
Fifth Selection Test — Solutions

Problem 1. Let n be a positive integer and let x1, . . ., xn be positive real numbers. Show
that
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Solution. We shall actually prove that
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To this end, let U denote the set of all n-tuples of positive real numbers, and, for x =
(x1, . . . , xn) in U , let
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The first step consists in assuming that m(a) = M(a) for some a = (a1, . . . , an) in U
and showing that m(x) ≤ m(a) = M(a) ≤ M(x) for all x in U . Clearly, the condition
m(a) = M(a) is equivalent to
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. (1)

Suppose, if possible, that m(x) > m(a) for some x = (x1, . . . , xn) in U . Then x1 ≥ m(x) >
m(a) = a1; 1/xk + xk+1 ≥ m(x) > m(a) = 1/ak + ak+1, k = 1, . . . , n − 1; and 1/xn ≥
m(x) > m(a) = 1/an. The first n inequalities imply recursively that xk > ak, k = 1, . . . , n; in
particular, xn > an, in contradiction with 1/xn > 1/an. Consequently, m(x) ≤ m(a) for all x
in U . Similarly, M(x) ≥M(a) for all x in U .

To show the existence of an a in U satisfying (1), let a denote the common value in (1)
and notice that ak = bk/bk−1, k = 1, . . . , n, where the bk are defined by

b0 = 1, b1 = a, and bk = abk−1 − bk−2, k ≥ 2. (2)

Since 1/an = a, it follows that bn−1 = abn which is equivalent to bn+1 = 0. Notice further that
a < 2. Otherwise, a1 = a ≥ 2 and ak = a− 1/ak−1, k = 2, . . . , n, would recursively imply that
ak ≥ 1 + 1/k, k = 1, . . . , n; in particular, an ≥ 1 + 1/n, in contradiction with 1/an = a ≥ 2.
We may therefore write a = 2 cosα, for some α in the open interval (0, π/2), to deduce that
the unique solution of (2) is bk = sin(k + 1)α/ sinα. Since b1, . . ., bn are all positive, the
condition bn+1 = 0 yields α = π/(n+ 2) and the conclusion follows.



Problem 2. Let K be a convex quadrangle and let ` be a line through the point of intersection
of the diagonals of K. Show that the length of the segment of intersection ` ∩ K does not
exceed the length of (at least) one of the diagonals of K.

Solution. Let L be the pencil of lines through the point of intersection of the diagonals of
K. We shall prove that that the length of each segment of intersection `∩K, ` ∈ L, does not
exceed the length of the longest diagonal of K.

To begin, notice that no intersection segment has a length greater than the diameter of
K, so sup`∈L |` ∩K| is finite, where |s| denotes the length of the line-segment s.

Suppose, if possible, that sup`∈L |` ∩K| is greater than the length of the longest diagonal
of K. Let δ and δ′ denote the diagonals of K and consider a line `0 in L such that

|`0 ∩K| >
sup`∈L |` ∩K|+ max(|δ|, |δ′|)

2
>
|δ|+ |δ′|

2
.

Recall that the length of the internal bisectrix of an angle of a triangle is smaller than the
arithmetic mean of the lengths of the sides forming that angle, to infer that `0 does not bisect
the corresponding angle formed by the diagonals; say, the angle formed by `0 and δ is smaller
than the angle formed by `0 and δ′, both angles being, of course, those in the wedge containing
`0.

Finally, reflect the line of support of δ in the line `0 to obtain a line `1 in L such that

|`1 ∩K|+ max(|δ|, |δ′|)
2

≥ |`1 ∩K|+ |δ|
2

> |`0 ∩K| >
sup`∈L |` ∩K|+ max(|δ|, |δ′|)

2
,

and thereby reach a contradiction. (The inequality in the middle expresses the above men-
tioned fact about the length of an internal bisectrix in atriangle.) The conclusion follows.

Problem 3. Given a positive integer n, consider a triangular array with entries aij where i
ranges from 1 to n and j ranges from 1 to n− i+ 1. The entries of the array are all either 0 or
1, and, for all i > 1 and any associated j, aij is 0 if ai−1,j = ai−1,j+1, and aij is 1 otherwise.

Let S denote the set of binary sequences of length n, and define a map f : S → S via
f : (a11, a12, . . . , a1n) 7→ (an1, an−1,2, . . . , a1n). Determine the number of fixed points of f .

Solution 1. The required number is 2b(n+1)/2c. To prove this, we establish a bijection between
the fixed points of f and the binary palindromes of length n. More precisely, we show that
the assignment

(a11, a12, . . . , a1n) 7→ (a11, a21, . . . , an1)

is bijective, on one hand, and that (a11, a12, . . . , a1n) is fixed by f if and only if (a11, a21, . . . , an1)
is a palindrome (ai1 = an−i+1,1, i = 1, . . . , n), on the other.

To begin with, notice that the definition of the aij is equivalent to the Pascal-like relation
in Z2:

aij + ai−1,j + ai−1,j+1 = 0. (1)

Henceforth, such a triangular array will be called a Pascal binary (or dyadic) array. Clearly,
each binary string a in S yields a unique Pascal binary array â.

