
Test 2 — Solutions

Problem 1. Given an integer a and a positive integer n, show that the sum
∑n

k=1 a
(k,n) is

divisible by n, where (x, y) denotes the greatest common divisor of the integers x and y.

Solution. Write
∑n

k=1 a
(k,n) =

∑
d|n φ(n/d)ad, where φ is Euler’s totient function (φ(m) is the

number of positive integers less than m and prime to m), and notice that, if n and n′ are coprime
positive integers, then

nn′∑
k=1

a(k,nn
′) =

∑
d|n

φ(n/d)
∑
d′|n′

φ(n′/d′)(ad)d
′
.

Consequently, it is sufficient to prove the assertion for n = pm, where p is a prime and m is a
non-negative integer. In this case,

pm∑
k=1

a(k,p
m) =

m∑
k=0

φ(pm−k)ap
k

=
m−1∑
k=0

(pm−k − pm−k−1)apk + ap
m

= pma+

m∑
k=1

pm−k(ap
k − apk−1

) ≡ 0 (mod pm),

since ap
k ≡ apk−1

(mod pk), k = 1, . . . ,m, by Fermat’s theorem.

Problem 2. Let ABC be a triangle. Let A′ be the centre of the circle through the midpoint of
the side BC and the orthogonal projections of B and C on the lines of support of the internal
bisectrices of the angles ACB and ABC, respectively; the points B′ and C ′ are defined similarly.
Prove that the nine-point circle of the triangle ABC and the circumcircle of A′B′C ′ are concentric.

Solution 1. All the angles in the solution are directed modulo π. The following notation is used
throughout the proof:

2α, 2β, 2γ measures of the angles BAC, CBA, ACB, respectively;
2a, 2b, 2c lengths of the sides BC, CA, AB, respectively;
I incentre of the triangle ABC;
MA, MB, MC midpoints of the sides BC, CA, AB, respectively;
XY orthogonal projection of X on the line Y I, for all X,Y ∈ {A,B,C}; and
ωA, ωB, ωC circumcircles of the triangles MABCCB, MBCAAC , MCABBA, respectively,

centred at A′, B′, C ′, respectively.

Since the angle AABB is right, the segments MCA = MCB = MCAB = c (see Fig. 1), so
∠MCABB = ∠ABBMC = ∠CBAB = β; this means that the lines MCAB and BC are parallel, so
AB lies on the line MBMC . Similarly, (MA,MB, CA, CB), (MB,MC , AB, AC), (MC ,MA, BC , BA)
are quartets of collinear points.
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Let A′′ be the incentre of the triangle AMCMB (in other words, A′′ is the midpoint of AI).
We show that A′′ lies on both ωB and ωC . For that, notice first that the points A, B, AB, and BA

lie on the circle on diameter AB; hence ∠ABBAA = ∠ABBA = β. Next, the points AB, AC ,
MB, and MC lie on a line parallel to BC, so ∠ABMCA

′′ = ∠MBMCA
′′ = β = ∠ABBAA

′′. This
means that A′′ lies on ωC . Similarly, A′′ lies on ωB.

Let X be the second point of intersection of ωB and ωC . By the preceding, ∠MBXA
′′ =

∠MBCAA
′′ = α and similarly ∠A′′XMC = α. This yields ∠MBXMC = ∠MBXA

′′+∠A′′XMC =
2α = ∠MBMAMC , which shows that X lies also on the circumcircle ω of the triangle MAMBMC ,
which is the nine-poin t circle of the triangle ABC. Denote the center of ω by O′.

Now the lines A′′X, MBX, and MCX are the radical axes of the circles ωB, ωC , and ω. Since
XA′′ forms equal angles with MBX and MCX, the triangle O′B′C ′ formed by the centres of
these circles has equal angles at B′ and C ′; therefore, O′B′ = O′C ′. A similar argument shows
that O′B′ = O′A′, and O′ is consequently the circumcentre of the triangle A′B′C ′.

Remark. The point X in the solution is the Feuerbach point of the triangle ABC — the point
at which the incircle is internally tangent to the nine-point circle.

