
Test 1 — Solutions

Problem 1. Two circles, ω1 and ω2, centred at O1 and O2, respectively, meet at points A and
B. A line through B meets ω1 again at C, and ω2 again at D. The tangents to ω1 and ω2 at C
and D, respectively, meet at E, and the line AE meets the circle ω through A, O1, O2 again at
F . Prove that the length of the segment EF is equal to the diameter of ω.

Solution. Begin by noticing that the lines CO1 and DO2 meet at a point P on ω, since
∠(PO1, PO2) = ∠(O1C,CB) + ∠(BD,DO2) = ∠(CB,BO1) + ∠(O2B,BD) = ∠(O2B,BO1) =
∠(O1A,AO2). In what follows, we consider the case where O1 and O2 lie on the segments CP
and DP , respectively; the other cases are similar.

Since the angles PCE and PDE are both right, and 2∠ACP = ∠AO1P = ∠AO2P = 2∠ADP
(the equality in the middle holds on account of P lying on ω), the points A, C, D, E, P all lie
on the circle on diameter EP , so FP is a diameter of ω, and it is therefore sufficient to show
that EF = FP . Finally, since ∠AFP = ∠AO1P = 2∠ACP = 2∠AEP (the first, respectively
third, equality holds on account of APFO1, respectively ACEP , being cyclic), it follows that
the triangle EFP is isosceles with apex at F .
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Problem 2. Let n be a positive integer, and let S1, . . ., Sn be a collection of finite non-empty
sets such that ∑

1≤i<j≤n

|Si ∩ Sj |
|Si| |Sj |

< 1.

Prove that there exist pairwise distinct elements x1, . . ., xn such that xi is a member of Si for
each index i.

Solution. A choice function or simply a choice for the collection S1, . . ., Sn is a function c from
the first n positive integers to the union S1 ∪ . . .∪Sn such that c(i) is a member of Si for each i.
We must show that an injective choice is always possible under the conditions in the statement.
To this end, we prove that the number of non-injective choices is strictly less than |S1| · · · |Sn|,
the total number of possible choices. Indeed, a non-injective choice function sends some i and



some j 6= i to a same element necessarily lying in Si ∩ Sj , so the number of non-injective choices
does not exceed∑

1≤i<j≤n

|Si ∩ Sj | |S1| · · · |Ŝi| · · · |Ŝj | · · · |Sn| = |S1| · · · |Sn|
∑

1≤i<j≤n

|Si ∩ Sj |
|Si| |Sj |

< |S1| · · · |Sn|;

the hat over Si and Sj means that these sets are to be omitted. The conclusion follows.

Problem 3. Let n be a positive integer, and let a1, . . ., an be pairwise distinct positive integers.
Show that

n∑
k=1

1

[a1, . . . , ak]
< 4,

where [a1, . . . , ak] is the least common multiple of the integers a1, . . ., ak.

Solution. Since the number of positive divisors of a positive integer m does not exceed 2
√
m, and

a1, . . ., ak are pairwise distinct positive divisors of [a1, . . . , ak], it follows that [a1, . . . , ak] ≥ k2/4.
Consequently,

n∑
k=1

1

[a1, . . . , ak]
=

1

a1
+

n∑
k=2

1

[a1, . . . , ak]
≤ 1 +

n∑
k=2

4

k2
< 1 + 4

n∑
k=2

1

k2 − 1
4

= 1 + 4 · 2
(

1

3
− 1

2n + 1

)
<

11

3
< 4.

Problem 4. Determine the integers k ≥ 2 for which the sequence
(
2n
n

)
(mod k), n = 0, 1, 2, . . .,

is eventually periodic.

Solution. Since
(
2n
n

)
= 2
(
2n−1
n

)
≡ 0 (mod 2), n = 1, 2, 3, . . ., it follows that 2 satisfies the required

condition. We will prove that no k ≥ 3 does.
If d is a divisor of an integer k, and the sequence

(
2n
n

)
(mod k), n = 0, 1, 2, . . ., is eventually

periodic, then so is the sequence
(
2n
n

)
(mod d), n = 0, 1, 2, . . . .

We will show that every integer k ≥ 3 has a divisor d such that the sequence
(
2n
n

)
(mod d), n =

0, 1, 2, . . ., has arbitrarily long stretches of consecutive 0’s and non-zero terms of arbitrarily large
rank. It then follows that this sequence is not eventually periodic, so the sequence

(
2n
n

)
(mod k),

n = 0, 1, 2, . . ., is not eventually periodic either.
To prove that such a divisor exists, notice that an integer k ≥ 3 is either divisible by 4 or

else has at least one odd prime divisor p. We will prove that d = 4 works in the former case, and
d = p does in the latter.

If k is a positive integer divisible by 4, consider a positive integer m, and let n = 2m + r,
r = 0, 1, . . . , 2m − 1, to write

(1 + X)2n = (1 + X)2
m+1

(1 + X)2r ≡4

(
1 + 2X2m + X2m+1

)
(1 + X)2r,

and infer that (
2n

n

)
≡4 2

(
2r

r

)
≡4

{
2 if r = 0,

4
(
2r−1
r

)
≡4 0 if r = 1, . . . , 2m − 1.

Since m is arbitrary, the sequence
(
2n
n

)
(mod 4), n = 0, 1, 2, . . ., has arbitrarily long stretches of

consecutive 0’s and non-zero terms of arbitrarily large rank.
If k is a positive integer divisible by an odd prime p, consider again a positive integer m, let

n = (pm + r)/2, where r runs through the positive odd integers not exceeding pm, to write

(1 + X)2n = (1 + X)p
m

(1 + X)r ≡p

(
1 + Xpm

)
(1 + X)r

= terms of degree < r + Xr + Xpm + terms of degree > pm,
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and infer that
(
2n
n

)
≡p 0 if r is less than pm, since in this case r < n < pm, and

(
2n
n

)
≡p 2 if

r = pm = n. Since m is arbitrary, the sequence
(
2n
n

)
(mod p), n = 0, 1, 2, . . ., has arbitrarily long

stretches of consecutive 0’s and non-zero terms of arbitrarily large rank.
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