w = 1 is the unique
solution to the third equation in (1). Consequently, n3 = 1. Finally, let v be
an arbitrary solution to the second equation in (1). Then v # 0 and v'® = 1
by Fermat’s little theorem. Since (2013, 18) = 3, there exist two integers ¢

and d such that 18¢ + 2013d = 3. Then we have v3 = (1)18)0(1)2013)d = 1.
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2013 _ (U3)671

Conversely, if v3> = 1 in Zig, then v = 1. Consequently, the

second equation in (1) is equivalent to
v> =1 in Ziy. (2)
But (2) is equivalent to (v —1)(v? + v +1) =0, i.e.,, tov =1 or
v’ 4+0v4+1=0 in Zy. (3)
Multiplying both sides in (3) by 4, we see that (3) is equivalent to
(204+1)2=16inZyy < (20—3)(20+5) =0 in Zio.

The last equation has the solutions v = 11 and v = 7 in Zyg9. In conclusion,
we have no = 3, whence n = 3. O

Problem 3. a) Prove that the center of a parallelogram which is inscribed
in an ellipse coincides with the center of the ellipse.

b) Prove that if a rectangle is inscribed in an ellipse which is not a
circle, then its sides must be parallel to the symmetry axes of the ellipse.

c¢) Find the smallest area of an ellipse which is circumscribed to a given
rectangle.

Gabriel Mincu

The members of the jury ranked this problem as a medium one. It was
completely solved by only one student (Eduard Valentin Curca). There was
also one partial solution.

Solution. a) Let E be an ellipse, and let P be a parallelogram inscribed in
E. Further, let m be a plane such that 7 is parallel to the small semi-axis of
E, and the projection of E onto 7 is a circle C'. Taking into account that
the lines’ parallelism is preserved by the projection onto m, it follows that
the projection of P onto 7 is a parallelogram P’, which is inscribed in C.
But the only parallelograms that can be inscribed in a circle are rectangles.
Hence P’ must be a rectangle and the center of P’ coincides with the center
of C. Consequently, the center of P coincides with the center of E.

b) Choose a Cartesian coordinate system whose origin coincides with
the rectangle’s center and whose axes are parallel to the rectangle’s sides.
Let A(zo,y0), B(—zo,y0), C(—z0,—y0), and D(xo, —yo) be the rectangle’s
vertices, and let

E: ar’?+bry+cy?+de+ey+f=0
be the equation of the ellipse. By A, B,C, D € FE it follows that
ax(z) + bxoyo + Cyg +dxg +eyo + f =0,
ax% — broyo + Cyg —dxo+eyo+ f =0,

~—~ I~ —~~
W N
~— — ~— ~—

ax% + bxoyo + cyg —dzo—eyo+ f =0,
aa:g — bxoyo + cyg +dxg —eyo + f = 0.
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By subtracting side by side the equations (1) and (3), respectively (2) and
(4), we get

drg+eyo=0 and —dzxg+eyg=0,
whence dxg = eyg = 0. Therefore, we have d = ¢ = 0. The equations (1),
(2), (3), and (4) reduce now to

ax% + bxoyo + cyg + f=0,
axd — broyo + cyd + f = 0.

By subtracting side by side the last two equations we get bxgyg = 0, whence
b = 0. In conclusion, the equation of £ must have the form

E: ar’+caf+f=0.

This means that the symmetry axes of F coincide with the coordinate axes,
hence they are parallel to the rectangle’s sides.

c¢) Choose a Cartesian coordinate system whose origin coincides with
the ellipse’s center and whose axes coincide with the ellipse’s symmetry axes.
Then the equation of E is of the form
2 2
.z vy _
Let 2¢ and 2L denote the lengths of the sides of the rectangle which is in-
scribed in E. Since (L,{) € E, it follows that

L? 2
Z e

So we have to find the smallest value of A(FE) = mwab, when a and b satisfy
(5). Note that

~1. (5)

_ wL{ < ¢ P

L. L= (2 ¢
a’b 5(72%72

Consequently, the smallest possible area of E equals 2w L¢ and it is attained

A(E) =nLt

e
o

when % = % = %, i.e., when the semi-axes of the ellipse have the lengths
a=IL+v2and b= Kﬂ, respectively. O

Problem 4. Let m and n be positive integers, and let A € M,,(C) be a
matrix such that A™ = I,,. Prove that

rank (A — eol,) + rank (A — e11,) + - - + rank (A — epp—11,) = n(m — 1),

where {g9,€1,...,em-1} ={2€C| 2™ =1}.

Dan Moldovan and Vasile Pop
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Although the members of the jury ranked this problem as a difficult one,
it was completely solved by four students (Mihai Florin Barbu, Madalina Bol-
boceanu, Eduard Valentin Curca, and Petre Claudiuv Mindrila). The solution
below was given by Madalina Bolboceanu.

Solution. Let m4 € C[X] denote the minimal polynomial of A, and let p4 €
C[X] denote the characteristic polynomial of A. Note that the polynomial
f:= X" —1 has the simple roots €g,&1,...,em—1. Since f(A) =0, we must
have m4 | f, hence there exist r € N as well as i1,...,4, € {0,1,...,m — 1},
i1 < -+ <y, such that mg = (X —¢;,) --- (X —¢;,). Taking into account the
Frobenius theorem (my4 and p4 have the same irreducible factors), it follows
that pg = (X — &) -+ (X — g, )%r, with oy, + -+ + @, = n. Further, let
J be the Jordan normal form of A. Since each factor X — ¢;; appears in m4
at power one, it follows that all Jordan blocks corresponding to ;; have the
size of one, their number being «;,. Consequently, J has the form

J:dlag(sil,...,sil, €igy -+ sEigy -+ siT,...,eir),

€7

1 a; i,

i.e., A is diagonalizable. Let S € M,,(C) be an invertible matrix such that
A= S71JS. For every k € {0,1,...,m — 1} one has

rank (A —el,) = rank (S7N(J —exl,)S) = rank (J — ex1,,)

n if k%{’il,...,ir},
- n—o if k=i

2

Consequently
m—1 r
Z rank (A — exl,) = Z rank (A — ex1y,) + Zrank (A —¢i;1n)
k=0 k@{i1,... ir} Jj=1

= nm-r)+> (n— o))
j=1

,
= nm—nr+nr— E ai; =nm —n=n(m—1).
Jj=1

Section B
Problem 1. Let a > 0, and let f: R? = R be the function defined by

flz,y) =e Y +ay/a2+y? forall (z,y) € R
Prove that f has a unique local extremum and that this is a global minimum.

Cristian Ghiu

This is a standard problem concerning the local extremum points of a
function of several variables. It was considered easy by the members of the
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Jury. However, due to the technicalities encountered during the problem solv-
ing process, it turned out to be difficult. The scores obtained by the contestants
were low.

Solution. The restriction of f to R?\ {(0,0)} is a C! function, hence every
local extremum of f must be either a critical point, or the point (0,0). Every
critical point of f is solution to the system

gi =0 . —e_f”_y—kaxz%_y? =0
g:() eV g = ()
0y Vat+y?
r=y#0 r=y>0
= —6_2w+i-£:0 = e—2% — a (1)

V2 |zl V2
Since = > 0, it follows that a < v/2, and in this case f has a unique critical
point, namely
V2

1
(r,) = (e,c), with e= J1n % >

If a > /2, then f does not have critical points.

Casel. a > /2. In this case f does not have critical points. Only (0, 0)
could be a local extremum for f.
From the inequalities

V2/a2 +y2 > |z +y| (2)
R S (3)
it follows that
fl@,y) = eV V222 + 2 + (a — V2)/a2 + y?
>l-—z—y+|r+yl+0>1= f(0,0).
Hence (0,0) is a global minimum point for f.

Case II. a < /2. In this case (¢, ¢) and (0,0) could be local extremum
points for f. Since a = e~21/2, we have

fla,y) = e (7Y V2 Va2 1+ ). (4)
By (2) and
XY > 1 42—z —y (5)
we deduce that
flay) 2 e (I+2c—a —y+lo+y|) = e >(1+2¢) = f(c,c).

Therefore, (c,c) is a global minimum point for f.
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We claim that (0,0) is not a local extremum for f. Indeed, we have
f(@,z) = £(0,0) = e + av2|z| — 1. (6)

By (6) it follows that f(z,z) — f(0,0) > 0, V « < 0. Hence (0,0) cannot be
a local maximum for f.
On the other hand, if > 0, then

—2x

flz,z)— £(0,0) = +av2r —1=2z (ex_l + a\/§> (7

Since

|
lim <+m) _ aiava<o,
T

z—0

there exists r > 0 such that

—2x _ 1
67+aﬂ<o, Ve (—rr)\ {0l (8)
By (7) and (8) it follows that f(x,z)— f(0,0) <0, V x € (0,r). Hence (0,0)
cannot be a local minimum for f. O

Problem 2. a) Determine a,b € R such that

4 1
/ (azx + bz?) cosnzdr = —  for all n € N*,
0

n2
b) Prove that lim (s + — + (3
rove tha n1—>H<}o 12 92 + 2 = 6

Cristian Vladimirescu

This problem deals with the computation of the sum of the series Z

means of Fourier series. It did not raise special difficulties for the students

Solution. a) For every n € N* one has

1 1 (7 T
— = n/o (sinnzx) (ax + ba?)dz = oz, (cosnz)'(a + 2bx)dx
1 n
=3 [(—1)"(a+ 2bm) — al.

From this equality it follows immediately that « = —1 and b = —.
b) By a) we deduce that
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Since

L tg = si +1 — € (0, 7]
- 1mn - -
QCgQS nr 2COS?’LQJ 2, x , T,

n,

it follows that the function f : [0, 7] — R, defined by

z =0,

f(z) = Zcos kx for all z € [0, 7],
k=1

is continuous on [0, 7|; notice that
G| T (x
; i /0 <27r - :1:) f(x)da.

The function g : [0, 7] — R, defined by

is continuously differentiable on [0, 7].
Therefore, we have

1

n

1 /7T ) s $2

— = g(z) sinnzdx +/ = < - m> cos nxdr—
; k’2 0 0 2 2T

™ .’132
S (Eg)a
[ 3 (e)

1 [, 11 P
== dr — — 1+ — o+
n/o g (x) cosnzdx n+2n2+ 5
and
n
) 1 2
M2
k=1
because
N A B A R
lim — g (z)cosnzdr| < lim — lg'(z)|dz =0. O
n—oo N | Jo n—oon J
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Problem 3. Consider the vector space V = C|0, 27] and the endomorphism
T :V — V defined by

27
T(f) () :/0 4sin®(z +y) f(y)dy, f € C[0,27], = € [0,27].

a) Determine 2014 linearly independent functions in Ker 7'
b) Determine all nonzero eigenvalues of T', as well as their corresponding
eigenvectors.

Vasile Pop

This problem deals with the theory of linear integral operators of the type
T(f)(x) = fj K(z,y)f(y)dy, in the special case when the kernel K(x,y) =

n

)
> ai(z)bi(y) is degenerated. The problem reduces to solving a simple Fred-

=1
holm integral equation.

Solution. Since
4sin®z = 3sinz —sin3z  and sin(z 4+ y) = sinx cosy + cos zsiny,

we have

T(f)(x) = ( /0 "3 cos yf(y)dy) sinz + ( /0 " 3 yf(y)dy> cos

2m 2
+ </ — cos 3yf(y)dy> sin 3r + </ —sin 3yf(y)dy> cos 3z
0 0

© Li(f)sinz + Ia(f) cosx + I3(f) sin 3z + I4(f) cos 3z, x € [0, 27].

a) fekerT & L(f)=1(f) =I5(f) = I4(f) = 0.

Note that the functions sin 2z, cos 2z, sin4x, cos 4z, sin bz, cos bz, ...,
sin 1009z, cos 1009z are linearly independent and that all the above four
integrals vanish because

2w 2 2
/ sin kz sin pzr dx = / cos kx cos pr dx = / sin kx cosprdx =0
0 0 0
for all k,p e N, k # p.
b) If A is a nonzero eigenvalue of T', then the corresponding eigenvectors
1
belong to the image of T: T'(f) =Af = f=T (/\f> .

