Fifth Selection Test — Solutions

Problem 1. Let n be a positive integer and let 1, ..., x, be positive real numbers. Show
that
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Solution. We shall actually prove that
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To this end, let U denote the set of all n-tuples of positive real numbers, and, for x =
(x1,...,2,) in U, let
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The first step consists in assuming that m(a) = M(a) for some a = (ay,...,ay,) in U
and showing that m(x) < m(a) = M(a) < M(x) for all x in U. Clearly, the condition
m(a) = M(a) is equivalent to
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Suppose, if possible, that m(x) > m(a) for some x = (z1,...,2,) in U. Then z; > m(x) >
m(a) = ay; 1/xp + 21 > m(x) > m(a) = 1/ax + agy1, k = 1,...,n —1; and 1/z, >
m(x) > m(a) = 1/ay,. The first n inequalities imply recursively that z; > ax, k =1,...,n; in

particular, =, > a,, in contradiction with 1/z, > 1/a,. Consequently, m(x) < m(a) for all x
in U. Similarly, M (x) > M(a) for all x in U.

To show the existence of an a in U satisfying (1), let a denote the common value in (1)
and notice that ap = by /bk_1, k = 1,...,n, where the by are defined by

bo = 1, b1 = a, and bk = abk,1 — bk,Q, k > 2. (2)

Since 1/a,, = a, it follows that b,_1 = ab,, which is equivalent to b, 1 = 0. Notice further that
a < 2. Otherwise, aj =a >2and ap = a—1/ag_1, k =2,...,n, would recursively imply that
ar, > 1+ 1/k, k =1,...,n; in particular, a, > 1+ 1/n, in contradiction with 1/a, = a > 2.
We may therefore write a = 2 cos «, for some « in the open interval (0,7/2), to deduce that
the unique solution of (2) is by = sin(k + 1)a/sina. Since by, ..., b, are all positive, the
condition by4+1 = 0 yields @ = 7/(n + 2) and the conclusion follows.



Problem 2. Let K be a convex quadrangle and let ¢ be a line through the point of intersection
of the diagonals of K. Show that the length of the segment of intersection ¢ N K does not
exceed the length of (at least) one of the diagonals of K.

Solution. Let £ be the pencil of lines through the point of intersection of the diagonals of
K. We shall prove that that the length of each segment of intersection £ N K, £ € L, does not
exceed the length of the longest diagonal of K.

To begin, notice that no intersection segment has a length greater than the diameter of
K, so supyc, |[¢ N K| is finite, where |s| denotes the length of the line-segment s.

Suppose, if possible, that sup,c, [¢ N K| is greater than the length of the longest diagonal
of K. Let 6 and ¢’ denote the diagonals of K and consider a line £y in £ such that

supge [€ 0 K| + max([0], [5']) _ [6] + ||
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Recall that the length of the internal bisectrix of an angle of a triangle is smaller than the
arithmetic mean of the lengths of the sides forming that angle, to infer that £y does not bisect
the corresponding angle formed by the diagonals; say, the angle formed by ¢y and ¢ is smaller
than the angle formed by £y and ¢’, both angles being, of course, those in the wedge containing
.

Finally, reflect the line of support of § in the line ¢y to obtain a line ¢ in £ such that
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and thereby reach a contradiction. (The inequality in the middle expresses the above men-
tioned fact about the length of an internal bisectrix in atriangle.) The conclusion follows.

Problem 3. Given a positive integer n, consider a triangular array with entries a;; where i
ranges from 1 to n and j ranges from 1 to n —i+ 1. The entries of the array are all either 0 or
1, and, for all 4 > 1 and any associated j, a;j is 0 if a;—1; = a;—1,j4+1, and a;; is 1 otherwise.

Let S denote the set of binary sequences of length n, and define a map f: S — S via
f: (a1, a12,...,a1n) = (@n1,an-12,...,a1,). Determine the number of fixed points of f.

Solution 1. The required number is 2L"+1)/2] To prove this, we establish a bijection between
the fixed points of f and the binary palindromes of length n. More precisely, we show that
the assignment

(a11,a12,...,a1p) = (a11,a21,- .., Gn1)
is bijective, on one hand, and that (a11, a12, . .., a1,) is fixed by f if and only if (a11,a21, ..., an1)
is a palindrome (a;1 = ap—it1,1, ¢ = 1,...,n), on the other.

To begin with, notice that the definition of the a;; is equivalent to the Pascal-like relation

in Zgi
aij + ai—1,j + ai—1,j41 = 0. (1)
Henceforth, such a triangular array will be called a Pascal binary (or dyadic) array. Clearly,

each binary string a in S yields a unique Pascal binary array a.
For more convenience, view a triangular array as a function on the standard lattice triangle

A, ={G,j):i,7>1and 2<i+j<n+ 1},

situated in the first quadrant; thus, the first index runs horizontally and corresponds to
columns, and the second index runs vertically and corresponds to rows.



