## Test 1 - Solutions

Problem 1. Two circles, $\omega_{1}$ and $\omega_{2}$, centred at $O_{1}$ and $O_{2}$, respectively, meet at points $A$ and $B$. A line through $B$ meets $\omega_{1}$ again at $C$, and $\omega_{2}$ again at $D$. The tangents to $\omega_{1}$ and $\omega_{2}$ at $C$ and $D$, respectively, meet at $E$, and the line $A E$ meets the circle $\omega$ through $A, O_{1}, O_{2}$ again at $F$. Prove that the length of the segment $E F$ is equal to the diameter of $\omega$.

Solution. Begin by noticing that the lines $C O_{1}$ and $D O_{2}$ meet at a point $P$ on $\omega$, since $\angle\left(P O_{1}, P O_{2}\right)=\angle\left(O_{1} C, C B\right)+\angle\left(B D, D O_{2}\right)=\angle\left(C B, B O_{1}\right)+\angle\left(O_{2} B, B D\right)=\angle\left(O_{2} B, B O_{1}\right)=$ $\angle\left(O_{1} A, A O_{2}\right)$. In what follows, we consider the case where $O_{1}$ and $O_{2}$ lie on the segments $C P$ and $D P$, respectively; the other cases are similar.

Since the angles $P C E$ and $P D E$ are both right, and $2 \angle A C P=\angle A O_{1} P=\angle A O_{2} P=2 \angle A D P$ (the equality in the middle holds on account of $P$ lying on $\omega$ ), the points $A, C, D, E, P$ all lie on the circle on diameter $E P$, so $F P$ is a diameter of $\omega$, and it is therefore sufficient to show that $E F=F P$. Finally, since $\angle A F P=\angle A O_{1} P=2 \angle A C P=2 \angle A E P$ (the first, respectively third, equality holds on account of $A P F O_{1}$, respectively $A C E P$, being cyclic), it follows that the triangle $E F P$ is isosceles with apex at $F$.


Fig. 1

Problem 2. Let $n$ be a positive integer, and let $S_{1}, \ldots, S_{n}$ be a collection of finite non-empty sets such that

$$
\sum_{1 \leq i<j \leq n} \frac{\left|S_{i} \cap S_{j}\right|}{\left|S_{i}\right|\left|S_{j}\right|}<1
$$

Prove that there exist pairwise distinct elements $x_{1}, \ldots, x_{n}$ such that $x_{i}$ is a member of $S_{i}$ for each index $i$.

Solution. A choice function or simply a choice for the collection $S_{1}, \ldots, S_{n}$ is a function $c$ from the first $n$ positive integers to the union $S_{1} \cup \ldots \cup S_{n}$ such that $c(i)$ is a member of $S_{i}$ for each $i$. We must show that an injective choice is always possible under the conditions in the statement. To this end, we prove that the number of non-injective choices is strictly less than $\left|S_{1}\right| \cdots\left|S_{n}\right|$, the total number of possible choices. Indeed, a non-injective choice function sends some $i$ and
some $j \neq i$ to a same element necessarily lying in $S_{i} \cap S_{j}$, so the number of non-injective choices does not exceed

$$
\sum_{1 \leq i<j \leq n}\left|S_{i} \cap S_{j}\right|\left|S_{1}\right| \cdots\left|\hat{S}_{i}\right| \cdots\left|\hat{S}_{j}\right| \cdots\left|S_{n}\right|=\left|S_{1}\right| \cdots\left|S_{n}\right| \sum_{1 \leq i<j \leq n} \frac{\left|S_{i} \cap S_{j}\right|}{\left|S_{i}\right|\left|S_{j}\right|}<\left|S_{1}\right| \cdots\left|S_{n}\right|
$$

the hat over $S_{i}$ and $S_{j}$ means that these sets are to be omitted. The conclusion follows.
Problem 3. Let $n$ be a positive integer, and let $a_{1}, \ldots, a_{n}$ be pairwise distinct positive integers. Show that

$$
\sum_{k=1}^{n} \frac{1}{\left[a_{1}, \ldots, a_{k}\right]}<4
$$

where $\left[a_{1}, \ldots, a_{k}\right]$ is the least common multiple of the integers $a_{1}, \ldots, a_{k}$.
Solution. Since the number of positive divisors of a positive integer $m$ does not exceed $2 \sqrt{m}$, and $a_{1}, \ldots, a_{k}$ are pairwise distinct positive divisors of $\left[a_{1}, \ldots, a_{k}\right]$, it follows that $\left[a_{1}, \ldots, a_{k}\right] \geq k^{2} / 4$. Consequently,