According to (x), the image g = T'(f) of every function f is a linear
combination of the functions sinx, coszx, sin3x, cos3z. Therefore, every
eigenvector is of the form

f(z) =asinx + bcosz + csin3x + dcos3z, =z € [0,27].
For such a function we obtain
Il(f) - 37Tb, I2(f) - 377@7 I3(f) - —TI'd, I4(f) = —me.
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Then the equality T'(f) = Af, with A € R* eigenvalue of T" and f a corre-
sponding eigenvector, is equivalent to the system
Aa =3nwb, Ab=3ma, Ac=—md, A= —mc.
We get
(A —97%)ab=0 and (A —7?)ed = 0.
If A\ # +7 and A # 437 thena = b =c¢c=d = 0 = f = 0 (which is

not convenient). Thus we have the nonzero eigenvalues \; = m, Ao = —,
A3 = 3w, \y = —37 with the corresponding eigenvectors

fi(x) = a(sin3z — cos3x), f2(x) = a(sin3z + cos 3z),

fa(x) = a(sinz + cosx), fa(x) = a(sinz — cos x),
for all x € [0,27] and a € R*. O

Problem 4. Let a,b, ¢, and n be positive integers such that
0<a+b—m<c<a<b<n.
Prove that for every matrix C' € M, (C) with rank C = ¢ there exist two
matrices A, B € M, (C) such that rank A = a, rank B = b, and C' = AB.
Vasile Pop

This problem is a converse of Sylvester’s rank inequality: if A, B €
M, (C), then rank A + rank B — n < rank (AB) < min {rank A, rank B}. In
particular, it asserts that every natural number ¢ € [a + b — n,a] equals the
rank of the product of two matrices whose ranks are a and b, respectively.

Solution. Since rank C' = ¢, there exist two invertible matrices P and @ in
M,,(C) such that

[ 1L]o
where I. denotes the identity matrix of size c.
We denote by [al, ..., ap] the diagonal matrix having on its main diag-

onal the entries ay,...,a,. Set D = ,1,0,...,0]. Then C' = PDQ.

It suffices to prove that there exist a matrlx A1 of rank a and a matrix By
of rank b such that A; By = D. Then the matrices A := PA; and B := B1Q
(with rank A = rank A; = a and rank B = rank B; = b) satisfy C = AB.

Set
A =11,...,1,0,...,0] =[1,...,1,1,...,1,0,...,0]
—— —— —— —— N —
a n—a Cc a—cC n—a
and
By:=1[1,...,1,0,...,0,1,...,1].
! R/—/H/—j
c n—>b b—c

Sincea+b—n<c & a—c<n-—>b,it follows that A1By = D. O
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NOTE MATEMATICE

A new proof of Finsler-Hadwiger reverse inequality in
non-obtuse triangles

ROBERTO Boscab

Abstract. In this note we give a new proof of Finsler-Hadwiger reverse
inequality in non-obtuse triangles.

Keywords: reverse Finsler-Hadwiger inequality, non-obtuse triangles, sta-
tionary points

MSC: 51M04

Dedicated to professor Henry Ricardo, Medgar Evers College (CUNY), NY, USA.

In general the Finsler-Hadwiger reverse inequality states that in any
triangle ABC with sides a, b, ¢ the following inequality is valid

a’ + 0%+ <AV3S+k[(a—b)>+ (b—c)? + (c—a)?],

where S denotes the area of the triangle ABC and k = 3 [3]. For non-obtuse
triangles the constant k& was improved in paper [2] to k& = 2 and later to

k= 6*2\/6, and at the end it is conjectured that k = 32:2‘/\/% is optimal. This
conjecture was verified in [1]. Here we present a new proof using calculus
and trigonometry.

We shall prove the following result:

Theorem 1. In any non-obtuse triangle ABC' the following inequality holds

23
a2+b2+c2§4\/§s+7\[
3— 22

where a, b, c are the sides and S is the area. The constant

[(a =)+ (b= )+ (c—a)?],

2—/3 - .
32v3 18 optimal

and it is attained for a right angled isosceles triangle.

Proof. Using the formulas a = 2Rsin A,b = 2Rsin B, ¢ = 2R sin C' and mov-
ing everything to the right side we rewrite the inequality as

f(A,B,C) = —sin? A — sin? B — sin? C' 4 2v/3sin Asin Bsin C

2—-v3
L2-V3

3-2V2
with 0 < A,B,C < § and A+ B + C = 7. These restrictions are the
intersection of a cube ([0, 5] x [0, %] x [0, §]) and a plane, so the resulting

[(sin A — sin B)? + (sin B — sin C)? + (sin C' — sin A)?] > 0,

D Archimedean Academy 12425 SW 72nd St, Miami, FL, USA, 33183,
bobbydrg@gmail . com



R. BoscH, REVERSE FINSLER-HADWIGER INEQUALITY 31

region in R3 is a compact set K. Since f is continuous, its minimum on K
exists. To find this value we consider the system of equations

or _of o5 _,
0A 0B oC
that is to say

(2sinA —sin B —sinC)| =0,

cos A |—sin A + V3sin Bsin C +

2-3
3 — 22

(2sin B —sinA —sinC)| =0,

cos B | —sin B+ v/3sin Asin C +

—2V2
2—-v3
3-2V2

9 _
cosC |—sinC + v/3sin Asin B + 2-V3 (2sinC — sin B —sin A) | = 0.
3-2V2
Supposing A, B,C # 3 and solving the system with the aid of Maple, the
solutions are found to be (,0,0), (0,,0), (0,0,7) and (—7, 7, ), (7, —m,7),
(mym,—7 7

None of them is on the considered region K, so that A = §

).
or B= 3 or C = 7. In any case we are on the boundary of the region.
s

Assuming C' = 7 (similarly for A and B), we need to prove that

2
2—+3
—2 4+ 2v3sin Acos A + v3

m [4 — 2(SinACOSA + SinA + COSA)] 2 0,

which is equivalent to

4—-2V3 23
3—2\/§_H<\/§_3—2ﬂ

with 0 < A < 5. Define

) sin Acos A — 32__2\\//%(511114—}—00514) >0,

_4-2V38 2-V3 1\ . 2-V3 .
g(A) 1+ (\/g - 3_2\/§> sin A cos A— (sin A+cos A).

T 3-92/2 3-922

The function ¢ is increasing on [g, %] because

g’(A):(COSA—SinA) (f_2_\/§> (cos A + sin A) — 2 -3

- >0,
3—2V2 3—2v2| ~

(note that tan A > 1 and cos A + sin A < v/2). Observing that one also has
g(A) = g(§ — A), it follows

g(A)Zg(Z):() for OSAgg.
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It just remains to show that k = 32__2‘/\/% is sharp, which is equivalent to
find A, B, C such that
sin® A + sin? B + sin® C' — 2v/3sin A sin B sin C
(sin A —sin B)? 4 (sin B — sin C')2 + (sin C' — sin A)?

h(A,B,C) = >k—¢

for any € > 0. This is clear from h (g, T %) = k. O
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A computational proof of the Cayley-Hamilton theorem
CONSTANTIN-NICOLAE BELIY

Abstract. We give a computational proof of the Cayley-Hamilton theorem
which states that if A is a square matrix over some field K and P4 is its
characteristic polynomial P4(X) = det(XI — A), then Pa(A) = 0.
Keywords: characteristic polynomial, Cayley-Hamilton theorem

MSC: 15A15, 15A24

Let K be a field. If m,n > 1 then we denote by {e;r;f" 11<i<m,1<

J < n} the canonical basis of My, ,,(K), where e%’n has 1 on the (i, j) position
and 0 everywhere else. We have ei’?e?l’n = &, el

If ng,...,ns > 1 and for 1 <t < s we have A; = (a;j) € My, | n(K)
then A, = Zaije?z‘l’m, where i goes from 1 to ny_1 and j from 1 to n.
ij ’

We get Ay -+ Ay = Za}l 5 al el et with 1 < 4y < ny_q and

g ’ 'L‘sJ.s il’jl iSa.jS
1 <j¢ <ng Vi. But
noms e - -
no,n1 Ms—1Ms _ 5. Si . ehons i js if jo = i1 VISt <s,
R . DN R frd i . 14 e. . =
11,51 is,Js J1:t2 Js—1:ts 711, s 0 otherwise

1 Simion Stoilow Institute of Mathematics of the Romanian Academy, Bucharest, Ro-
mania, constantin.beli@imar.ro
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It follows that A;--- A = Za,lm klazl Ry OR ksezg’gj, where 1 < k; <

ng for all ¢ with 0 < ¢t < s. In particular, the (i,j) entry of Aj--- Ay is
1
Z ,ako,kl o azsfhks.

ko=i, ks=j
When we take Ay =--- = A, = A = (a;;) € M,,(K) we get:
Lemma 1. For any s > 0 and 1 < 4,5 < n the (i,j) entry of A® is
S
> Ak, k> where 1 < ky < for all t with 0 <t <s.
ko=i, ks=j t=1

This result also holds when s = 0 because, if we make the convention
that any sum over an empty set is 0 and any product over an empty set is 1,

we have
> 19[ {1 iti=j,
Akt 1,k = L ]
ko=4, ko=7 t=1 0 ifi#j.
Indeed ifi = jthen ) hasonly one term, corresponding to ko = 1,

ko=t, ko=j

0

and this term is [] ay, , 5, = 1, and if ¢ # j then the sum is taken over the
t=1
empty set so it is 0.

Given a cyclic permutation o € S,,, we denote by {c} the set of all ele-
ments of o, by ¢(o) the length of o, {(0) = |{o}|, and put P(c) := {(h,o(h)) |
h € {o}}. Soif ¢ = (h1,...,hq) then {o} = {hi1,...,hy}, (0) = ¢, and
P(o) = {(h1,h2), (ha,h3) ..., (hg, h1)}.

Lemma 2. If Po(X) = ¢, X" + -+ + ¢ then

ct = Z (=)™ H apls

{o1,--s0m} (h,l)eP(0o1)U--UP(om)

where {o1,...,0m} covers all sets of mutually disjoint cyclic permutations in
Sn such that £(oy) + - +L(om) =n —s.

Proof. We have X1 —A = (a; ;), where a} ; = X —a;; and a; ; = —a; ; if i # j.
Hence Po(X) = det(XI-A) = > <(o) [] a}, o(h) = > elo) > 11 ba,
h=1

oE8n oE8n biobn h=1
where by, = —ayp, () if 0(h) # h and b, € {—app, X} if o(h) = h.
For a given o € S, and a choice of by, ..., b, the set {1,...,n} writes

as a disjoint union J U J’ such that b, = —ay, ;) for h € J and b, = X for

h € J'. Moreover J' is contained in Fix(o), the set of all fixed points of o.
It follows that

PaX)= 3" &) [T (~anom) X" = 3 (~)Vle(0) TT anomX",
o,J,J’ heJ o,J,J’ heJ

where o covers S, and (J,J') covers all partitions of {1,...,n} into two sets
such that J' C Fix(o). But for o,J, J' with these properties o decomposes
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uniquely as a product of mutually disjoint cycles 0 = o7 - - o, with {01} U

-UA{om} = J. (Every h € JNFix(o) is included as a cycle of length
one in {01 ---0y,}). The mapping (o,J,J") — {o1---0p} is one-to-one as
if {01+ 0m} of mutually disjoint cycles from S, then o, J, J' are given by
oc=010n, J={o1}U---U{op}and J ={1,...,n} \ J. Then we get
|J| = {or} + -+ {om}| = (o) + - - + €(0o,). Therefore

(=1)Vle(0) = (=1)VI(=1)We) =D+ Eom)=1) — (_1)m,
Also

{(h, ())\hGJ}—U{hG ) [ hel{or}}

—U{ha,, |h€{or}}—UPUT

PaX)= 3. (Cum JI e | xmtedmeon),

{o1,s0m} (hl)eP(o1)U--UP(om)

In order to obtain the monomial ¢sX* of P4(X) we have to restrict
ourselves to terms corresponding to sets {o1,...,0mn} with n —£0(o1) — -+ —
o) = s, 1e., with £(o1) + -+ {(0,) =n — s. Hence we get our result. O

From Lemma 1 and 2 we get that the (7, j) entry of the matrix P4(A) =
n
cn A" 4 -+ ol viz., ZCSAS(Z J), is

n

Z Z Hahtfl’ht Z (=™ H a1

s=0 \ ho=i, hs=jt=1 l(o1)++Ll(om)=n—s (k,l)eP(o1)U--UP(om)

=Y Flo,

a€S; ;

where S; ; is the set of all (ho,...,hs,{o1,...,0m}) with 1 < hy <n for all ¢
with 0 <t < s, hg = i, hy = j, and o, are mutually disjoint cycles from S,
such that s+ ¢(o1) + -+ {(0y,) =n and F : S; ; — K is given by

(ho,...,hs,{al,.. Um} mHahz 1,ht H akl.
(k,1)EP(01)U--UP (o)
Remark. If o = (ho,...,hs,{01...,0m}) € S;i; then either there are
0 <wv<u<swith hy = hy or {ho,...,hs} N U {or} # 0. Otherwise we
r=1
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would have [{hg,...,hs} U U{UTH =s+1+ ZE(UT) = n + 1, which is
r=1 r=1

impossible since {hg,...,hs} U U {o,} C{1,...,n}.
r=1

Definition. We now define ¢ : S; ; — S; ; as follows.
Let a€S;;, o = (ho,...,hs,{01...,0m}). If there are v < u with h,=h, we

consider such v, with 4 minimal. Hence hy, ..., hy—1 are mutually distinct.
We have two cases:
(I) If {hoy ..., hy—1} N U {o,} = 0 then hy,...,hy—1 are mutually dis-

tinct and they don’t belong to any of {o1},...,{om}.
Hence o417 := (hyy ..., hy—1) is a cycle in S, disjoint form o1, ..., opm.
Then we define ¢(a) = (ho, ..., hy = hyy hut1y -, hsy {01, ooy Omy Oms1})-

(IT) If {ho, ..., hu—1} N U {or} # 0 (or if v, u are not defined) then let
r=1

w be minimal such that h,, € |J {o,}. Let x with h,, € {o,}. Then we write
r=1

or = (k1,...,kq) with ki = hy,. We define

¢(a):(h0,...,hw:kl,...,k‘q,]ﬁ :hw,hw+1,...,hs,{al,...,81....,0,“}).

