
Fourth Selection Test — Solutions

Problem 1. Fix a point O in the plane and an integer n ≥ 3. Consider a finite set D of
closed unit discs in the plane such that:

(a) No disc in D contains the point O; and
(b) For each positive integer k < n, the closed disc of radius k + 1 centred at O contains the
centres of at least k discs in D.

Show that some line through O stabs at least
2

π
log

n+ 1

2
discs in D.

Solution. For each disc D in D, let ωD denote the centre of D, and let αD be the arc-length
of the image of D under radial projection from O onto the unit circle centred at O. Clearly,
αD/2 > sin(αD/2) = 1/OωD.

Now, for each positive integer k < n, let Dk be the set of those discs in D whose centres lie
in the closed disc of radius k + 1 centred at O. Since Di ⊆ Dj if i ≤ j, and each Dk contains
at least k elements, we may recursively choose (or apply Hall’s marriage theorem to produce)
a system of distinct representatives, D1, . . ., Dn−1, for the collection D1, . . ., Dn−1, to obtain
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Finally, if Nn−1 is the maximal number of discs in Dn−1 stabbed by a line through O as it
makes a half-turn about O, then πNn−1 ≥

∑
D∈Dn−1

αD and the conclusion follows.

Problem 2. Let n be an integer greater than 1 and let S be the set of n-element subsets of
the set {1, 2, . . . , 2n}. Determine

max
S∈S

min
x,y∈S, x 6=y

[x, y],

where [x, y] denotes the least common multiple of the integers x and y.

Solution. The required value is 6(bn/2c+ 1), unless n = 4 in which case it is 24.
Let S be a member of S. We first show that

min
x,y∈S, x6=y

[x, y] ≤ 6(bn/2c+ 1), (∗)

unless n = 4. To this end, for each x in S, choose a positive integer mx such that n < mxx ≤ 2n
and consider the set S′ = {mxx : x ∈ S}.

If |S′| < n, then mxx = myy for some distinct elements x and y in S, so [x, y] ≤ 2n.
If |S′| = n, then S′ = {n+ 1, n+ 2, . . . , 2n}. The first even number in S′ is 2(bn/2c+ 1),

and the number 3(bn/2c+ 1) is also in S′ if n = 3 or n ≥ 5. Consequently, (∗) holds for n = 3
or n ≥ 5, and it clearly holds for n = 2.

If n = 4, then
min {[x, y] : x, y ∈ {5, 6, 7, 8}, x 6= y} = 24,

which is the required value by the preceding.
Finally, we show that, if 1 ≤ i < j ≤ n, then [n + i, n + j] ≥ 6(bn/2c + 1). Suppose, if

possible, that [n+ i, n+ j] < 6(bn/2c+ 1). Since [n+ 1, n+ 2] = (n+ 1)(n+ 2) ≥ 6(bn/2c+ 1),
it follows that j ≥ 3, so n + j ≥ 2(bn/2c + 1). Hence [n + i, n + j] = 2(n + j) = m(n + i),
where m is an integer greater than 2. If m = 3, then n+ i must be an even number less than



2(bn/2c+1) which is impossible. If m ≥ 4, then n+ i < 3(bn/2c+1)/2 ≤ n+1 which is again
impossible. This ends the proof.

Problem 3. Given an integer n ≥ 2, determine all non-constant polynomials f with complex
coefficients satisfying the condition

1 + f(Xn + 1) =
(
f(X)

)n
.

Solution. If n is even, there are no such polynomials. If n is odd, the required polynomials
are precisely those recursively defined by f0(X) = −X, and fk+1(X) = fk(X

n + 1), k ≥ 0.
It is readily checked that the polynomials in the above sequence all satisfy the condition

in the statement.
Conversely, let f be a polynomial with complex coefficients satisfying the condition

1 + f(Xn + 1) =
(
f(X)

)n
. (1)

To begin, we show that, if f(0) = 0, then f = −X and n must be odd. To prove this,
consider the sequence defined by x0 = 0 and xk+1 = xnk + 1, k ≥ 0. Clearly, f(xk+1) =(
f(xk)

)n − 1, k ≥ 0, and f(x1) = −1.
If n is even, then f(x2) = 0, so f(x2k) = 0 (and f(x2k+1) = −1), k ≥ 0. Since the xk form

a strictly increasing sequence, we reach a contradiction.
If n is odd, induct on k to prove that f(xk) = −xk, k ≥ 0. This is clearly true if k = 0, 1, 2.

For the induction step, use (1) to get f(xk+1) = (−xk)n − 1 = −(xnk + 1) = −xk+1. With
reference again to the monotonicity of the xk, we conclude that f = −X.

Finally, consider the case f(0) 6= 0. Let ω be a primitive n-th root of unity and use (1)
to deduce that

(
f(X)

)n
=
(
f(ωX)

)n
, so f(X) = ωmf(ωX) for some non-negative integer

m < n. Since f(0) 6= 0, identification of the constant terms yields ωm = 1, so m = 0, for
ω is primitive. Hence f(X) = f(ωX) and identification of coefficients shows that f(X) is a
polynomial in Xn with complex coefficients. Alternatively, but equivalently, f(X) = g(Xn+1)
for some polynomial g with complex coefficients. Since g also satisfies (1), the conclusion now
follows recursively.

Alternative solution — case f(0) = 0. Use (1) repeatedly to obtain f(1) = −1, f(2) =
(−1)n − 1, f(2n + 1) =

(
(−1)n − 1

)n − 1, and deduce thereby that

|f(2n + 1)| ≤ 2n + 1. (2)

We now take time out to show that the roots of f all lie in the disc |z| < 2 in the complex
plane. To this end, let α0 be a root of f of maximal absolute value. Since the absolute value
of the leading coefficient of f is 1, (1) yields∏

α is a root of f

|αn0 + 1− α| = 1. (3)

Suppose, if possible, that |α0| ≥ 2. If α is a root of f , then

|αn0 + 1− α| ≥ |α0|n − 1− |α| ≥ 2|α0| − 1− |α| =
(
|α0| − 1

)
+
(
|α0| − |α|

)
≥ |α0| − 1 ≥ 1.

Since f(0) = 0, at least one of the factors of the product in (3) is |αn0 + 1| ≥ |α0|n − 1 ≥
2n − 1 ≥ 3, so the product is at least 3 — in contradiction with (3).
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Back to the problem, write (2) in the form∏
α is a root of f

|2n + 1− α| ≤ 2n + 1. (2′)

By the preceding, if α is a non-zero root of f , then |2n + 1− α| ≥ 2n − 1− |α| > 2n − 3 ≥ 1,
so, if the multiplicity of 0 exceeds 1 or f has a non-zero root, then the product in (2′) exceeds
2n + 1 and we reach a contradiction. Consequently, f = aX, where a is a complex number of
absolute value 1, and (1) forces a = −1 and n odd.
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