Further, use the symbols —, <, 1, |, \, and N to denote the oriented sides of A,;
explicitly,

—={(,1):i=1,...,n}, —={n—i+1,1):i=1....,n},
={(1,5):j=1,...,n}, I={0n—7+1):5=1,...,n},
N={(n—i+1):i=1,...,n}, "\ ={(n—j+1,5):5=1,...,n}.

With these notational conventions, a string a in S is systematically viewed as the a; of the
unique Pascal dyadic array a it generates, and f: a = a3 — a~_.

To establish a bijection between the fixed points of f and the binary palindromes of
length n, consider the transformations ¢ and o of A,, defined by

o(i,j) = (n—i—j+2,4) and o(i,j) = (n—1—7j+2.7)

The former is a permutation of order 3 (o2 is the identity), and the latter is an involution (o2

is the identity). It is easily seen that

o=) =" e =+, o(N)=1 and o(=)=«, o) =", o(\N)="1

so oo(—) =T, 00(1) = —, and op(\) = \. It is also readily checked by (1) that, if & = (a;;)
is a Pascal binary array, then so are both

Qé. = (ag(m-)) and ca= ((10.(747]))

We are now in a position to prove the desired results.

Since o exchanges — and 1, the assignment a; — a_, is bijective.

Since o exchanges 1 and ™, and reverses orientation on the bottom row of A, if a; is
fixed by f, then a; = f(a;) = ax_= (ca)y, so & = oa and consequently a_, = (ca)_, = a.;
that is, the bottom row of a is a palindrome.

Conversely, if the bottom row of a is a palindrome, a_, = a., then (cpa); = (pa), so
opa = pa and consequently, f(a;) = ax_= (0pa)\ = (0ad)\, = a;; that is, a = a; is fixed by
f. This ends the proof.

Remarks. (1) Since o is an involution exchanging 1 and N\, it follows that f is also an
involution:

f(ar) =ax = (ca)y and f*(a) = f((ca)y) = (0°a), = &
(2) The problem is a skillful application of the action of the dihedral group
D3 = <QaJ|Q3 = 170-2 = 1aJQ: Q20>

on the set of Pascal binary arrays. This may also be seen by transforming A,, into an equilateral

triangle via
1 1/2
0 V3/2 )’

or simply viewing A,, as one such, and recalling that the dihedral group D3 is precisely the full
planar symmetry group of the equilateral triangle. In this setting, ¢ is the counterclockwise
rotation through 27/3 about the centre, and o is the reflection in one of the symmetry axes.

Solution 2. (Ilya Bogdanov) For convenience, we denote by, = a1 ,—k and ¢ = apq1pn—p for
every k =0,1,...,n — 1. Our aim is to find the set of relations for (bs) which are equivalent
to the relation (bg) = (cx). All the calculations will be made in Zs.



The definition of a;; is equivalent to a;; = a;—1,j +a;—1 j4+1. A straightforward check shows

then that
— (i1
aij:z( g )al,gﬂ.
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For two nonnegative integers k and ¢, we will write £ < k if the binary representation of
¢ can be obtained from that of k by replacing some ones by zeroes (the leading zeroes are
allowed; thus 0 < k and k < k for every k). We write £ < k if ¢ < k and ¢ < k. Recall that by
Lucas’ theorem, (Iz) is odd if and only if £ < k. Thus,

Ck = Qk41in—k = Z <£>a1,2+nk = Z (€> br—e = Z <€> be = Z be.

=0 £=0 ¢=0 0=k

Now, the conditions (b;) = (c) rewrite as the set of equations

0="> b (*k)

<k

forall k=0,1,...,n— 1.

Denote by T the set of all strings (bx) such that (x;) are satisfied for all odd k < n — 1.
Each string in this set is determined uniquely by the values of be;—1 (2i < n) and b,_1: the
values of by; (for 2i < n—1) are found inductively from (x2;11). Thus |T| = 2[*/2] = al(n+1)/2],
Now we claim that T is exactly the desired set of fixed points; in fact, we will prove that all
the relations (x4) for even d follow from the relations (xj) for odd k.

Consider any even d < n — 1. To establish (x4), we add up all the relations (%xy1), where
k < d, obtaining a sum

0=% 3 b= (Tht e

k<dl<k+1 k<d =k {<k

= b [{k: £ 3k <d} +> bpyr - [{k: €<k < d}.
£<d {<d

But one can easily check that [{k: ¢ < k < d}| is odd, and [{k: £ < k < d}| is even for all
¢ < d. Thus our equality rewrites exactly as ().