(The existence of w from the case (II) when v,u are not defined is
ensured by the Remark above.)

Our definition is good in the sense that ¢(«) € S; ;. Indeed, the condi-
tion hg = i, hy = j from the definition of S; ; is obviously satisfied by ¢(a)
in both cases (I) and (II). For the condition s+ ¢(o1) + - - - + £(0y,) = n note
that when going from « to ¢(«) in the case (I) by removing hy, ..., hy—1
from hg,...,hs we decreased s by u — v but by adding o,,+1 to the set
{o1,...,0m} we increased ¢(o1)+---+£(0y,) by u—v = €(oy+1). In the case
(II) by adding k1, ...,kq to ho,...,hs we increased s by ¢ and by removing
o, from {o1,...,0n} the sum £(o1) + -+ + ¢(0y,) decreased by ((o,) = q.
In both cases the sum s+ £(o1) + - - + {(0,,) = n is left unchanged by the
transformation o — ¢(a).

Lemma 3. (i) Fo¢p=—
(ii) pop =

Proof. Let a € S; j, « = (ho, ..., hs,{o1,...,0m}).
(i) If a is in the case (I) of the definition of ¢ then after the trans-
formation a — ¢(a) the factors ap, p,, -+ Qhy_1hy = Qhy_y,h, WETE Te-

S
moved from [] ap, ,p, but they were added to I1 ag,; as
t=1 (k,1)eP(o1)U--UP(om)
H Gkl = Qhyhypr " Chy_g,hy—1 @hy_1,hy- If o is in the case (H)
(k,1)eP(om+1)
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then the factors II Akl = Ay ky """ Qky_y ke kg ky ar€ Temoved from
(k)eP(oz)
S
I ap,; but they are added to [[ an, , ,-
(k,l)eP(o1)U---UP(om) t=1
S
In both cases the product [] an, ,.np, I ay, from the
t=1 (k,1)eP(o1)U--UP(om)

definition of F(«) is preserved. However the factor (—1)™ from F(«a) is
replaced in F(¢(a)) by (=1)"*! = —(=1)™. Therefore F(4(a)) = —F(a).
(77) We consider the two cases from the definition of ¢.
If «v is in the case (I) then h, € {om+1}. Since v < u — 1 we have that

ho,...,h, are different from each other and {hg,...,h,—1} N Y {or} = 0.

r=1

We also have {hg, ..., hy—1}N{oms+1} = {ho, - hp—1} N {hy, ... hy_1} = 0.
Therefore ¢(«) is in the case (II) with w = v and + = m + 1. Then
¢(¢(a)) is obtained from ¢(«) by removing o1 = (hy,...,hy—1) from
{01,...,0m,0m+1} and by inserting the sequence hy, ..., h,_1 into
ho,...,hy—1,hy = hyyhyt1, ..., hs, between h,_1 and h,,.

This means ¢(¢(a)) = a.

If « is in the case (II) then ho, ..., hy are different from each other and

m

{ho, ..., hy—1} N U {or} = 0. In particular,

r=1

{ho,...,hw_l}ﬂ{kl,...,kq} = {hO;-uth—l}ﬂ{Uac} = (.

Thus ho, ..., hw—1,hw = k1, ..., kg are different from each other. Also
{ki,...;hgt N UA{or} ={o}n U{or} =0.
r#c r#c

Hence {ho,...,hw—1,hw = k1,...,kg} 0 U {o,} = 0. It follows that

r#x
¢(a) is in the case (I) with v = w, u = w + ¢. Then ¢(¢p(e)) is ob-
tained from ¢(a) by removing the sequence ki,...,k; from the sequence
ho, ..., hy = ki,..., kg, k1 = hy, hapt1, - .., hs and adding (k1,...,ky) = 0y
to {o1,...,04,...,0m}. Hence ¢(¢(a)) = av. O

Now we are in a position to complete our proof for the Cayley-Hamilton
theorem.

We define on S; ; the relation ~ given by a ~ 3 if § = ¢*(«) for some
a. Then ~ is an equivalence relation and the class of a is {«, ¢(a)}. Note
also that « # ¢(«). If aq,...,an is a system of representatives for ~ then
Sij = {1, ¢0(a1),...,an,¢(an)}. It follows that for any i, j the (i,7) entry

(
of Py(A)is > F(a)= él(F(ak) + F(¢(ag))) = 0. Thus P4(A) =0.

OLES»;,]‘

Note added in proof. After the submission of this note, an inductive
proof of the Cayley-Hamilton theorem has been published [1].
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Existence of a Hamiltonian path in a plane configuration
MaRrius CAvAacHIY

Abstract. We prove the existence of a hamiltonian path in a plane con-
figuration given by intersecting circles.

Keywords: Circle, hamiltonian path
MSC: 05C10, 05C38

The following result has been previously published in [1] as a problem.

Theorem. Consider a finite set of plane circles whose interiors have non—
empty intersection such that any two circles intersect and any three do not
pass through the same point. Then the graph whose vertices are intersection
points of circles in the set and whose edges are the resulting circle segments
admits a hamiltonian path.

Proof. Consider for a fixed integer n, two configurations of circles, {A;} and
{B;}, as in the hypothesis, with i € {1,...,n} and assume that all A; and
B; contain ) as an interior point. (By hypothesis all A; contain a point
Q in interior and all B; contain a point @’ in interior. But by translating

the configuration {B;} by the vector Q'Q) we may assume that Q' = Q.)
The aim is to take {A;} as a particular configuration that we can show it
has a hamiltonian path with certain properties to be described momentarily
and then deform it continuously into an arbitrary configuration {B;}, while
showing that the existence of a hamiltonian path is preserved along the way.

Consider S a sphere of center O, tangent to the plane P of the two
configurations at ) and let P be the antipodal of Q). Denote by 7w : S\{P} —
P the stereographic projection from P and denote by C; and D; the inverse
images via m of A; and B; respectively. If O; is the center of C;, then for
t € [0,1], construct C;(t) to be the circle on S, centered on O;(t) that is
defined on [OO;] by |00;(t)| = (1 —t) |O0;| and such that the plane of C; is
parallel to that of C;(¢). Similarly, construct the circles D;(t).

By infinitesimally perturbing the two configurations without affecting
the existence of a hamiltonian path, we can assume that:

e Any three of the circles C;(1) (or D;(1)) have empty intersection.

e The intersection of any four planes determined by the circles C; (or

D;) is also empty.

b Department of Mathematics, Ovidius University of Constanta, Constanta, Romania,
mcavachi@yahoo.com
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If M is in the intersection of two circles C;, then for ¢ € [0;1], we have
that M(t) € [OM] defined by |OM(t)] = (1 — t)|OM]| is contained in the
intersection of the two discs bounded by the corresponding circles in the
configuration C;(t). It follows that for fixed ¢, any two circles C;(t) intersect.
Also, any four of the circles C;(t) have empty intersection, otherwise if M (t)
is a common point, then M constructed by reverting the above procedure
lies in the intersection of the planes containing the C;, contradicting our
assumptions.

As t varies, the circles C; slide continuously into the circles C;(1). We can
deform the configuration {C;(1)} into {D;(1)} and by reverting the sliding
described above, we deform into the configuration {D;}. Applying =, we
obtain a continuous deformation of {4;} into {B;} realized by a moving
circle configuration { E;(s)} with s € [0; 1] (unrelated to t) having E;(0) = A;
and E;(1) = B;. As s varies, the graph determined by the configuration
E;(s) only modifies its isomorphism class when one of the circles crosses an
intersection point of two others in the configuration. We remark that for any
s, the circles F; := E;(s) have pairwise nonempty intersection and that @ is
an interior point. (For more details see [3].)

For k € {1,...,n}, denote by M, the set of plane points contained in
the interior of at least k of the circles E;. The sets M), are easily seen to be
open and star shaped with respect to Q). If Fj denotes the boundary of My,
one notices that F, F3, F5, ... are disjoint cycles and their union contains all
the vertices of the graph.

Remark 1. If two circles E; and Ej cross each other in a point S then
there is some k such that of the two segments on E; and the two segments
on E; based in S one belongs to F} and the other to Fjq.

We will prove that there exists a hamiltonian path for the graph deter-
mined by the configuration F; displaying the following properties:

(1) For all odd k, the path contains all but one of the edges of the cycle
Fy..

(2) The path contains exactly one edge ¢ belonging to Fj; that con-
nects Fy to Fyyo for k+2 < n.

(3) The edge ¢) does not lie on the same circle in the configuration as
any of the two edges it is adjacent to on the path.

Remark 2. The conditions above are very restrictive. Suppose that
S’,S, T, T" are consecutive points on some cycle F with k odd we know that
ST is the segment of F} missing from the hamiltonian path than the point
of the path following S’,S is uniquely defined. Indeed, by Remark 1, S’S
and ST belong to different circles, F; and Ej, respectively. The other two
segments that form at S belong to Fy_1 or Fi11 and they are candidates at
being £, or £;_o, respectively. But one of these segments lies on F;, same as
S5’ so it does not qualify by the third rule above. So the remaining segment,
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say SS” is the edge ¢}, or }_5. Similarly, the point 7" on the path following
T’,T is uniquely determined. Of course ST can be the segment of F}, missing
from the path only if SS” and T'T” belong one to Fj_; and the other to Fjq
so that one of them is ¢;,_5 and the other /.

Also if we now that ¢, = ST for some segment ST on Fj; then the
point S’ following 7', S on the path is uniquely determined. Indeed, suppose
that ST lies on E; and E; crosses E; at S. Then, by Remark 1, of the three
other segments that meet at S one lies on E; and belongs to Fj, ;. The other
two belong to F}, or Fj, 49 an lie one on I;, the other on ;. The only one that
qualifies to be S5’ is the segment on E; belonging to Fj, or Fjio. Similarly
the point 7" following S, T on the path is uniquely determined. Note that
the segment ST belonging to Fy1 with k& odd qualifies to be ¢, only if SS’
and TT" with S’, T' defined as above belong one to F} and the other to Fj .

As a consequence, a hamiltonian path satisfying the three rules is uniquely
determined if for some odd k we know £ or the edge of the cycle Fj, missing
from the path.

Now we are ready to construct A; verifying all three rules above. This
happens for example when one of the circles in A; contains no point of in-
tersection of any two other circles in its interior, as in the following pictures
which constructs a unique path subject to the conditions 1 - 3:

Figure 1

Then it is enough to check that when one of the circles E; crosses
an intersection point of two other circles in the configuration we can still
construct a hamiltonian path verifying the properties 1 - 3. Note that at
each of these crossings the structure of the edges is not altered with the
exception of a small triangle, which collapses to a point at some s and then
expands to a different small triangle. At each crossing the status of each large
segment of circle will be the same, i.e. it will an edge of the path after the
crossing if and only if it was an edge of the path before the crossing. What
changes is only the status of the three edges of the small triangles.

Note that the nine segments that occur in each case belong to three
consecutive cycles which are Fy, Fyi1 and Fjio or Fy_1, Fx and Fjq, for
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some odd k. The hamiltonian path may contain all segments belonging to
Fy and Fyo that occur or all but one.