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{1}{\left[a_{1}, \ldots, a_{k}\right]} & =\frac{1}{a_{1}}+\sum_{k=2}^{n} \frac{1}{\left[a_{1}, \ldots, a_{k}\right]} \leq 1+\sum_{k=2}^{n} \frac{4}{k^{2}}<1+4 \sum_{k=2}^{n} \frac{1}{k^{2}-\frac{1}{4}} \\
& =1+4 \cdot 2\left(\frac{1}{3}-\frac{1}{2 n+1}\right)<\frac{11}{3}<4
\end{aligned}
$$

Problem 4. Determine the integers $k \geq 2$ for which the sequence $\binom{2 n}{n}(\bmod k), n=0,1,2, \ldots$, is eventually periodic.

Solution. Since $\binom{2 n}{n}=2\binom{2 n-1}{n} \equiv 0(\bmod 2), n=1,2,3, \ldots$, it follows that 2 satisfies the required condition. We will prove that no $k \geq 3$ does.

If $d$ is a divisor of an integer $k$, and the sequence $\binom{2 n}{n}(\bmod k), n=0,1,2, \ldots$, is eventually periodic, then so is the sequence $\binom{2 n}{n}(\bmod d), n=0,1,2, \ldots$

We will show that every integer $k \geq 3$ has a divisor $d$ such that the sequence $\binom{2 n}{n}(\bmod d), n=$ $0,1,2, \ldots$, has arbitrarily long stretches of consecutive 0 's and non-zero terms of arbitrarily large rank. It then follows that this sequence is not eventually periodic, so the sequence $\binom{2 n}{n}(\bmod k)$, $n=0,1,2, \ldots$, is not eventually periodic either.

To prove that such a divisor exists, notice that an integer $k \geq 3$ is either divisible by 4 or else has at least one odd prime divisor $p$. We will prove that $d=4$ works in the former case, and $d=p$ does in the latter.

If $k$ is a positive integer divisible by 4 , consider a positive integer $m$, and let $n=2^{m}+r$, $r=0,1, \ldots, 2^{m}-1$, to write

$$
(1+X)^{2 n}=(1+X)^{2^{m+1}}(1+X)^{2 r} \equiv_{4}\left(1+2 X^{2^{m}}+X^{2^{m+1}}\right)(1+X)^{2 r}
$$

and infer that

$$
\binom{2 n}{n} \equiv_{4} 2\binom{2 r}{r} \equiv_{4} \begin{cases}2 & \text { if } r=0, \\ 4\binom{2 r-1}{r} \equiv_{4} 0 & \text { if } r=1, \ldots, 2^{m}-1\end{cases}
$$

Since $m$ is arbitrary, the sequence $\binom{2 n}{n}(\bmod 4), n=0,1,2, \ldots$, has arbitrarily long stretches of consecutive 0 's and non-zero terms of arbitrarily large rank.

If $k$ is a positive integer divisible by an odd prime $p$, consider again a positive integer $m$, let $n=\left(p^{m}+r\right) / 2$, where $r$ runs through the positive odd integers not exceeding $p^{m}$, to write

$$
\begin{aligned}
(1+X)^{2 n} & =(1+X)^{p^{m}}(1+X)^{r} \equiv_{p}\left(1+X^{p^{m}}\right)(1+X)^{r} \\
& =\text { terms of degree }<r+X^{r}+X^{p^{m}}+\text { terms of degree }>p^{m}
\end{aligned}
$$

and infer that $\binom{2 n}{n} \equiv_{p} 0$ if $r$ is less than $p^{m}$, since in this case $r<n<p^{m}$, and $\binom{2 n}{n} \equiv_{p} 2$ if $r=p^{m}=n$. Since $m$ is arbitrary, the sequence $\binom{2 n}{n}(\bmod p), n=0,1,2, \ldots$, has arbitrarily long stretches of consecutive 0's and non-zero terms of arbitrarily large rank.