For more convenience, view a triangular array as a function on the standard lattice triangle

∆n = {(i, j) : i, j ≥ 1 and 2 ≤ i+ j ≤ n+ 1},

situated in the first quadrant; thus, the first index runs horizontally and corresponds to
columns, and the second index runs vertically and corresponds to rows.
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Further, use the symbols →, ←, ↑, ↓, ↘ and ↖ to denote the oriented sides of ∆n;
explicitly,

→ = {(i, 1) : i = 1, . . . , n}, ← = {(n− i+ 1, 1) : i = 1. . . . , n},
↑ = {(1, j) : j = 1, . . . , n}, ↓ = {(1, n− j + 1): j = 1, . . . , n},
↘ = {(i, n− i+ 1): i = 1, . . . , n}, ↖ = {(n− j + 1, j) : j = 1, . . . , n}.

With these notational conventions, a string a in S is systematically viewed as the â↑ of the
unique Pascal dyadic array â it generates, and f : a = â↑ 7→ â↖.

To establish a bijection between the fixed points of f and the binary palindromes of
length n, consider the transformations % and σ of ∆n defined by

%(i, j) = (n− i− j + 2, i) and σ(i, j) = (n− i− j + 2, j).

The former is a permutation of order 3 (%3 is the identity), and the latter is an involution (σ2

is the identity). It is easily seen that

%(→) = ↖, %(↑) = ←, %(↖) = ↓ and σ(→) = ←, σ(↑) = ↖, σ(↖) = ↑,

so σ%(→) = ↑, σ%(↑) = →, and σ%(↖) = ↘. It is also readily checked by (1) that, if â = (aij)
is a Pascal binary array, then so are both

%â = (a%(i,j)) and σâ = (aσ(i,j)).

We are now in a position to prove the desired results.
Since σ% exchanges → and ↑, the assignment â↑ 7→ â→ is bijective.
Since σ exchanges ↑ and ↖, and reverses orientation on the bottom row of ∆n, if â↑ is

fixed by f , then â↑ = f(â↑) = â↖ = (σâ)↑, so â = σâ and consequently â→ = (σâ)→ = â←;
that is, the bottom row of â is a palindrome.

Conversely, if the bottom row of â is a palindrome, â→ = â←, then (σ%â)↑ = (%â)↑, so
σ%â = %â and consequently, f(â↑) = â↖ = (σ%â)↘ = (%â)↘ = â↑; that is, a = â↑ is fixed by
f . This ends the proof.

Remarks. (1) Since σ is an involution exchanging ↑ and ↖, it follows that f is also an
involution:

f(â↑) = â↖ = (σâ)↑ and f2(â↑) = f((σâ)↑) = (σ2â)↑ = â↑.

(2) The problem is a skillful application of the action of the dihedral group

D3 = 〈%, σ | %3 = 1, σ2 = 1, σ% = %2σ〉

on the set of Pascal binary arrays. This may also be seen by transforming ∆n into an equilateral
triangle via (

1 1/2

0
√

3/2

)
,

or simply viewing ∆n as one such, and recalling that the dihedral group D3 is precisely the full
planar symmetry group of the equilateral triangle. In this setting, % is the counterclockwise
rotation through 2π/3 about the centre, and σ is the reflection in one of the symmetry axes.

Solution 2. (Ilya Bogdanov) For convenience, we denote bk = a1,n−k and ck = ak+1,n−k for
every k = 0, 1, . . . , n− 1. Our aim is to find the set of relations for (bk) which are equivalent
to the relation (bk) = (ck). All the calculations will be made in Z2.
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The definition of aij is equivalent to aij = ai−1,j +ai−1,j+1. A straightforward check shows
then that

aij =

i−1∑
`=0

(
i− 1

`

)
a1,`+j .

For two nonnegative integers k and `, we will write ` � k if the binary representation of
` can be obtained from that of k by replacing some ones by zeroes (the leading zeroes are
allowed; thus 0 � k and k � k for every k). We write ` ≺ k if ` < k and ` � k. Recall that by
Lucas’ theorem,

(
k
`

)
is odd if and only if ` � k. Thus,

ck = ak+1,n−k =

k∑
`=0

(
k

`

)
a1,`+n−k =

k∑
`=0

(
k

`

)
bk−` =

k∑
`=0

(
k

`

)
b` =

∑
`�k

b`.

Now, the conditions (bk) = (ck) rewrite as the set of equations

0 =
∑
`≺k

b` (∗k)

for all k = 0, 1, . . . , n− 1.
Denote by T the set of all strings (bk) such that (∗k) are satisfied for all odd k ≤ n − 1.

Each string in this set is determined uniquely by the values of b2i−1 (2i < n) and bn−1: the
values of b2i (for 2i < n−1) are found inductively from (∗2i+1). Thus |T | = 2dn/2e = 2b(n+1)/2c.
Now we claim that T is exactly the desired set of fixed points; in fact, we will prove that all
the relations (∗d) for even d follow from the relations (∗k) for odd k.

Consider any even d ≤ n− 1. To establish (∗d), we add up all the relations (∗k+1), where
k ≺ d, obtaining a sum

0 =
∑
k≺d

∑
`≺k+1

b` =
∑
k≺d

(∑
`�k

b` +
∑
`≺k

b`+1

)
=
∑
`≺d

b` · |{k : ` � k ≺ d}|+
∑
`≺d

b`+1 · |{k : ` ≺ k ≺ d}|.

But one can easily check that |{k : ` � k ≺ d}| is odd, and |{k : ` ≺ k ≺ d}| is even for all
` ≺ d. Thus our equality rewrites exactly as (∗d).
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