The possible cases (or their inverses) are illustrated below in Figures
2-5. (See also Remark 2.) Note that we never try to construct a hamiltonian
path for those (finitely many) s for which three circles in the configuration
intersect thus leaving the hypothesis of the problem, but we study what
happens when we are ,near* such an s, as suggested by the term ,cross“.
Also, by our assumptions, there is no s such that four of the circles F;(s)
intersect.

As s varies, we move from A; to B; and have proved the existence of
a hamiltonian path, with the required properties, in the graph associated to
the configuration B;. O

By
NS
Fk+2/\ Frtz ; ;
Figure 2
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Editor’s note. In an editorial comment [2] serious doubts has been
raised about the correctness of the above result. We consider the result holds
true and decided to publish it as a mathematical note.

REFERENCES

[1] Problem 11557, The American Mathematical Monthly, 118 (2011), 179.
[2] Problem 11557, The American Mathematical Monthly, 120 (2013), 755-756.
3] Problem 383, GMA 32(111) (2014), no. 1-2, 52-54.



492 PROBLEMS

PROBLEMS

Authors should submit proposed problems to gmaproblems@rms.unibuc.ro.
Files should be in PDF or DVI format. Once a problem is accepted and considered
for publication, the author will be asked to submit the TeX file also. The referee
process will usually take between several weeks and two months. Solutions may also
be submitted to the same e-mail address. For this issue, solutions should arrive
before 15th of November 2015.

PROPOSED PROBLEMS

Lol oe(1 — log(1
// og(1 +x) — log( +y)dxdy'
0 0

rT—=y
Proposed by 0Ovidiu Furdui, Technical University of Cluj-Napoca,

417. Calculate

Romania and Cornel Valean, Teremia Mare, Timig, Romania.

418. (i) Let R = k[X,Y]/(XY?), k a field. Denote by = and y the residue
class of X and Y modulo the ideal (XY?), respectively. Show that the
elements x and z(1 4 y) are associates, that is, zR = z(1 + y) R, but there is
no invertible element u € R such that ux = (1 +y).

(ii) Show that we can not find such elements in Z/nZ.

Proposed by Cornel B&detica, Faculty of Mathematics and Informa-
tics, University of Bucharest, Bucharest, Romania.

419. Suppose that n > 1 and f : R” — R"” is a function such that the image
under f of the interior of any sphere S of codimension 1 is the interior of a
sphere of codimension 1 of the same radius. Prove that f is an isometry.

Proposed by Marius Cavachi, Ovidius University of Constanta,
Constanta, Romania.

420. Let a,b,c,d € R, ¢,d # 0, such that ¢ < %. We consider the Maclaurin
expansion et = > apz™.
n>0
(i) Find an exact formula as a finite sum for a,.
(ii) Determine the asymptotic behaviour of a,, as n — occ.
Try to solve (ii) without using the result from (i).

Proposed by Constantin-Nicolae Beli, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.

421. (i) Let f : R® — R be a continuous function. Find the value of the

limit

n

. 22 +y?+2

nlgglo n? fff (2 f(z,y, z)dzdydz.
x24+9y2<1, 0<2<1
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(ii) Let f: R* — R be a continuous function. Find the value of the limit

) <\/a:2—|—y2+\/z2+t2

lim n
n—oo

5 ) f(x,y,2,t) dedydzdt.

x24+9y2<1, 224+12<1
Proposed by Dumitru Popa, Ovidius University of Constanta, Con-
stanta, Romania.

422. Find a sequence (z,),>1 of real numbers with the following properties:
Tn N\ 0, vn/(z1+ - +an) = 0 and 2[5/, — 1, where [\/n] denotes the
integer part of \/n.

Can you find a sequence with the above properties, in which /n is
replaced by Inn?

Proposed by George Stoica, University of New Brunswick, Saint
John, Canada.

423. Determine all differentiable functions f : [0,00) — R with f(0) = 0
such that

a) f’ is strictly positive and increasing,

b) JE(f(0)2dt > f(z + f(2)) — f(z) Ya € [0, 00).

Florin Stanescu, Serban Cioculescu School, Gaesti, Dambovita,
Romania.

424. Let f,g € C[X] be monic polynomials of the same degree with the
property that |f(z)] = |g(z)] = 1 for an infinity of values of z € C. Prove
that f=g.

Proposed by Marius Cavachi, Ovidius University of Constanta,
Constanta, Romania.

425. Let n > 2 and ay,...,a, > 0 be integers and let by,...,b, and A
be positive real numbers. Find the necessary and sufficient condition for the

al

function f : R"\{(0,...,0)} — Rdefined by f (z1,...,2,) = 0 |bilr :{zn )
x1 T Tn

to have a finite limit in (0,...,0).
Proposed by Dumitru Popa, Ovidius University of Constanta, Con-
stanta, Romania.

426. Find all functions f : R — R, continuous in at least one point, and that
satisfy the following inequalities: f(z—1) < f(z)—1, f(z+v2) < f(z)+V2
for x € R.

Proposed by George Stoica, Department of Mathematical Sciences,
University of New Brunswick, Canada

427. Let F be a field of characteristic # 2, and let E/F be a finite mul-
tiquadratic extension so that G := Gal(E/F) = Z§. Let a € E* with the



44 PROBLEMS

property that a®~! € (EX)? Vs € G. Prove that there are by € E* with
s € G such that a*! = b2 Vs € G and by by bslb; bbb, = b DY
Vs, t,u € G.

How many (bs)seq € (E*)¢ with the properties above exist?
Here we use the exponential notation: if ¢ € E* and x = ) ngs € ZG then

seG
c® =[] s(e).
s€G
Proposed by Constantin-Nicolae Beli, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.

428. Show that f(r) = 2" — 323" + 422" — 22" + 1 is irreducible in Z[z] for
all integers n > 1.

Proposed by Cornel Baetica, Faculty of Mathematics and Informa-
tics, University of Bucharest, Bucharest, Romania.

SOLUTIONS

393. Let A, B,C, D be four distinct points in a plane II, which are not the
vertices of a parallelogram. Let H be one of the half-spaces bounded by II.

(i) In H we consider the semicircles of diameters AB and C'D that are
orthogonal on II. Prove that in H there is exactly one semicircle with the
diameter situated on II that is orthogonal on the two semicircles and on II.

We denote by C(AB,CD) the semicircle from (i). Define similarly
C(AC,BD) and C(AD, BC).

(ii) Prove that C(AB,CD), C(AC,BD), and C(AD, BC) pass through
the same point.

(iii) Prove that C(AB,CD), C(AC, BD), and C(AD, BC) are orthog-
onal on each other.

Proposed by Sergiu Moroianu, Simion Stoilow Institute of Mathe-
matics of the Romanian Academy, Bucharest, Romania.

Solution by the author. We use the Poincaré half-space model of the
hyperbolic (or non-euclidean) space. In this model the space is the open eu-
clidean half-space H. The hyperbolic planes are euclidean half-planes inside
H orthogonal on II and bounded by a line lying in II, or half-sphere inside H
bounded by a disc lying in II. The hyperbolic lines are euclidean half-lines
inside H orthogonal on II, bounded by a point on II, or semicircles in H or-
thogonal on II, bounded by a diameter lying in II. This representation of the
hyperbolic space inside the euclidean space does not preserve the distances
but it is conformal, i.e., it preserves the angles. In particular two perpen-
dicular hyperbolic lines will be represented by two euclidean semicircles or
half-lines orthogonal on each other in euclidean sense.

The points on II do not belong to the hyperbolic space, but can be
regarded as directions of hyperbolic lines. Two distinct hyperbolic half-lines
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are said to have the same direction if they become closer and closer (with
respect to the hyperbolic distance) when we move towards infinity. This
happens precisely when one of the two half-lines is a last parallel to the other
one in the following sense: if we have a line ¢ and a point P ¢ ¢ then in
the plane containing ¢ and P there are two half-lines ¢, ¢” passing through
P with the property that all the lines through P which separate ¢ from ¢’
intersect ¢, while the lines through P which do not separate ¢ from ¢’ are
parallel to £. Moreover, when we move to infinity in each of the two directions
on such a parallel line, the distance to £ tends to co. The lines ¢/, ¢ are called
the last parallels to £ passing through P. When we move to infinty on ¢, ¢”,
the points become closer and closer to ¢ (the distance from these points and
¢ tends to 0). A line is uniquely determined by the two directions. In the
Poincaré model a line represented by a semicircle of diameter AB C II has
A and B as directions. A line represented by a vertical half-line bounded by
a point A € IT has A as one of the directions and oo (the point at infinty) as
the other direction. So by Aoco we mean the vertical half-line perpendicular
on IT at A.

Two distinct lines £, ¢ in hyperbolic space can be in precisely one of the
following three positions:

(I) N ¢ = {P} for some point P. In this case the only line orthogonal
on both ¢ and ¢ is the line orthogonal on the plane supporting ¢ and ¢
passing through P.

(IT) £N¢' = ( and ¢, ¢" are not last parallel to each other (see above), i.e.,
they don’t meet at infinity. In this case there are exactly two points M € ¢,
N € ¢ such that the distance |[M N| is minimum (it follows then that M N is
orthogonal on both ¢, ¢"). Conversely, if M € £, N € ¢/ such that MN 1 ¢, ¢
then |M N| is the smallest distance between a point of ¢ and a point of ¢'.
Hence again there is a unique line orthogonal on both ¢ and ¢'.

(IIT) ¢ and ¢ meet at infinity. Then there is no line orthogonal on
both ¢ and ¢'. In our case the semicircles of diameters AB and C'D ortho-
gonal on II are the lines AB and C'D from the hyperbolic space and, since
{A,B}n{C,D} =0, AB and CD are not last parallel to each other, so they
are in one of the cases (I) and (II) above. Therefore there is a unique hyper-
bolic line C(AB,CD) orthogonal on both AB and CD. If C(AB,CD) is a
vertical half-line Ooc then the fact that Ooco is orthogonal on the semicircles
of diameters AB and C'D means that O is the midpoint of both segments
AB and CD, so A,C, B, D are the vertices of a parallelogram, which contra-
dicts the hypothesis. So C(AB,CD) is a semicircle with the diameter on II
orthogonal on II, as required. Similarly we have the semicircles C(AC, BD)
and C(AD, BC).

We denote by M, N, P,Q, R, S the points where the lines C(AB,CD),
C(AC,BD) and C(AD, BC) intersect orthogonally AB, CD, AC, BD, AD
and BC, respectively. We denote by O,0’,0” the midpoints of M N, PQ
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and RS, respectively. Since M, N € C(AB,CD), we have O € C(AB,CD)
and, similarly, O’ € C(AC, BD) and O” € C(AD, BC).

We consider the hyperbolic symmetry o with respect to the line
C(AB,CD,). Since the lines AB and CD touch C(AB,CD) orthogonally in
M and N the symmetry o acts on AB and CD as the symmetry with respect
to M and N, respectively. Hence o preserves AB and C'D but reverses the
directions. Hence o permutes A, B and C, D. It follows that o¢(AC) = BD
and o(BD) = AC. Since C(AC, BD) is the only line orthogonal on AC and
BD and it touches AC and BD in P and Q, o will preserve C(AC, BD), but
permutes P and Q. Since o(P) = @ we have that the midpoint O’ of PQ
belongs to C(AB,CD), so O' € C(AB,CD)NC(AC,BD). Also if P # Q
then the line PQ = C(AC, BD) is orthogonal on C(AB,CD).

By a similar reasoning, O € C(AB,CD)NC(AC,BD) and ift M # N
then C(AB,CD) L C(AC,BD). Hence O,0" € C(AB,CD)N C(AC,BD)
and if M # N or P # @Q then C(AB,CD) L C(AC,BD). Soif M # N
or P # (@ then C(AB,CD) L C(AC,BD) and C(AB,CD)NC(AC,BD) =
{0} = {O'}. The remaining case M = N = O and P = @ = O’ does not
occur. Indeed, if O # O’ then from O,0" € C(AB,CD) N C(AC,BD) we
get C(AB,CD) = C(AC,BD) =: (. But this implies that ¢ is orthogonal on
both AB and AC, which is impossible since AB and AC' are in the case (III)
above (they meet at infinity at A), so there is no common orthogonal line.
If O = O’ then AB and AC have a common point M = P and a common
direction A, so AB = AC and, so B = C. Contradiction.

By the same argument, O” = O = O', C(AD,BC) N C(AB,CD) =
C(AD,BC) N C(AC,BD) = {O"} and also C(AD,BC) 1L C(AB,CD),
C(AC,BD). This means that C(AB,CD), C(AC,BD) and C(AD, BC) are
orthogonal on each other and they pass through the same point O = O' = O”.

