Fifth Selection Test — Solutions

Problem 1. Let *n* be a positive integer and let x_1, \ldots, x_n be positive real numbers. Show that

$$\min\left(x_{1}, \frac{1}{x_{1}} + x_{2}, \dots, \frac{1}{x_{n-1}} + x_{n}, \frac{1}{x_{n}}\right) \leq 2\cos\frac{\pi}{n+2}$$
$$\leq \max\left(x_{1}, \frac{1}{x_{1}} + x_{2}, \dots, \frac{1}{x_{n-1}} + x_{n}, \frac{1}{x_{n}}\right).$$

Solution. We shall actually prove that

$$\max_{\substack{x_1 > 0, \dots, x_n > 0}} \min\left(x_1, \frac{1}{x_1} + x_2, \dots, \frac{1}{x_{n-1}} + x_n, \frac{1}{x_n}\right) = \\\min_{\substack{x_1 > 0, \dots, x_n > 0}} \max\left(x_1, \frac{1}{x_1} + x_2, \dots, \frac{1}{x_{n-1}} + x_n, \frac{1}{x_n}\right) = 2\cos\frac{\pi}{n+2}.$$

To this end, let U denote the set of all n-tuples of positive real numbers, and, for $\mathbf{x} = (x_1, \ldots, x_n)$ in U, let

$$m(\mathbf{x}) = \min\left(x_1, \frac{1}{x_1} + x_2, \dots, \frac{1}{x_{n-1}} + x_n, \frac{1}{x_n}\right)$$

and

$$M(\mathbf{x}) = \max\left(x_1, \frac{1}{x_1} + x_2, \dots, \frac{1}{x_{n-1}} + x_n, \frac{1}{x_n}\right)$$

The first step consists in assuming that $m(\mathbf{a}) = M(\mathbf{a})$ for some $\mathbf{a} = (a_1, \ldots, a_n)$ in Uand showing that $m(\mathbf{x}) \leq m(\mathbf{a}) = M(\mathbf{a}) \leq M(\mathbf{x})$ for all \mathbf{x} in U. Clearly, the condition $m(\mathbf{a}) = M(\mathbf{a})$ is equivalent to

$$a_1 = \frac{1}{a_1} + a_2 = \dots = \frac{1}{a_{n-1}} + a_n = \frac{1}{a_n}.$$
 (1)

Suppose, if possible, that $m(\mathbf{x}) > m(\mathbf{a})$ for some $\mathbf{x} = (x_1, \ldots, x_n)$ in U. Then $x_1 \ge m(\mathbf{x}) > m(\mathbf{a}) = a_1$; $1/x_k + x_{k+1} \ge m(\mathbf{x}) > m(\mathbf{a}) = 1/a_k + a_{k+1}$, $k = 1, \ldots, n-1$; and $1/x_n \ge m(\mathbf{x}) > m(\mathbf{a}) = 1/a_n$. The first n inequalities imply recursively that $x_k > a_k$, $k = 1, \ldots, n$; in particular, $x_n > a_n$, in contradiction with $1/x_n > 1/a_n$. Consequently, $m(\mathbf{x}) \le m(\mathbf{a})$ for all \mathbf{x} in U. Similarly, $M(\mathbf{x}) \ge M(\mathbf{a})$ for all \mathbf{x} in U.

To show the existence of an **a** in U satisfying (1), let a denote the common value in (1) and notice that $a_k = b_k/b_{k-1}$, k = 1, ..., n, where the b_k are defined by

$$b_0 = 1, \quad b_1 = a, \quad \text{and} \quad b_k = ab_{k-1} - b_{k-2}, \quad k \ge 2.$$
 (2)

Since $1/a_n = a$, it follows that $b_{n-1} = ab_n$ which is equivalent to $b_{n+1} = 0$. Notice further that a < 2. Otherwise, $a_1 = a \ge 2$ and $a_k = a - 1/a_{k-1}$, k = 2, ..., n, would recursively imply that $a_k \ge 1 + 1/k$, k = 1, ..., n; in particular, $a_n \ge 1 + 1/n$, in contradiction with $1/a_n = a \ge 2$. We may therefore write $a = 2 \cos \alpha$, for some α in the open interval $(0, \pi/2)$, to deduce that the unique solution of (2) is $b_k = \sin(k+1)\alpha/\sin\alpha$. Since $b_1, ..., b_n$ are all positive, the condition $b_{n+1} = 0$ yields $\alpha = \pi/(n+2)$ and the conclusion follows.