Solution 2. With reference to the notation in Solution 1, let O and O′ be the circumcentre and
the centre of the nine-point circle of the triangle ABC, respectively. As in the previous solution,
usage is made of the fact that (MA,MB, CA, CB), (MB,MC , AB, AC), and (MC ,MA, BC , BA)
are quartets of collinear points, and MABC = MACB = a, MBAC = MBCA = b, and MCAB =
MCBB = c.

We claim that A′O′ = IO/2; similarly, B′O′ = IO/2 = C ′O′, whence the required result.
To prove the claim, notice that each vector ~v is uniquely determined by its projections on the
lines AB and AC. The signed lengths of these projections will be denoted prc ~v and prb ~v,
respectively, the rays AB and AC emanating from A being considered positive.

The points O′ and A′ are the circumcentres of the triangles MAMBMC and MABCCB, respec-

tively. Project onto MAMC , to get prb
−−→
A′O′ = prb

(−−−→
MAO

′ −
−−−→
MAA

′) = (−b/2 + a/2) = (a− b)/2.

Similarly, prc
−−→
A′O′ = (a−c)/2. On the other hand, prb

−→
IO = prb

(−→
AO−

−→
AI
)

= b−(b+c−a) = a−c;
similarly, prc

−→
IO = a − b. This means that the vector

−−→
A′O′ reflected in the bisectrix AI of the

angle BAC is equal to the vector
−→
IO/2, hence the claim.
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Problem 3. Given a positive real number t, determine the sets A of real numbers containing t,
for which there exists a set B of real numbers depending on A, |B| ≥ 4, such that the elements
of the set AB = {ab : a ∈ A, b ∈ B} form a finite arithmetic progression.

Solution. The required sets are {t}, {−t, t}, {0, t} and {−t, 0, t}. It is readily checked that the
elements of the Minkowski product of each of these sets and the set {−1, 0, 1, 2} form a finite
arithmetic progression.

Now, let A and B be sets of real numbers satisfying the conditions in the statement, and let
|A| ≥ 2 (the case |A| = 1 is trivial). Clearly, A and B are both finite.

Let d > 0 be the difference of the arithmetic progression AB, consider two distinct elements
of A, say x and x′, and two distinct elements of B, say y and y′, and notice that the elements
of A, respectively B, are integral multiples of d/(y − y′), respectively d/(x− x′). Scaling A and
B accordingly, we may (and will) assume that A and B are both sets of integers. Dividing, if
necessary, the elements of A, respectively B, by their greatest common divisor, we may (and
will) further assume that the elements of A, respectively B, are jointly coprime: gcdA = 1 and
gcdB = 1. Further, recall that A and B are both finite and let a∗, respectively b∗, be an element
of A, respectively B, of maximal absolute value. If necessary, multiply by −1 to assume a∗ > 0
and b∗ > 0. Under these simplifying assumptions, we will show that A is one of the sets {−1, 1},
{0, 1}, {−1, 0, 1}, whence the conclusion.

Since gcdB = 1 and d divides (x − x′)y for all x and x′ in A and all y in B, it follows that
d divides the difference of any two members of A. Similarly, d divides the difference of any two
members of B, and since |B| ≥ 4, it follows that b∗ > d.

Consider now elements a in A and b in B such that ab = a∗b∗ − d, and notice that ab =
a∗b∗ − d ≥ b∗ − d > 0. Moreover, |a| = a∗, for otherwise a∗b∗ − d = ab = |a||b| ≤ (a∗ − 1)b∗ =
a∗b∗ − b∗ < a∗b∗ − d which is a contradiction.

This means that d = a∗b∗ − |a||b| = a∗(b∗ − |b|) ≥ a∗. Now, since a∗ ≤ d, and the elements
of A are congruent modulo d, the only possible options for A are either subsets of {−d, 0, d}, or
{−d/2, d/2} if d is even, or finally sets of the form {a∗, a∗ − d}, where d > a∗ > |a∗ − d|. The
first two cases are covered by the answer.