Notes. (1) We do not need the condition that A, B,C,D are not
the vertices of a parallelogram if we allow C(AB,CD), C(AC,BD) and
C(AD, BC) to be vertical half-lines, not only semicircles.

(2) We may obtain a similar result if we choose D = oco. Then the
semicircles AD, BD,C'D become the vertical lines Aco, Boo and Coo.

(3) The point O is clearly the hyperbolic midpoint of the segments M N,
PQ and RS, but this is not easy to state in terms of euclidean geometry.

394. Find all polynomials P € Z[X] such that a?+b2+c? | f(a)+ f(b)+ f(c)
for any a,b,c € Z

Proposed by Vlad Matei, student, University of Wisconsin,
Madison, USA.

Solution by V. Makanin, Sankt Petersburg, Russia. The answer is f =
mX?2, for m € Z.
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First we have (for a = b = ¢ = 0) that 0 divides 3f(0), thus f(0) = 0.
Then a® + b +¢* | f(a) + f(b) + f(c) and a® + 6% +¢* | f(—a) + f(b) + f(c)
imply a® + b> + ¢ | f(a) — f(—a) for all integer a,b,c, and from here we
easily infer that f(a) = f(—a) for all a. As f is an even polynomial, there
must exist g (with integer coefficients and with g(0) = 0, of course) such that
f(X) = g(X?). The hypothesis becomes a® + b? + ¢? | g(a®) + g(b?) + g(c?)
for all a,b,c € Z.

Now we have that (a® + b?)% + ¢ = (a® — b?)? + (2ab)? + ¢* divides
9((a®=b%)?)+g((2ab)?) +g(c?) and (a*+b*)*+c? = (a?+b%)*+c*+0? divides
g((a2 + b2)2) + g(c2) +9(0) = g((a2 + b2)2) + g(cQ), therefore (a2 + b2)2 + 2
divides g((a® +b%)?) — g((a* — b*)?) — g((2ab)?) for all a,b,c € Z. Obviously,
this implies that for all a,b € Z we have

9((a® = 1) + (200)°) = g((a® + 1°)°) = g((a® ~ 1°)°) + g((2ab)?).

Further let us consider some IV of the form N = 4p% e pi, with pi,...,pg
distinct primes. There are 2 distinct pairs (a, b) of positive integers such that
N = (2ab)%. If (a,b) and (c,d) are two such pairs, we have ab = cd. If we
also have (a? — b?)? = (c® — d?)?, we see immediately that either a = c
and b = d, or a = d and b = ¢. Consequently there still remain 2+~1
distinct values of (a? — b%)? when (a, b) runs over all solutions of (2ab)? = N.
Chose k such that 28! is greater than the degree of g; then the equality
g(x+ N) = g(x)+ g(N) is assured for at least deg(g) + 1 values of = (z is of
the form (a® — b?)2, with (2ab)? = N), meaning that it is true for all z. But
in that case, by differentiation we get ¢'(z + N) = ¢'(x) for all z, yielding
that ¢’ (the derivative of g) is constant, hence g is of the form mX, for some
integer m (actually g = mX + n, but we already know ¢(0) = 0). This gives
for f the form f = mX?, and it is easy to check that these polynomials are
indeed solutions of the problem. O

395. Let 21, 29,...,2, > 1. Prove the following inequality:
n

a2 ()Y ey
o LT 1+Hzi1/" i1 1+ [ 2
i=1 J#
Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA
and Stefan Spataru, International Computer High School of Bucharest,
Bucharest, Romania.

n

Solution by V. Makanin, Sankt Petersburg, Rusia. Let f be a convex
function on the interval I; then for every x1,xo,...,x, € I the inequality

Zf T n(n—2 (Zx> n—lZf LY

1<j<n, j#i
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holds. This generalization of Popoviciu’s inequality was proved by Vasile
Cirtoaje and can be found, with proof (based on Karamata’s inequality), in
his book Algebraic Inequalities, GIL Publishing House, 2006, pp. 193-195.
Now consider the function f : [0,00) — R defined by f(z) = 1/(1 + €*) and
note that f is convex on [0, 00), having the second derivative

7 o e’ (ex B 1)
f(z) = 7(1 ) >0 forallxz>0.
Then apply the above generalization of Popoviciu’s inequality to f and to
the numbers x; = log z; > 0 in order to obtain the desired inequality. ]

396. Let I be a field and let V' be an F-vector space. We denote, as usual,
by T'(V), S(V) and A(V) the tensor, symmetric and exterior algebras over
V.

Let I be the subgroup of (V') generated by 71 ®: - @y, — (1)@ - ®
To(ny With z1,..., 2, € V and 0 € Ay,. Then Ig is a homogeneous ideal in
T(V) and we denote by S’ (V) =T(V)/Ig. Then S’(V) is a graded algebra,
S'(V) = D,,505™(V). We denote by ® the product on S’(V). Hence if
T1,...,o, €V then the image of 2, ® --- @z, € T(V) in §'(V) = T(V) /I
IS AR ORERROK 9

(i) For n > 1 let pgm gn : S™(V) — S™(V') be the linear map given by
21O+ O Ty — 1T, For any integer n greater than or equal to 2 find
a linear map pan gm : A™(V') — S"(V') such that the short sequence

psln’sn

0 AP(V) 2225 gmy) S™(V) =0

is exact.

(ii) If ' = Fy prove that for any positive integer n there is a linear map
psnan 2 S"(V) = A™(V) with 1 -2y = 21 A~ Axy. If n=2,3 find a
linear map pra-1 gn : 7" (V) — S™(V) such that the short sequence

Prn—1 gn psn AN

0— 1" YV) S™(V) A" (V) =0

is exact.
Proposed by Constantin-Nicolae Beli, Simion Stoilow Institute of
Mathematics of the Romanian Academy, Bucharest, Romania.

Solution by the author. By definition, we have S(V) = T(V)/Ig and
A(V) =T(V)/Ix, where Ig and Ip are the bilateral ideals of T'(V') generated
by {x®@y—y®z | z,y € V} and {x®x | z € V'}, respectively. It turns out that
Ig is also a bilateral ideal. To prove this we must show that SR a®y € Iy
whenever « is a generator of s and 3,y are generators of (V). We may take
a=T1Q  QTp —Ty(1) Q- QLy(n), =1 - Qymandy=21Q - Q 2,
where z;,y;,2z; € V and 0 € A,. Since ¢ € A, the mapping y; — ¥,
Ti & To(j), 2i — 2i S an even permutation of Y1, ..., Y, X1, -+ Ty 215 - - -5 2k
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Therefore fRIARYT=yY1 Q- QUmO®LTI Q- L, @2 Q- Q2 — Y1 ®
@ Ym B Ty(1) B B Ty ® 21 D D 2.

We denote by Ig, I}, Ig the homogeneous components of degree n of
Ig, I, I

Note that if z; = x; for some i # j then 11 ® -+ @ Tp, — (1) O - O Ty(y)
belongs to I, for any o € S,,, not merely for o € A,,. Indeed, if 0 € S,, \ 4,
then let 7 be the transposition (7,j). Then for any k we have z ) = i
(Tr() = @5 = 34, () = v, = zj and 7(k) = k for k # 4,7). It follows
that z,,4) = Tok) Yk But 7,0 € S, \ Ap, so 70 € A,. It follows that
xl@"'®$n_xa(l)®"'®$U(n) — x1®...®xn_$7_0(1)®...®x7_0(n) cIn.

Let (e;)icr be a basis for V. On I we define a total order relation <.
Let A" = {(i1,...,ip) € I" : iy < ... <ip}, B® = {(i1,...,in) € I" : iy <
... <ip}and C" = A"\ B". Let f: B® — A™(V) be given by f(i1,...,i,) =
ei, \---Ne;, and h : A" — S™(V) be given by h(i1,...,i,) = €;, ---¢€;,. Then
(f(b))pepn is a basis for A"(V) and (h(a))qecan is a basis for S™(V).

We now assume that n > 2 and we obtain a basis for S (V). For
any o € T"(V) we denote by [a] its class in S"™(V), [a] = a + . Since
I3 is generated, as a group, by o1 ® -+ @ Tp — Te(1) @ +++ ® Tg(p), With
z; € V and 0 € A,, it will be generated, as a vector space, by €;, ® -+ ®
€ip — Ciyqy @00 ® €, With (i1,...,in) € I™ and 0 € A,,. On the basis
X={e;,® --®ei, : (i1,...,0n) € I"} of T*(V) we define the equivalence
relation ~, e, @ - ®e;, ~ e @ - @ ey, if (J1,...,70n) = (0(i1),...,0(in))
for some o € A,. Then Ig, is generated by elements of the form « — 3, where
a,f € X, with o ~ 3. It follows that a basis of S"™(V) = T"™(V)/I%, is
{lo] | @ € Y}, where Y is a system of representatives for X/ ~.

Let « € X, a = ¢j, ® - ® ej,, with (ji1,...,5n) € I". Then by
arranging ji, ..., Jp in increasing order we obtain a sequence i1 < ... < iy,
ie., (i1,...,iy) € A", and there is 0 € S, with iy = Jo(s) Vs. We consider
two cases.

If ji,...,Jn are mutually distinct then i1 < ... < iy, i.e., (i1,...,0,) €
B", and the permutation o satisfying (i1,...,in) = (Jo1)s---» (Jom))) 18
unique. If 0 € A, thenej ®---®ej, ~e;, ®---®e;,. If 0 € S\ Ay, then let

7= (1,2) and we have 70 € A,. Since (i2,71,%3, - -,n) = (ir(1),- > ir(n)) =
(j07(1)7 e 7ja'T(n))7 we have ej, ® - @€, ~ €, Vej; Dej; Q- D e,
If 41, ..., jn are not mutually distinct then there is some s with ig = 541,

sO (i1,...,1p) € A"\ B" =C". Let 7 = (s,s+ 1). Since iy = i511, we have
(i1, yin) = (ir(1)s- - ir(n)) = (Jor(1)- - -»Jor(n)). Therefore in both cases
ocA,and or € A, we have ej, ® ---®ej, ~ e @ - ®ej,.

In conclusion, a set of representatives for X, is Y = {e;, ®---®e;,, €;,®
€, ®We;; - - Qe (’il,...,in) € Bn}U{eil®"-®€in : (il,...,’in) S Cn}
We define g1,92 : B" — S™(V) and g : C™ — S™(V) by g1(i1,...,in) =
ey @ Oei,, g2(it, ... in) = €iy O e @ejy OO ey, and glit, ..., i) =
e, -+ ® e . Since the projection T"(V) — T™(V) /1%, = S™(V) is given
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by [#11® - @ xp] =21 ® -+ © xy, the basis {[a] : @ € Y} of (V) can be
written as {g1(b), g2(b) : b€ B"} U{g(c) : c€ C"}.

Note that one has Iy, C Ig because both are generated by expressions
of the type z1 @ - - @ Tp — Ty(1) @+ @ Ty(y), With 0 € Ay in the case of
I%, and with o € S, in the case of I?. Thus the map pgm gn : S™(V) =
(V)15 — S™(V) =T™(V)/I§ given by 1 ® -+ © y, = @1 -+ - Ty, is well
defined and surjective. We write pgm gn in the bases {g1(b), g2(b) : b€ B"}U
{g9(c) : ce C™} and {h(a) : a € A"} for S (V) and S™(V'), respectively. If
b= (i1,...,i,) € B™ then psm gn (q1(b)) = psm Sn (92(b)) = €4, -+ - ei, = h(b)
and if ¢ = (i1,...,4,) € C™ then pgm gn(g(c)) = €, ---€i, = h(c). A typical
element o € S (V) has the form a = > (apg1(b) + Bpg2(b)) + > veg(e),

beB™ ceC
where ay, B, 7. € F' are almost all zero. We have pgm gn(a) = > (ap +
beB™
Bp)h(b) + > ~eh(c). It follows that a € ker pgm gn iff ap + 5, = 0 Vb € B”

ceCn
and v, = 0 Vc € C". Hence

ker pgm gn = { Z (apg1(b) — apga(b)) : ap € F almost all zero}.
beB™

We now define the map ppn gin. Note that the map ¢ : V" — S"(V)
given by (z1,...,2,) > 210 Oy —220x1 Or3O- - -Ox, is multilinear and
alternate. (If z; = ; then 2 © 21 ®23® - - - O ), writes as Te(1) O OZy(n),
where o = (1,2), and it is equal to 1 ® - - - ® &y, even though o € S, \ 4,, by
a remark we made above.) Hence it induces a map pan gm : A™(V) = S"™(V)
given by 21 A ... AL, = 21O O Xy — T2 OT1 Ox30 - O Ty

We write pan g in the bases {f(b) : b € B"} and {g1(b),g2(b) :
be B"tU{g(c) : ¢ € C"} for A"(V) and S™(V), respectively. If b =
(i1,...,1y) € B™ we have pAn7S/n(f(b)) =€, 0 -0¢, —€,0e, ©e, O
- @€, = g1(b) — g2(b). A typical element of A"(V) has the form o =

> apf(b), where ap, € F are almosts all zero, and we have pyn gm(a) =
beB™

> ap(g1(d)—g2(b)) = > (apg1(b)—cwpg2(b)). Then a € ker ppn gm iff ap =
beB" beB™
0Vb e B", ie., iff « = 0. Thus ppn gm is injective. We also have Im ppn gim =

{ > (apg1(b) — apga(b)) : o € F almost all zero} = ker pgim gn. Therefore
beBn"
the sequence from (i) is exact.