Problem 2. Let K be a convex quadrangle and let ℓ be a line through the point of intersection of the diagonals of K. Show that the length of the segment of intersection $\ell \cap K$ does not exceed the length of (at least) one of the diagonals of K.

Solution. Let \mathcal{L} be the pencil of lines through the point of intersection of the diagonals of K. We shall prove that the length of each segment of intersection $\ell \cap K$, $\ell \in \mathcal{L}$, does not exceed the length of the longest diagonal of K.

To begin, notice that no intersection segment has a length greater than the diameter of K, so $\sup_{\ell \in \mathcal{L}} |\ell \cap K|$ is finite, where |s| denotes the length of the line-segment s.

Suppose, if possible, that $\sup_{\ell \in \mathcal{L}} |\ell \cap K|$ is greater than the length of the longest diagonal of K. Let δ and δ' denote the diagonals of K and consider a line ℓ_0 in \mathcal{L} such that

$$|\ell_0 \cap K| > \frac{\sup_{\ell \in \mathcal{L}} |\ell \cap K| + \max(|\delta|, |\delta'|)}{2} > \frac{|\delta| + |\delta'|}{2}.$$

Recall that the length of the internal bisectrix of an angle of a triangle is smaller than the arithmetic mean of the lengths of the sides forming that angle, to infer that ℓ_0 does not bisect the corresponding angle formed by the diagonals; say, the angle formed by ℓ_0 and δ is smaller than the angle formed by ℓ_0 and δ' , both angles being, of course, those in the wedge containing ℓ_0 .

Finally, reflect the line of support of δ in the line ℓ_0 to obtain a line ℓ_1 in \mathcal{L} such that

$$\frac{|\ell_1 \cap K| + \max(|\delta|, |\delta'|)}{2} \ge \frac{|\ell_1 \cap K| + |\delta|}{2} > |\ell_0 \cap K| > \frac{\sup_{\ell \in \mathcal{L}} |\ell \cap K| + \max(|\delta|, |\delta'|)}{2}$$

and thereby reach a contradiction. (The inequality in the middle expresses the above mentioned fact about the length of an internal bisectrix in atriangle.) The conclusion follows.

Problem 3. Given a positive integer n, consider a triangular array with entries a_{ij} where i ranges from 1 to n and j ranges from 1 to n-i+1. The entries of the array are all either 0 or 1, and, for all i > 1 and any associated j, a_{ij} is 0 if $a_{i-1,j} = a_{i-1,j+1}$, and a_{ij} is 1 otherwise.

Let S denote the set of binary sequences of length n, and define a map $f: S \to S$ via $f: (a_{11}, a_{12}, \ldots, a_{1n}) \mapsto (a_{n1}, a_{n-1,2}, \ldots, a_{1n})$. Determine the number of fixed points of f.

Solution 1. The required number is $2^{\lfloor (n+1)/2 \rfloor}$. To prove this, we establish a bijection between the fixed points of f and the binary palindromes of length n. More precisely, we show that the assignment

$$(a_{11}, a_{12}, \dots, a_{1n}) \mapsto (a_{11}, a_{21}, \dots, a_{n1})$$

is bijective, on one hand, and that $(a_{11}, a_{12}, \ldots, a_{1n})$ is fixed by f if and only if $(a_{11}, a_{21}, \ldots, a_{n1})$ is a palindrome $(a_{i1} = a_{n-i+1,1}, i = 1, \ldots, n)$, on the other.

To begin with, notice that the definition of the a_{ij} is equivalent to the Pascal-like relation in \mathbb{Z}_2 :

$$a_{ij} + a_{i-1,j} + a_{i-1,j+1} = 0. (1)$$

Henceforth, such a triangular array will be called a *Pascal binary* (or *dyadic*) array. Clearly, each binary string **a** in S yields a unique Pascal binary array $\hat{\mathbf{a}}$.

For more convenience, view a triangular array as a function on the standard lattice triangle

$$\Delta_n = \{(i,j) : i, j \ge 1 \text{ and } 2 \le i+j \le n+1\},\$$

situated in the first quadrant; thus, the first index runs horizontally and corresponds to columns, and the second index runs vertically and corresponds to rows.

