Fourth Selection Test — Solutions

Problem 1. Fix a point O in the plane and an integer n > 3. Consider a finite set D of
closed unit discs in the plane such that:

(a) No disc in D contains the point O; and
(b) For each positive integer k < n, the closed disc of radius k£ + 1 centred at O contains the

centres of at least k discs in D.

1
nt discs in D.

2
Show that some line through O stabs at least — log
™

Solution. For each disc D in D, let wp denote the centre of D, and let ap be the arc-length
of the image of D under radial projection from O onto the unit circle centred at O. Clearly,
ap/2 > sin(ap/2) = 1/Owp.

Now, for each positive integer k < n, let Dy, be the set of those discs in D whose centres lie
in the closed disc of radius k + 1 centred at O. Since D; C D; if © < j, and each Dj, contains
at least k elements, we may recursively choose (or apply Hall’s marriage theorem to produce)

a system of distinct representatives, Dy, ..., D,_1, for the collection Dy, ..., D,,_1, to obtain
n—1 n—1 n+1
Y ap>2 > 1/0wp>2) 1/0wp, =2 1/(k+1)>2log o
DeD,, 1 DeD,, 1 k=1 k=1

Finally, if N,,_1 is the maximal number of discs in D,,_; stabbed by a line through O as it
makes a half-turn about O, then 7N,_1 > > peD,_, OD and the conclusion follows.

Problem 2. Let n be an integer greater than 1 and let S be the set of n-element subsets of
the set {1,2,...,2n}. Determine

max min [x,y],
SeS z,yeS, x#y

where [z, y] denotes the least common multiple of the integers = and y.

Solution. The required value is 6(|n/2] 4+ 1), unless n = 4 in which case it is 24.
Let S be a member of S. We first show that

pyn [z,y] <6([n/2] +1), (*)
unless n = 4. To this end, for each z in S, choose a positive integer m, such that n < m,x < 2n
and consider the set S' = {m,x: x € S}.

If |S’| < n, then mgyx = myy for some distinct elements z and y in S, so [z, y] < 2n.

If |S’l =n, then S’ = {n+1,n+2,...,2n}. The first even number in S is 2(|n/2] + 1),
and the number 3(|n/2] +1) is also in S” if n = 3 or n > 5. Consequently, () holds for n = 3
or n > 5, and it clearly holds for n = 2.

If n =4, then

min {[z,y]: z,y € {5,6,7,8},x # y} = 24,

which is the required value by the preceding.

Finally, we show that, if 1 < ¢ < j < n, then [n+i,n + j| > 6(|n/2] +1). Suppose, if
possible, that [n+i,n+j] < 6(|n/2]+1). Since [n+1,n+2] = (n+1)(n+2) > 6(|n/2] +1),
it follows that j > 3, so n+j > 2(|n/2] + 1). Hence [n+i,n+ j] = 2(n+ j) = m(n + 1),
where m is an integer greater than 2. If m = 3, then n 4 ¢ must be an even number less than



2(|n/2] 4+ 1) which is impossible. If m > 4, then n+1i < 3(|n/2] +1)/2 < n+1 which is again
impossible. This ends the proof.

Problem 3. Given an integer n > 2, determine all non-constant polynomials f with complex
coefficients satisfying the condition

L+ f(X" 1) = (F(X))"

Solution. If n is even, there are no such polynomials. If n is odd, the required polynomials
are precisely those recursively defined by fo(X) = =X, and fr1(X) = fr(X"+ 1), k> 0.

It is readily checked that the polynomials in the above sequence all satisfy the condition
in the statement.

Conversely, let f be a polynomial with complex coefficients satisfying the condition

L+ f(X" +1) = (F(X))". (1)

To begin, we show that, if f(0) = 0, then f = —X and n must be odd. To prove this,
consider the sequence defined by zop = 0 and 41 = a2} + 1, k > 0. Clearly, f(zgp4+1) =
(f(zx))" =1, k>0, and f(z1) = —1.

If n is even, then f(z2) =0, so f(xg;) =0 (and f(zax+1) = —1), k > 0. Since the zj form
a strictly increasing sequence, we reach a contradiction.

If n is odd, induct on k to prove that f(zx) = —x, k > 0. This is clearly true if k = 0, 1, 2.
For the induction step, use (1) to get f(zpy1) = (—ap)" —1 = —(2} + 1) = —xp41. With
reference again to the monotonicity of the zp, we conclude that f = —X.

Finally, consider the case f(0) # 0. Let w be a primitive n-th root of unity and use (1)
to deduce that (f(X))n = (f(wX))n, so f(X) = w"f(wX) for some non-negative integer
m < n. Since f(0) # 0, identification of the constant terms yields w™ = 1, so m = 0, for
w is primitive. Hence f(X) = f(wX) and identification of coefficients shows that f(X) is a
polynomial in X™ with complex coefficients. Alternatively, but equivalently, f(X) = g(X"+1)
for some polynomial g with complex coefficients. Since g also satisfies (1), the conclusion now
follows recursively.

Alternative solution — case f(0) = 0. Use (1) repeatedly to obtain f(1) = —1, f(2) =
(- —1, f(2"+1) = ((-1)" — 1)" — 1, and deduce thereby that

fR"+ 1) <2" + 1. (2)

We now take time out to show that the roots of f all lie in the disc |z| < 2 in the complex
plane. To this end, let ag be a root of f of maximal absolute value. Since the absolute value
of the leading coefficient of f is 1, (1) yields

IT leg+1-al=1 (3)

« is a root of f
Suppose, if possible, that |ag| > 2. If « is a root of f, then
0§ +1—al > Jaol" = 1 — Ja] > 2las| - 1 — ja] = (Jao| = 1) + (jao| = laf) > lag| 1> 1.

Since f(0) = 0, at least one of the factors of the product in (3) is |af + 1| > |ag|” — 1 >
2" — 1 > 3, so the product is at least 3 — in contradiction with (3).



Back to the problem, write (2) in the form

IIT 2r+1-al<2"+1. (2)

« is a root of f

By the preceding, if « is a non-zero root of f, then [2" +1— | >2" -1 —|a| > 2" -3 > 1,
so, if the multiplicity of 0 exceeds 1 or f has a non-zero root, then the product in (2') exceeds
2" + 1 and we reach a contradiction. Consequently, f = aX, where a is a complex number of
absolute value 1, and (1) forces a = —1 and n odd.