For (ii) we note that the bilateral ideal Iy of T'(V) contains all ex-
pressions of the form z ® y + y ® ¢ with x,y € V. But since we are in
characteristic 2 we have @y +y®r =2 ®y — y ® =, so Iy contains the
bilateral ideal generated by these expressions, which is Is. Hence we have
a surjective linear map pga : S(V) = T(V)/Ig — A(V) = T(V)/Ix given
by x1---x, = x1 A--- Ax,. The maps pgn an are just the homogeneous
components of pg x.
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We now assume that n > 2 and write pgn p» in terms of the bases
{h(a) : a € A"} and {f(b) : b € B"}. If a = (i1,...,in) € A" = B"UC"
then pgn an(h(a)) = ej; A--- Nej,. If a € B" then pgn an(h(a)) = f(a). If
a € C™ then iy = iz for some s, so pgn an(h(a)) = 0. A typical a € S"(V)
has the form a = ) agh(a), where a, € F' are almost all zero, and we have

acA
psnan(a) = Y agf(a). Thus a € ker pgn an iff o, = 0 Va € B™. It follows
acB™
that ker pgn an ={ > ach(c) : a. € F almost all zero}. Thus h(c), c € C",

ceCn
are a basis for ker pgn pn.

Note that all the reasoning above apply for F' arbitrary of characteristic
2, not merely F' = F5. From now on we assume that F' = F.

Take first n = 2. Then C? = {(4,7) : i € I}, so a basis for ker pg2 y2
is made of h(i,i) = e with i € I. We define pp1 g2 : THV) =V — S%(V)
by z + x?. We have pri g2(z +y) = (z +y)? = 2% + 2zy + y? = 27 +
y? = pp1g2(x) + prig2(y) and if A € F then pr1 g2(Az) = (Ax)? = Az? =
Aprig2(z). (In F = Fy we have A = X.) Thus p71 g2 is linear. We have
pr s2(€i) = e?, so the basis {e; : i € I'} of V is sent bijectively by prt 52 to
the basis {e? : i € I} of ker pg2 52. Thus pr1 g2 is a bijection between V and
ker pg2 p2. Since also pg2 2 is surjective, the sequence

Pr1 752

0=V —5 8%V)

P
A NV) 5 0
is exact.

If n =3 then pr2 g3 : T2(V) =V @V — S3(V) will be defined as the

composition V@V P12 @l S2V)eV I S$3(V), where m : S2(V)@V =
S2(V)Y®SH(V) — S3(V) is just the multiplication from S(V'). More precisely,
pr2 g3 is given by 2®y — 2?y. (We have m(pr1 g2 @1y (z®y)) = m(z?®y) =
22y.) An element from the canonical basis ej, ® ej,, with ji,jo € I is sent
by pr2 gs to ejz1 ej,, which can be written as h(c) for some ¢ € C™. Namely,
c = (jl,jl,jg) if j1 < jo and ¢ = (jg,jl,jl) if j1 > jo. Conversely, if
c = (il,ig,ig) € C™ then i; < i9 < i3 and i1 = 49 or i9 = i3. Then
h(c) = e;, eiyeiy, which can be written as e?l ej, = pr2,g3(ej; ® ej,) for some
unique jl,jz e 1. Namely (jl,jg) = (il,ig) if il = ’ig and (jl,jg) = (ig,’il)
if 41 < iy = i3. Hence the basis {ej, ® ej, : ji,j2 € I} of V ® V is sent
bijectively by pr2 gs to the basis {h(c) : ¢ € C?} of ker pgs ps. Thus pr2 g3
is a bijection between V @ V' and ker pgs p3. Since pgs s is also surjective,

the sequence 0 - V @V N S3(V) LN A3(V) = 0 is exact. O

397. Let n > 1 be an integer and let f : R™ — R" be a function with the
property that the image under f of any sphere S of codimension 1 is a shere
of codimension 1 of the same radius. Prove that f is an isometry.
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Proposed by Marius Cavachi, Ovidius University of Constanta,
Constanta, Romania.

Solution by the author. If a,b € R™, a # b, then a, b are antipodal points
on a sphere S of radius |b — a|/2. Then f(a), f(b) belong to f(S), which is
again a sphere of radius |b—a|/2. Hence |f(b) — f(a)| is less than or equal to
the diameter |b — a| of f(S). So the inequality |f(b) — f(a)| < |b — a| holds
for all a,b € R™.

If d € f(S) is the antipodal point of f(a) then |d — f(a)| = |b— al. Let
¢ € S such that f(c) = d. We have |b—a| = |d— f(a)| = |f(c)— f(a)| < |c—al.
But a, ¢ belong to the sphere S of radius |b—al|/2, so |¢c —a| > |b— a| implies
that |¢ — a| = |b — a| and c¢ is the antipodal point of @ on S, i.e., ¢ = b. It
follows that d = f(c) = f(b), so |f(b) — f(a)| = |d — f(a)| = |b— a|. Hence f
is an isometry. U

398. Let A € M, (Q) be an invertible matrix.

a) Prove that if for every k € N* there exists By € M,,(Q) such that
B,’i = A, then all the eigenvalues of A are equal to 1.

b) Is the converse of a) true?

Proposed by Victor Alexandru, Cornel B&detica, Gabriel Mincu,
University of Bucharest, Bucharest, Romania

Solution by the authors. a) Let P4 = det(X I, — A) be the characteristic
polynomial of A. We will denote by p1,ps,...,pr € N the primes that divide
at least one of the denominators of the coefficients of P4 and put

a
R:{—EQ:QEZ, s =pitpy? . i, al,...,aréN}.
s

It is easy to see that R is a subring of Q and P4 € R[X].

Let £ > 1 be fixed. We denote by ai,...,a, the roots of P4 and
by B1,..., B, the roots of Pp,. Then if we order well these roots we have
o; = ﬁf. (We have B’g = A.) Wedenote Py = X" 4+a, 1 X" ' +.--+ag and
Pp, = X" +b, 1 X" 1+ +by. Note that Pg,(X) = (X —S1) (X —Bn)
divides P4(X*) = (X" — 1) - (XF — ) = (XF = BF) - (XF — BF). Tt
follows that for any N > 1 we have N"Pg, (X/N) | N¥"P,(X*/N¥), ie.,
X" 4 Nbp_1 X" L4+ Ny divides X*7 + Nkq,,_ Xkn=1) 4 ... 4 Nkng,.
Since a; € R, if we take N = (p1---p;)° for some large enough s we have
N*a, ;€ Z for 1 <i <n, so Ni"Py(X*/N¥) € Z[X]. By Gauss’s Lemma
this implies N"Pp, (X) € Z[X], whence Nib,,_; € Z for 1 < i < n. But this
implies that b,—; € R for 1 <i <n, so Pp, € R[X].

We now consider a prime ¢ € N\ {p1,...,p,}. The function ¢ : Z —
R/qR given by a — a + qR is a ring homomorphism. We have a € ker ¢ iff
a € qR,ie., iff a = q%, where N has the form N = p{'---p2r so (¢, N) = 1.
Then ¢ | ¢b = aN implies ¢ | a, so a € gZ. Conversely, if a € ¢Z then a € gR
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(we have Z C R), so ker¢ = gZ. Thus ¢ induces an injective morphism
¢ :7Z/qZ — R/qR given by a + qZ + a + qR. We claim that this morphism
is also surjective, so it is an isomorphism. An element in R has the form %,
where N has the form N = p{*---p®, so (¢, N) = 1. Then there is some
a € Z with Na = b (mod q), so Na = b+ gc for some ¢ € Z. It follows
that a = £ +q& € 2 4+ qR, s0 ¢(a+qZ) = a+qR = £ +qR. So ¢ is an
isomorphism. For any a € R we denote by @ its class in R/qR = Z/qZ = F,,
ie,a= 6_1(a +¢qR). Similarly, if P € R[X] we denote by P the polynomial
in R/qR[X] = F,[X] obtained by applying @71 to the coefficients of P.

(X —-X1) (X —-X,) = X"+ 8,4X" 1 +...+ 8 and (X —
XpP) - (X—XE) = X"+ T, 1 X"+ 4Ty with S, T; € Z[X1, ..., X,,] then
by Viete’s formulas and the fundamental theorem of the symmetric polyno-
mials we have T; = Q;(So, ..., Snp—1), where Qq, ..., Qn—1 € Z[Xo, ..., Xn_1].
Since Pp, = X" + by X" Lo bg= (X - 1) (X —B,) and Py =
Xn—i-an_anil—F' ctag = (X—ﬁ{c) ce (X—Bﬁ), we have b; = Si(ﬁl, .. ,ﬁn)
and a; = T;(B1,...,0n), so a; = Qi(bo,...,bp—1) for 0 < i < n — 1. Let
now vy, ..., v, be the roots of Pg,. We have (X —v1)--- (X —vp,) = X" +
by—1 X" 1. .. +by and if we denote (X —vf) --- (X —vf) = X" 45, _1X” -

- + ¢ then, by the same reasoning as above, ¢ = Qi(bg,...,b,_1) =
Qi(bo, ..., bp—1) = @. Thus (X —vf)--- (X —vF) = X" + @, 1 X" 1 +

.-+ @y = Py, i.e., the roots of P4 are the kth powers of the roots of PBk,
same as for P4 and Pp,.

We now assume that, besides ¢ ¢ {p1,...,pr}, ¢ is not a divisor of
the numerator of ag, that is, ag ¢ qR, so ap # 0. (By hypothesis ay =
(—1)"det A # 0.) It follows that the roots vf,...,v* of P4 are not zero, so
v; # 0 Vi. We take k = ¢™ — 1, where m = lem (1,2,...,n). Now, it is well
known that Fg is the splitting field of every irreducible polynomial of degree
t over F,. Consequently, every root v; of the nth degree polynomial Pp, €
F4[X] belongs to Fy: for some 1 <t <n. Thent | m,sov; € Fye CFym. Since
vi # 0 we have v; € Fim. But k = ¢™ — 1 = |[Fu|, so vF = 1. It follows that
Pp=(X—-vF)- (X —vf)=(X—T1)", which implies that @; = (—1)"(7),
so a; — (=1)"7(}) € gqR. This means that a; — (—=1)"7*() writes as a
fraction with the numerator divisible by ¢. Since this happens for an infinity
of primes ¢ (all ¢ not dividing p; - - - p, or the numerator of ap) we must have
a;—(—=1)"" ’( ) = 0. It follows that Py=X"+a, 1 X '+ +ag = (X-1)"
Hence the conclusion.

b) Yes, the converse of a) is also true. We have (A —I)" = P4(A) =0,
ie., B" =0, where B=A— 1.
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We use the binomial formula (1 4+ X)V/F = 3 (%)X ¢ which implies
i>0

k
1+X = (Z (%)XZ> . This formula holds not only for X € R (or C) with

120

n—1 )
|X| < 1 but also as an equality of formal series. Since (14+X)V/% = 3 (%)XZ

n—1 . k n—1 . k
(mod X™), we have (Z (%)X’) =14+ X (mod X"), so (Z (’})X1> =
i=0 1=0
1+ X 4+ X"Q(X) for some Q € Z[X].
n—1 ) k
It follows that (Z (%)BZ> =I+B+B"Q(B)=I1I+B=A. So
i=0
n—1 )
we found By € M, (Q) with Bf = A, namely By = > (%)Bl. (Note that
i=0
B =0 for i > n, so we may also write B, = (%)BZ) O

i>0

Note. We can remove the condition that A is invertible, but then the
necessary and sufficient condition is that p4, the minimal polynomial of A,
has the form (X — 1) or X(X — 1) for some .