Further, use the symbols \rightarrow , \leftarrow , \uparrow , \downarrow , \searrow and \nwarrow to denote the oriented sides of Δ_n ; explicitly,

$$\begin{split} & \to = \; \{(i,1) \colon i = 1, \dots, n\}, & \leftarrow = \; \{(n-i+1,1) \colon i = 1, \dots, n\}, \\ & \uparrow = \; \{(1,j) \colon j = 1, \dots, n\}, & \downarrow = \; \{(1,n-j+1) \colon j = 1, \dots, n\}, \\ & \searrow = \; \{(i,n-i+1) \colon i = 1, \dots, n\}, & \nwarrow = \; \{(n-j+1,j) \colon j = 1, \dots, n\}. \end{split}$$

With these notational conventions, a string **a** in S is systematically viewed as the $\hat{\mathbf{a}}_{\uparrow}$ of the unique Pascal dyadic array $\hat{\mathbf{a}}$ it generates, and $f: \mathbf{a} = \hat{\mathbf{a}}_{\uparrow} \mapsto \hat{\mathbf{a}}_{\uparrow}$.

To establish a bijection between the fixed points of f and the binary palindromes of length n, consider the transformations ρ and σ of Δ_n defined by

$$\varrho(i,j) = (n-i-j+2,i)$$
 and $\sigma(i,j) = (n-i-j+2,j).$

The former is a permutation of order 3 (ρ^3 is the identity), and the latter is an involution (σ^2 is the identity). It is easily seen that

$$\varrho(\to) = \nwarrow, \quad \varrho(\uparrow) = \leftarrow, \quad \varrho(\nwarrow) = \downarrow \quad \text{and} \quad \sigma(\to) = \leftarrow, \quad \sigma(\uparrow) = \nwarrow, \quad \sigma(\nwarrow) = \uparrow,$$

so $\sigma \rho(\rightarrow) = \uparrow$, $\sigma \rho(\uparrow) = \rightarrow$, and $\sigma \rho(\nwarrow) = \searrow$. It is also readily checked by (1) that, if $\hat{\mathbf{a}} = (a_{ij})$ is a Pascal binary array, then so are both

$$\varrho \hat{\mathbf{a}} = (a_{\rho(i,j)}) \quad \text{and} \quad \sigma \hat{\mathbf{a}} = (a_{\sigma(i,j)}).$$

We are now in a position to prove the desired results.

Since $\sigma \rho$ exchanges \rightarrow and \uparrow , the assignment $\hat{\mathbf{a}}_{\uparrow} \mapsto \hat{\mathbf{a}}_{\rightarrow}$ is bijective.

Since σ exchanges \uparrow and \nwarrow , and reverses orientation on the bottom row of Δ_n , if $\hat{\mathbf{a}}_{\uparrow}$ is fixed by f, then $\hat{\mathbf{a}}_{\uparrow} = f(\hat{\mathbf{a}}_{\uparrow}) = \hat{\mathbf{a}}_{\backsim} = (\sigma \hat{\mathbf{a}})_{\uparrow}$, so $\hat{\mathbf{a}} = \sigma \hat{\mathbf{a}}$ and consequently $\hat{\mathbf{a}}_{\rightarrow} = (\sigma \hat{\mathbf{a}})_{\rightarrow} = \hat{\mathbf{a}}_{\leftarrow}$; that is, the bottom row of $\hat{\mathbf{a}}$ is a palindrome.

Conversely, if the bottom row of $\hat{\mathbf{a}}$ is a palindrome, $\hat{\mathbf{a}}_{\rightarrow} = \hat{\mathbf{a}}_{\leftarrow}$, then $(\sigma \varrho \hat{\mathbf{a}})_{\uparrow} = (\varrho \hat{\mathbf{a}})_{\uparrow}$, so $\sigma \varrho \hat{\mathbf{a}} = \varrho \hat{\mathbf{a}}$ and consequently, $f(\hat{\mathbf{a}}_{\uparrow}) = \hat{\mathbf{a}}_{\diagdown} = (\sigma \varrho \hat{\mathbf{a}})_{\searrow} = (\varrho \hat{\mathbf{a}})_{\searrow} = \hat{\mathbf{a}}_{\uparrow}$; that is, $\mathbf{a} = \hat{\mathbf{a}}_{\uparrow}$ is fixed by f. This ends the proof.