To rule out the last option, notice that a = a∗ (since |a| = a∗ > |a∗ − d|), and therefore
d = a∗(b∗ − |b|). This means that a∗ divides d, so a∗ ≤ d/2 and |a∗ − d| ≥ a∗, in contradiction
with a∗ > |a∗ − d|.
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Problem 4. Consider the integral lattice Zn, n ≥ 2, in the Euclidean n-space. Define a line in
Zn to be a set of the form a1 × · · · × ak−1 × Z × ak+1 × · · · × an, where k is an integer in the
range 1, 2, . . ., n, and the ai are arbitrary integers. A subset A of Zn is called admissible if it
is non-empty, finite, and every line in Zn which intersects A contains at least two points of A.
A subset N of Zn is called null if it is non-empty, and every line in Zn intersects N in an even
number of points (possibly zero).

(a) Prove that every admissible set in Z2 contains a null set.
(b) Exhibit an admissible set in Z3 no subset of which is a null set.

Solution. (a) Let A be an admissible set in Z2, choose a point a0 of A, and, for each positive
integer k, choose a point ak of A different from ak−1, having the same first coordinate as the
latter if k is odd, and the same second coordinate if k is even. Eventually we must choose an
an = am, m < n. Assume an is the first point to duplicate a preceding point. If m and n have
like parities, then am, am+1, . . ., an−1 form a null set, and if they have opposite parities, then
am+1, . . ., an−1 do.

(b) We exhibit a minimal admissible set A in Z3 which is not itself null. Here and hereafter,
minimality refers to the fact that no proper subset is admissible. Since every null finite set
is admissible, the conclusion follows. The set A is a set of lattice points in the parallelepiped
[0, 3]× [0, 3]× [0, 4]. We describe it by successive horizontal cross-sections:

A = A0 × 0 ∪ A1 × 1 ∪ A2 × 2 ∪ A3 × 3 ∪ A4 × 4,

where A0 = {0, 3}× {0, 3}, A1 = {0, 1}× {2, 3} ∪ {1, 2}× {0, 1}, A2 = {0, 1}× {1, 2} ∪ {2, 3}×
{2, 3}, A3 = {1, 2} × {2, 3} ∪ {2, 3} × {0, 1}, and A4 = {0, 1} × {0, 1} ∪ {2, 3} × {1, 2}. Notice
that, for k = 1, 2, 3, the configuration Ak+1 is obtained from Ak by a clockwise rotation through
π/2 about the centre of the square [0, 3]× [0, 3].

The set A is admissible, since each horizontal cross-section Ak × k is admissible in Z2 × k,
and the perpendicular in Z3 to any horizontal cross-section through any one of its points meets
at least one other horizontal cross-section.

To prove minimality, we exhibit a connected geometric lattice graph G on A such that the
line of support of each edge of G is a line in Z3 stabbing A at exactly two points, namely, the
end points of that edge. The existence of such a graph implies minimality, since removal of any
one point in A entails removal of all its neighbours in G, and eventually removal of all of A.

Begin by noticing that each of the verticals i× j × Z through a point of A, where either i or
j is in {0, 3}, stabs exactly two horizontal cross-sections of A. Join the corresponding points of
A by the vertical segment they determine.

Next, consider the generic planar lattice paths α1 = (1 × 0)(2 × 0)(2 × 1)(1 × 1) and α′1 =
(1× 2)(0× 2)(0× 3)(1× 3), and, for k = 1, 2, 3, let αk+1 and α′k+1 be obtained from αk and α′k,
respectively, by a clockwise rotation through π/2 about the centre of the square [0, 3] × [0, 3].
The edges of the lattice paths αk × k and α′k × k, joining points in Ak × k, k = 1, 2, 3, 4, along
with the vertical edges in the previous paragraph form the desired connected geometric lattice
graph G on A.

Finally, the set A is not null, for the vertical 1 × 1 × Z stabs exactly three horizontal cross-
sections of A, namely, A1× 1, A2× 2 and A4× 4; in fact, each of the lines i× j ×Z, i, j ∈ {1, 2},
stabs exactly three horizontal cross-sections of A.

Remark. Examples in any higher dimension can be constructed from the example in part
(b). The configuration in this example consists of 36 points, but there are 24-point admissible
configurations in Z3 containing no null proper subconfiguration.
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