Let m (0 < m < n) be the multiplicity of the root 0 in P4. Since the
roots of P4 are the kth powers of the roots By the multiplicity of 0 in By, is
again m. Moreover, if P4 = X™P) and Pp, = X mPéK then P/, and P,BK are
monic, of degree n —m and with rational coefficients and the roots of P, are
kth powers of the roots of P]’3K. Then by the same reasoning from the solution
of Problem 398 a) we have P} = (X —1)""™. Thus P4 = X™(X —1)"™™.

We may assume that m > 1 since otherwise Py = (X — 1)", i.e., pg =
(X —1)! for some [, a case already considered. Now by considering the Jordan
canonical form we can write By, ~ B, @ B}/, where By is the sum of all Jordan
blocks corresponding to the eigenvalue 0 and By is the sum of the Jordan
blocks corresponding to nonzero eigenvalues. Since the multiplicity of 0 in
Ppg, is m, the matrix B}, is m x m and Pp, = X", so B =0.

We take k = m and we have A = B™ ~ (B, & B/)™ = B'" & B", =
0m @ B”). (By 0,, we denote the m X m zero matrix.) Then pug,, = X and
Fy,, = X™, which, together with P4 = X™(X — 1)"~™, implies Ppim =
(X —1)"™™, so pprm = (X —1)! for some | < n —m. Since y,, = X and
pprm = (X — 1)}, we have pg = X(X — 1)

We now prove the sufficiency. We keep the notation B = A — I from
the solution of part b) of Problem 398.

The case pa = (X — 1)t is just Problem 398 b). Namely, the matrix

k

By, € M, (Q) satisfying Bf = A'is B, = 3 (})Bi = ¥ (1) B'.
. 2

i= >
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If pug = X then A =0, so we just take By = 0.

Suppose now that jiq = X (X — 1)l with [ > 1,50 Py = X™(X —1)»™
with 1 < m < n. We use the Jordan canonical form and therefore write
A= S8(A"® A")S™!, where S € GL,(Q) and A’ and A” are the sum of the
Jordan blocks corresponding to the eigenvalue 0 or 1, respectively. Then
par =X, 50 A" =0y, and par = (X — 1)%

-1 ,
Then for any k > 1 we have A” = B"}, where Bl =3 (%)B”’, with
i=0
B" = A" — I,,_,. Then we take By = S(0,, ® BZ)S_I, for which we have
BE = 5(0,, ® B)kS—1 = 5(05, @ B"})S™! = S(0,, ® A”)S™! = A.

In fact By can be expressed as a polynomial in A, as in the case g =
(X — 1)L, To do this we regard A as a linear function A4 : Q" — Q". Since
pa = X(X —1)! we can write Q" = Vp @ Vi, where Vj = ker A = Im (A — 1)’
and V; = ker(A — I)! = Im A are invariant subspaces of Q", i.e., AVy C Vy
for A = 0,1. We will look for a By, such that V) are invariant relative to Bjy.
Then B,i“ = A is equivalent to BL“M = A, for A=0,1.

On Vp = ker A we have Ay, = 0, so when we take By, = 0 we have
B,’jwo = Apy,- On Vi = ker(A — I)! we have (A, — I|V1)k = 0. Then by the

-1 4
case g = (X — 1)!if By, = ‘Zo (IZ?)BFV1 then B,’j‘vl = Ay,
1=
In conclusion, in order that BY = A it is enough that By (z) = 0if z € Vp
-1 ,
and Brx = (Z (’})Bl) xif x € V1. Let x € Q™ be arbitrary. Then z = x¢+
i=0
x1, where o = (I — A)lz and z1 = (I — (I — A)Y)z = (I — (—B)")z. Note that

l A
zo € Im (A—I)" = Vpand 2, = A <Z (i)(A)’*) r € Im A = V. It follows
i=1
-1 -1

that Bya = Byxo+ By = 0+ (z (k.)Bi> 7 = (2 (%)BZ) (I—(~B)")a.

=0 i=0

=

~

-1,
5 () - B,

There is a dilrectZ proof of the fact that By defined above works. We
have 0 = A(A—I)! = (B+1)B!. Then for any s > [ we have (B+1)B* =0,
i.e., B = —B*Tl. It follows that (—B)! = (—=B)!*! = (=B)"*? = .. .. Hence
for any s,t > [ we have (—B)®* = (=B)!, so B* = (—1)!"*Bt. In particular,
(—B)" = (~B)”", 50 (I — (=B))? = I - 2A(~B)l + (~B) = I — (-B), i.c.
I — (—B)! is idempotent. As seen in the solution of Problem 398 b) we have

In conclusion, By = (
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-1 N\F
(Z (%)X’) =1+ X + X'Q(X) for some Q € Z[X]. Tt follows that
i=0

1 k
B£=<§j@)ﬁ><I—@Bwk=a+3+fmwmxf—va
=0
=1+ B-(I+B)(-B)' +B'I - (-B)")Q(B).
From (I + B)(—B)! = (-=1){(B + I)B' = 0 and
B(I-(=B)) = (-)'(-B)(I = (-B)) = (=) ((-B)' = (-B)*) =0
it then results B’kc =]+ B=A.
Note that By also writes as

-1 1 -1 ,1q
EYRI(T_ () — E i _ (_1\l—ipl
> (F)ee- =X (5) @ - o)
=0 1=0
(We have B! = (—1)'B"* so Bi(-B)! = (-1)!B"* = (-1)!7'Bl.) Also if
. . 1 . .
i > 1 then B' — (—1)/7"B' = 0, so we have By = >_ (f) (B' — (-1)"7'B).
i>0

Also, in both cases when 14 = (X —1)" or X (X —1)! we have 4 divides

X(X—-1)" s0 A(A—I)" = 0. It follows that we can use the formula above for

By with L =n: By = ¥ (¥)(B' = (=1)""iB") = 3 (¥)(B' — (~=1)"~B"),
i=0 i>0
which works in all cases.

399. Let n >3 and let P = a, X"+ +ap € R[X] with a; > 0 Vi such that
all the roots of P’ are real. If 0 < a < b prove that

me®>P@—P@
[P e~ P(0) ~ Pla)

Proposed by Florin Stanescu, Serban Cioculescu School, Gaegti, Dam-

bovita, Romania.

Solution by the author. Let x1,...,x,_1 be the roots of P’. Since the
coefficients of P’ are ia; > 0 for 1 < ¢ < n, we have z; < 0 Vi. We have
for all positive z P"(x)/P'(z) = Z?;l (z — x1)~', whence (P"(x)/P'(x)) =
- Z;L;ll(x—xl)_Q < 0. Hence the function ¢ : [0, 00) — (0, 00), ¢(z) = 1;,,,((;")),
is strictly decreasing. Now P’ is strictly increasing and positive on [0, 00).
(It has positive coefficients.) Hence P,, is positive and strictly decreasing on

, same as ¢. By Chebyshev mequahty we have

P, /cb P,, e — /czs dx/a e )d (1)
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On the other hand P’ is positive and strictly increasing on [0, 00). Since
¢ and P’ have opposite monotony, by Chebyshev’s inequality we also have

/ab P'(z)dr = /ab ¢(z)P'(z)dz < ﬁ /ab dle)ds /ab o)

From (1) and (2) we conclude that

b 1 b
Jo Py de > 1 bqb(:z:)dx > Jo P"(x)dz _ P'(b) - P'(a)
f; P%(m)da: Tb-al, - f; P/(z)dz  P(b) — P(a)
Note that f r)dz = log P'(z )‘ log (P,((b))). O

Solution by V. Makanin, Sankt Petersburg, Russia. We need the fol-
lowing result.
Lemma. Let f and g be continuous real functions defined on an interval

I and assuming positive values. Suppose that fg and f/g are both increasing
on I. Then for all a < b from I it holds

J2(f(a) " da fg
J2(g(a))Lda ff

Proof. Fix, for the moment, a € I and define

2) :/;f(t)dt/ax f(lt)dt—/;g(t)dt/: g(lt)dt

for all z > a in I. Simple calculations yield

o) - [ (12 - 1) Saloe) (000

g(x) () f(@)f(#)

and, by the monotonicity and sign hypotheses, one sees that H'(x) > 0 for
all z > a in I. Thus H increases for x > a and, since H(a) = 0, we get
H(x) >0 for all x > a. But for x = b this is clearly equivalent to the desired
inequality (where the denominators are positive). O

t,

Now, for the solution, observe that f = P’ and g = P” are increasing
and positive on I = [0,00) (as polynomial functions with all coefficients
positive). On the other hand, P’ has all zeros real, thus negative (otherwise
P’ wouldn’t be positive for > 0, but this is the case due to its positive

coefficients), let them be —z1,..., —z,_1, with positive z;. Then
f(w)_P’(w)_( Lo, )
g(z)  P'(z) \xz+=z T+ Zp—1

is definite and obviously increasing on [0,00). The lemma therefore applies
to P’ and P” in place of f and g leading to the desired inequality. O
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Note. Here is a detailed proof for the formula for H'(x) from V.

Makanin’s solution. If F1(z) = [; f(t)dt and Fp(x fgc fl dt then F{(x )
f( ) and Fi(x) = W’ 0] the derivative of Fj(x )FQ fO 0] dtfo 7 dt
is
F@)Fao) + Fa@) [t 7 | fo
x)Fy(x
? f(JU o f(t)

=/0 (1)

A similar formula gives the derivative of [ ﬁdt Iy Wlt)dt, )

o [T (@) 0 e a0
e = | <ﬂﬂ+f@) o0 gwﬂd'

But one calculates

flz)  F@) glx) g(t) _ (fx)g(t) = FH)g(x))(f()g(z) — f()g(t)
)

& T Fw e g

This gives the formula for H'(x).

400. For nonnegative integer n put S(n) :== > (—2)*(}) (2" k) Prove that
k=0
4(n+1)S(n) + (n+2)S(n+2) = 0 and conclude that

n 2 n . .
S, — (-1 (n/2) if n is even .
0 if n is odd
Proposed by Mihai Prunescu, Simion Stoilow Institute of Mathema-

tics of the Romanian Academy, Bucharest, Romania.

Solution by C.N. Beli. For any o € Z and any k € N we have
(a) Cala=1)---(a—k+1) (_1)k(—a+k—1)~-(—a+1)(—a)

k k! k!

— <—a +kk - 1>.

It follows that S(n) = (—1)" Z 2k (o k:) = (—1)"a,, where we have put

f=0+22)"(1+z) ! —a0+a1$+

Similarly, S(n + 2) = (—1)"+2bn+2 = (—1)”bn+2, where we have put
g:=(14+22)""2(1+2)""3 = by + byz + - - -. Hence the relation we want to
prove is equivalent to 4(n + 1)a, + (n + 2)by42 = 0.
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C : . :
By Liouville’s theorem a,, = 27” fﬂ/ Zn+1dz, where v is a circle of radius

< % with the center at 0. Similarly for b,42. Hence,

4(n+ Dan + (n + 2)byio = ;m/(4<n+1)zf7fﬂ +(n+2) i@,)dz

It is readily seen that 4(n + 1) Zf,ff)l + (n+2) ﬁ)g, can be written as
dn+1)(1+22)"2 " M1+ 2) " (n+2)(1+22)" 223 (1 4 2) "5
Let ¢ = z(1+2). We have ¢/ = 1+2z, so that (¢')? = 1+4¢. Therefore,

T8 22—t 1))+ 4 (@)
=4(n+1)(¢)"¢" "+ (n+2)(¢)" (1 +4¢)p " °
= (@)"((n+ 2)67" +4{n + 20672 4 d(n+ D).

Let h = (1+22)" 127 72(1 + 2) 7" 2(~1 — 22 — 22?). From

h= ()" 2(=20— 1) = (¢)" T (=" ? =207 1)

4(n+1)

we get
(n+1) //( /) ( ¢—n 2 2¢—n—1)
+(¢/)n+1 /( ’I’L—|—2 ¢—n 3—|—2(TL—|— )¢—n—2)
=2(n+1)(¢)"(~¢7"7 = 207"
+(¢)"(1+49)((n +2)9™" > +2(n +1)¢™"7?)
= (¢)"((n+2)6™" > +4(n+2)¢7" 2 +4(n+ 1))
_dn le)f( z) +(n +2)g£+l
It thus follows that 4(n + 1)a, + (n 4 2)bpto = 5 J, W (2)dz = 0. O

401. Prove the following identities:

265 = wn (2)(6)

i Y+ (2; _+ pl) (be _+ pl> _ (2a :Ji)b(ib 1+ 1) <2aa> <2bb>,

p=>0

with the convention that (7;:) =0ifn<O0orn>m.
Proposed by Ionel Popescu, Simion Stoilow Institute of Mathema-
tics of the Romanian Academy, Bucharest, Romania.