Remarks. (1) Since σ is an involution exchanging \uparrow and \nwarrow , it follows that f is also an involution:

$$f(\hat{\mathbf{a}}_{\uparrow}) = \hat{\mathbf{a}}_{\diagdown} = (\sigma \hat{\mathbf{a}})_{\uparrow} \text{ and } f^2(\hat{\mathbf{a}}_{\uparrow}) = f((\sigma \hat{\mathbf{a}})_{\uparrow}) = (\sigma^2 \hat{\mathbf{a}})_{\uparrow} = \hat{\mathbf{a}}_{\uparrow}$$

(2) The problem is a skillful application of the action of the dihedral group

$$D_3 = \langle \varrho, \sigma \, | \, \varrho^3 = 1, \sigma^2 = 1, \sigma \varrho = \varrho^2 \sigma \rangle$$

on the set of Pascal binary arrays. This may also be seen by transforming Δ_n into an equilateral triangle via

$$\left(\begin{array}{cc}1&1/2\\0&\sqrt{3}/2\end{array}\right),$$

or simply viewing Δ_n as one such, and recalling that the dihedral group D_3 is precisely the full planar symmetry group of the equilateral triangle. In this setting, ρ is the counterclockwise rotation through $2\pi/3$ about the centre, and σ is the reflection in one of the symmetry axes.

Solution 2. (*Ilya Bogdanov*) For convenience, we denote $b_k = a_{1,n-k}$ and $c_k = a_{k+1,n-k}$ for every $k = 0, 1, \ldots, n-1$. Our aim is to find the set of relations for (b_k) which are equivalent to the relation $(b_k) = (c_k)$. All the calculations will be made in \mathbb{Z}_2 .

The definition of a_{ij} is equivalent to $a_{ij} = a_{i-1,j} + a_{i-1,j+1}$. A straightforward check shows then that

$$a_{ij} = \sum_{\ell=0}^{i-1} {i-1 \choose \ell} a_{1,\ell+j}.$$

For two nonnegative integers k and ℓ , we will write $\ell \leq k$ if the binary representation of ℓ can be obtained from that of k by replacing some ones by zeroes (the leading zeroes are allowed; thus $0 \leq k$ and $k \leq k$ for every k). We write $\ell \prec k$ if $\ell < k$ and $\ell \leq k$. Recall that by Lucas' theorem, $\binom{k}{\ell}$ is odd if and only if $\ell \leq k$. Thus,

$$c_k = a_{k+1,n-k} = \sum_{\ell=0}^k \binom{k}{\ell} a_{1,\ell+n-k} = \sum_{\ell=0}^k \binom{k}{\ell} b_{k-\ell} = \sum_{\ell=0}^k \binom{k}{\ell} b_{\ell} = \sum_{\ell \le k} b_{\ell}.$$

Now, the conditions $(b_k) = (c_k)$ rewrite as the set of equations

$$0 = \sum_{\ell \prec k} b_{\ell} \tag{(*_k)}$$

for all $k = 0, 1, \dots, n - 1$.

Denote by T the set of all strings (b_k) such that $(*_k)$ are satisfied for all odd $k \leq n-1$. Each string in this set is determined uniquely by the values of b_{2i-1} (2i < n) and b_{n-1} : the values of b_{2i} (for 2i < n-1) are found inductively from $(*_{2i+1})$. Thus $|T| = 2^{\lceil n/2 \rceil} = 2^{\lfloor (n+1)/2 \rfloor}$. Now we claim that T is exactly the desired set of fixed points; in fact, we will prove that all the relations $(*_d)$ for even d follow from the relations $(*_k)$ for odd k.

Consider any even $d \leq n-1$. To establish $(*_d)$, we add up all the relations $(*_{k+1})$, where $k \prec d$, obtaining a sum

$$0 = \sum_{k \prec d} \sum_{\ell \prec k+1} b_{\ell} = \sum_{k \prec d} \left(\sum_{\ell \preceq k} b_{\ell} + \sum_{\ell \prec k} b_{\ell+1} \right)$$
$$= \sum_{\ell \prec d} b_{\ell} \cdot |\{k \colon \ell \preceq k \prec d\}| + \sum_{\ell \prec d} b_{\ell+1} \cdot |\{k \colon \ell \prec k \prec d\}|.$$

But one can easily check that $|\{k \colon \ell \preceq k \prec d\}|$ is odd, and $|\{k \colon \ell \prec k \prec d\}|$ is even for all $\ell \prec d$. Thus our equality rewrites exactly as $(*_d)$.