Solution by the author. Note that the general term in the first sum
vanishes for p outside the interval [1,min{a,b}] and in the second sum it
vanishes for p outside [0, min{a, b}]
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These identities can be checked with the help of the zb package written
for Mathematica. For details on this method we refer the reader to [1]. For
completeness we give here a more traditional proof.

The first identity is trivial when a = 0 or b = 0, so we may assume that

a,b > 1. In this case it is equivalent to h(a,b) := >  f(a,b,p) = 1, where
p=0

2p(a + b) (apr) (b%l)p)

ab () (%)
The idea of the zb method in our case is to write f(a + 1,b,p) — f(a,b,p)
in the form g(a,b,p + 1) — g(a,b,p) for some g satisfying g(a,b,p) = 0 for
p = 0 and for p > 0. Then by summing over p going from 0 to co one gets
h(a,b) — h(a+ 1,b) = 0, so h(a,b) is independent of a. Then our statement
follows from the obvious relation h(1,b) = 1. (In the sum giving h(1,b) the
only nonzero term is f(1,b,1), which calculates easily, f(1,b,1) = 1.)

So the whole point is to determine the function g(a, b, p) satisfying the

conditions above. We refer to [1] for details. Here we just give the results
obtained with Mathematica:

fla,b,p) =

2a+1y (2b—1
20l = D () (0)
a(2a+1)(7) ()
We have g(a,b,p) = 0 for p = 0 and for p > min{a + 2,b + 1} and, after
dividing by f(a,b,p), the relation f(a + 1,b,p) — f(a,b,p) = g(a,b,p+ 1) —

fla+lbp) 1 _ glabp+l)  glabp) -
f(a,bp) 1= Fla,b.p) Flabp)® -6 tO

ala+1)(a+b+1)
(a+1-=p)la+1—p)(a+b)

(p+1)(b+p) (p—1)(b+p)
2a+1+p)(a+b)  2a+1—p)a+tb)
which can be easily checked.
The proof of the second statement is done along the same lines. This
time one has

g(a,b,p) =

g(a,b,p) is equivalent to

1=

(2p+ D(a+b+ 1)1 (3

(2a +1)(2b+1)(3) (3)
and the function g¢(a, b, p) satisfying g(a,b,p) = 0 for p = 0 and for p > 0,
a'nd f(a + 17b7p) - f(a7b7p) = g(a7b7p+ 1) - g(a, bap) iS

P+ 1) ()

() (3)

We leave the calculations to the reader. O

fla,b,p) =

g(a,b,p) = —
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402. Let a, b, A € R and u : [a,b] — R be a twice differentiable function
with u/(a) = u/(b) = 0.

(1) Prove that u”(¢) = Au(e)u/(¢) for some ¢ € (a,b).

(2) If moreover u”(a) = 0 prove that there exists d € (a,b) such that
(d = a)u"(d) = u(d) (1 + A(d — a)u(d)).

Proposed by Cezar Lupu, University of Pittsburgh, USA.

Solution by the author. Let us consider the function ¢ : [a,b] — R
defined by
o(t) = W/ (t) - e~ Mau@dz ¢ (g ).

A simple calculation of the derivative shows that
¢(t) = e M @A (0 (1) — Nu(tyul ().

The condition «'(a) = «/(b) = 0 implies that ¢(a) = ¢(b) = 0, so, by
Rolle’s theorem, there exists ¢ € (a, b) such that ¢'(¢) = 0, which is equivalent
to u”(c) = Au(c)u/(c).

For the second part of the problem, let us notice that ¢'(a) = ¢/(¢) =0
and by applying Flett’s mean value theorem (see Math. Gazette 42 (1958),
38-39), there exists d € (a, b) such that ¢/(d) = w, which is equivalent
to

(d— a)e—)\f:u(x)dz(u//(d) _ )\u(d)u'(d)) _ u/(d)e—)\fju(a:)dav7
and thus problem (2) is solved. O

403. A parabola P has the focus F' at distance d from the directrix A. Find
the maximum length of an arc of P corresponding to a chord of length L.
Proposed by Gabriel Mincu, University of Bucharest, Romania.

Solution by the author. Let FE 1. A, E € A, and let O be the midpoint
of EF. We consider a cartesian coordinate system with origin O, the z-axis
parallel to A, and such that yp = 4. Then A = {(z,-%) | z € R}.

The distance from a point of coordinates (z,y) and F is y/22 + (y — )2

and the distance to A is |y + %] Hence the parabola is given by the equation

22+ (y — %)2 =ly+ %|, i.e., by y = ax?, with a = %.
For z,y € R, = < y, we will denote by A(x,y) the length of the arc cut
on P by the points of abscissae  and y. The required maximum will then be
the maximum of \(z,y) with the constraint (y — )%+ (ay® —ax?)? = L2. We

L L
). To see this,

will prove that this maximum is reached for (z,y) = (—2, 3
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let z,9y € R, x < vy, and let M (z,az?) and N(y,ay?) be the corresponding
points of P. We also denote by P and @ the points of P which have abscissae
—% and %, respectively. We have to analyse several cases:

Case L. If z < —% and y > % (orzx < —% and y > %), the length of the
chord M N exceeds L, so the pairs (x,y) of this type have no contribution to
the required maximum.

Case II. If —% <z <y< %, then A(z,y) = f;’ V14 4a2t2dt <
L/2 /53 L L
7L/2 1+4a2t2dt:)\(—§,§)
Case III. If z > —% and y > %, let us notice (bearing in mind that
x < y) that y is uniquely determined by x (since, if N; and No were points

L
of P with abscissae 3 < y1 < yg and such that MN; = M N, then the

isosceles triangle M NyNs would have the obtuse angle M/Nl\Ng, which is
contradictory).

Let us notice that in this case some z’s may not have a corresponding
y, so that the chord M N has length L. Therefore, we must discuss two
subcases:

Subcase III.1. If the circle with centre @@ and radius L intersects

L
P only in P and in a point R of abscissa r > 3 then the distance from

L L
any point M (z,az?) of P with —3 <z < 3 to @ is less than L, so there

L
exists y > max z,m} such that MN = L. Since the uniqueness of y

in the conditions of Case III has been established, we obtain a functional
L
dependence y = p(x), x € (—2, oo>.

L L
LetS:{(z,w)GR:z>—§,w>5,z<w}andg:$—>R,

g(z,w) = (w — 2)? + (aw? — az?)? — L?. We notice that g is continuously
0
differentiable on S and a—g(z,w) = 2(w — 2)[1 + 2a’w(z + w)] > 0. This
w
partial derivative is nowhere zero on S, so, according to the implicit function
theorem, in the vicinity of each point (zg,wp) such that g(zg,wp) = 0 we
may find continuously derivable functions 1 such that (z,¢(z)) € S and
9(z,9¥(z)) = 0 for all z in the domain of ¥. The last two conditions imply,
given the uniqueness discussed above, that for every such @ and every z in

its domain we have ¥ (x) = ¢(z). The consequence of these considerations is

L
that ¢ is a continuously differentiable function on —5,% .

According to the definition of ¢, (o(z) — x)% + a?(¢*(z) — 22)? = L2,
whose derivative is 2(p(x) —x)[¢' (z) — 1 +2a2(p(x) + ) (p(x)¢' (z) — x)] = 0.
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Since ¢(z) > = and 1+ 2ap(z)(p(z) + x) > 0, we obtain

1+ 2a2z(p(x) + )
1+ 2a2¢(x)(p(x) + )

¢'(z) =

Now, A(z,y) = A(z / V' 1+ 4a?t2dt, so we consider the function

L
F: <—2, oo> — R given by formula F(z / V1 + 4a?t2dt. We notice
that F is differentiable, with F'(z) = /1 + 4a?¢?(2)¢'(z) — V1 + 4a?a?,
L L
and F' can be extended continuously to [—2,oo> by putting F' <—2> =

S VT + da%i2dt.

From the above we see that F’(z) < 0if and only if ¢/(z) < %.
If ¢'(x) < 0, this relation is obviously verified. If ¢'(z) > 0, the inequa-
1+ 2a2z(p(x) + ) 2 1+ 402>
1+ 2a2¢(z)(p(x) + a:)> 1+ 4a2p?(z)
culations, we see that this relation is equivalent to the obvious inequality
((z) +2)(p(x) —2)* > 0.

—L
Consequently, F' is a strictly decreasing function on {2, oo> , o that

Mz,y) = F(z) < F(—%) = )\(—%,%) for all (x,y) in the condition of
Subcase III.1.

Subcase IIL.2. If the circle with centre ) and radius L intersects P
in four points: P, R of Subcase III.1 and two other points U, V of abscissae

After cal-

lity is equivalent to (

u and v, respectively, and such that -3 <u<v< ok the reasoning of

Subcase III.1 may still be applied to reach the conclusion that the function
L
given by = — ff(x) V1 + 4a?t2dt is strictly decreasing on [—2,u> and on

[v,00). Since, according to Case II, the value of this function at v does not

L L
da(-2.2
excee ( 55
L L . . . .
AMz,y) < A 55 ) For a point with the abscissa x € [u,v] the distance

), we draw in this case also the conclusion that one has

to @ is > L, so the distance to a point with abscissa y > % is > L. Hence
these poins don’t count here.

L L
Case IV. z < —5 Y < 3 reduces to Case III in view of the symmetry
of P with respect to the y-axis.

The required maximum is therefore A (—%, %) J- Lﬁz V14 4a?t?dt =
2 12 VT 1 4a%Pat.
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The last integral can be computed with the change of variables 7 = 2at:

L L\ 1 [ L 1
)\(—2,2):/ \/1—|—T2d7':5\/1+a2L2—|—2—ln(aL+ V' 1+ a2L?)
a 0 a
_ L/ L? + 4d? +dlnL+\/L2+4d2
N 4d 2d '

404. Let F' : Z x Z — 7Z be a function satisfying the following conditions:
| Fy)|>]z|+]|y| Y,y €Z
2) There are m,n > 1 and the matrices A = (ai;), B = (bij) € Mpmn(Z)
such that

F — 3 . . 7.
(,y) = max  min (a2 + bijy) va,y €

Prove that either F(z,y) > 0 for all z, y € Z or F(x,y) < 0 for all z,
y € Z. Give an example of a function F' for each of these two cases.

Proposed by Serban Basarab, Simion Stoilow Institute of Mathema-
tics of the Romanian Academy, Bucharest, Romania.

Solution by the author. We may extend the function F' to the whole
R xR (with values in R) by the formula F(z,y) = max;<j<m,, mini<j<y,(a;jz+
bijy) Vo,y € R. This function is obviously continuous. We also have
F(xz,yz) = zF(x,y) for any z,y,z € R, z > 0, and F(0,0) = 0.

Now for any a,b,c € Z, ¢ > 0, we have |a| + |[b] < F(a,b) = c[F(%, %)|,
so [4]4 |2 < |F(%,2)|. Thus the inequality |F(z,y)| > |z|+ |y| holds for any
z,y € Q. By continuity it holds for any x,y € R. In particular, F(x,y) # 0
when (x,y) # (0,0). Hence 0 ¢ F(R?\ {(0,0)}). Now F is continuous and
R2\ {(0,0)} is connected. It follows that F'(R%\ {(0,0)}) C R is a connected
set, thus an interval. As 0 ¢ F(R?\ {(0,0)}), F(R?\ {(0,0)}) is contained
in either (—o0,0) or (0,00), i.e., F(z,y) < 0 when (z,y) # 0 or F(x,y) > 0
when (z,y) # 0. Since also F'(0,0) = 0, we get the conclusion.

Examples of F with F(z,y) > 0 Vz,y € Z or F(z,y) < 0 Vz,y € Z
are F'(z,y) = |z| + |y| and F(z,y) = —|z| — |y|, respectively. They clearly
satisfy condition 1). For condition 2) if we take m = 4, n = 1 and A =
(1,1, -1, -7, B = (1,-1,1, -1)" we get F(z,y) = max{z +y,z —y, —x +
y,—x —y} = |x| + |y|; if we take m = 1, n = 4 and A = (1,1,-1,—1),
B =(1,-1,1,-1) we get F(z,y) = min{z +y,z —y,—z +y,—x — y} =
el = Iyl 0

Erratum.

Due to file mishandling, the print version of GMA 32(111) (2014), no. 1-2,
contains two articles with the same title Again on passing to the limit under
integral sign. The article authored by Mircea Merca is actually titled An
infinite family of inequalities involving cosecant sums. The Editors apologize
to both authors and readers for any inconvenience.



