
Second Selection Test — Solutions

Problem 1. Let a and b be distinct positive real numbers such that bnac divides bnbc for
every positive integer n. Show that a and b are both integer.

Solution. Since the bnbc/bnac form a sequence of positive integers converging to b/a, it
follows that b = ma for some integer m ≥ 2, and bnbc = mbnac for all n large enough.
Consequently, if n is large enough, then bnmac = mbnac, so mna < mbnac + 1; that is,
na < bnac+ 1/m ≤ bnac+ 1/2. Hence {na} = na−bnac < 1/2, so the set {{na} : n ∈ Z+} is
not dense in the closed unit interval [0, 1], and a must be rational, say a = p/q, where p and q
are coprime positive integers. If q ≥ 2, choose n large enough such that np ≡ −1 (mod q), to
reach a contradiction: 1/2 > {na} = {np/q} = {(q − 1)/q} = 1 − 1/q ≥ 1/2. Consequently,
q = 1 and the conclusion follows.

Problem 2. The vertices of two acute triangles all lie on a same circle. The midpoints of two
sides of one triangle both lie on the nine-point circle of the other triangle. Show that the two
triangles share the same nine-point circle.

Solution. We shall start stating a well-known result.
Lemma. Let ABC be a triangle with circumcenter O and nine point center N . If O′ is

the reflection of O across BC then the points A,N,O′ are collinear and NA = NO′.

Proof. This is a simple consequence of the fact that O′ is the circumcenter of BHC
(H being the ortocenter of ABC) and the remark that the nine point circle of ABC is the
homothetic image of the circumcenter of BHC under H(A, 1/2).

Returning to the problem, consider a triangle ABC inscribed in Γ of center O and nine
point center γ of center N . The second triangle is XY Z such that the midpoints of XY and
XZ lie on γ. This can be reformulated by saing that Y,Z are the intersection points of the
image of γ under H(X, 2) (say γ′) with Γ.

We have two cases: γ′ = Γ and γ′ 6= Γ. If γ′ 6= Γ they must be symetric with respect to
Y Z. By construction, the center O′ of γ′ and the circumcenter O of ABC are symetric with
respect to Y Z. By the Lemma, the nie point center N ′ of XY Z coincides with the midpoint
of XO′. But N is the midpoint of XO′, so N = N ′, and we are done.

If γ′ = Γ, it follows that H(X, 2) maps γ into Γ. But the two homotheties that map γ
into Γ are H(G,−2) and H(H, 2). Thus we must have X ≡ H, meaning that the ortocenter
of ABC lies on Γ. This happens iff triangle ABC is right-angled. Since, by hypothesis ABC
is aucte, this case cannot hold.

Remark. We point out, that by taking ABC to be right angled, say in A, X ≡ A, Y and
Z arbitrary on Γ, then theh Euler circle of AY Z is symetric of γ across Y ′Z ′, ehere Y ′ and
Z ′ are the midpoints of XY and XZ (IN this case γ is tangent in A at Γ having half of its
radius).

Problem 3. Let S be the set of rational numbers of the form

(a21 + a1 − 1)(a22 + a2 − 1) · · · (a2n + an − 1)

(b21 + b1 − 1)(b22 + b2 − 1) · · · (b2n + bn − 1)
,

where n, a1, a2, . . ., an, b1, b2, . . ., bn run through the positive integers. Show that S contains
infinitely many primes.



Solution. Clearly, S is closed under multiplication and division: if r and s are members of
S, so are rs and r/s.

If a is a positive integer, and p 6= 5 is a prime factor of a2 + a − 1, then p ≡ ±1 (mod 5).
To prove this, notice that (2a + 1)2 ≡ 5 (mod p), so 5 is a quadratic residue modulo p. By
quadratic reciprocity, p is a quadratic residue modulo 5, so p ≡ ±1 (mod 5). Notice also that
S contains 5, for 5 = 22 + 2− 1.

We now show by induction that S contains all primes congruent to ±1 modulo 5. Since
there are infinitely many such, the conclusion follows. To begin, notice that 11 and 19 both
are in S: 11 = 32 + 3− 1, and 19 = 42 + 4− 1.

Consider now a prime q ≡ ±1 (mod 5), and assume that S contains all primes p < q,
p ≡ ±1 (mod 5). Since q is a quadratic residue modulo 5, quadratic reciprocity shows that 5 is
a quadratic residue modulo q, so there exists a in {1, 2, . . . , q − 1} such that a2 + a− 1 = mq
for some positive integer m. Notice that a2 + a− 1 ≤ (q− 1)2 + (q− 1)− 1 = q2 − q− 1 < q2,
to deduce that m < q. If m = 1, then q = a2 + a− 1 which is a member of S. If m > 1, and p
is a prime factor of m, then p is also a prime factor of a2 + a− 1, so p = 5 or p ≡ ±1 (mod 5).
In either case, p is a member of S, so m is a member, for S is closed under multiplication.
Since q = (a2 + a− 1)/m, and S is closed under division, it follows that q is indeed a member
of S. This completes the proof.

Remark. Since S contains all primes congruent to ±1 modulo 5, it must contain 31. Although
there is no integer a such that a2 + a − 1 = 31, the latter may be written in the form
(122 + 12− 1)/(22 + 2− 1) which explicitly exhibits 31 as a member of S.

Problem 4. Given an integer k ≥ 2, exhibit an infinite set A of sets of positive integers
satisfying the two conditions below:

(a) The intersection of the members of every k-element subset of A is a singleton set; and
(b) The intersection of the members of every (k + 1)-element subset of A is empty.

Solution. Biject the set of k-element sets of positive integers with the set of positive integers
to label the former S1, S2, . . ., Sn, . . . . For every positive integer m, set Am = {n : m ∈ Sn}.

If m and m′ are distinct positive integers, there exist distinct positive integers n and n′

such that m ∈ Sn and m′ ∈ Sn′ . Consequently, n ∈ Am \Am′ and n′ ∈ Am′ \Am; in particular,
Am 6= Am′ , so the A’s form an infinite set A.

Next, if m1, m2, . . ., mk are distinct positive integers, then Am1 ∩ Am2 ∩ . . . ∩ Amk
=

{n}, where n is the index of the label of the set {m1,m2, . . . ,mk} in the list S1, S2, . . . .
Consequently, A satisfies (a).

Finally, if m1, m2, . . ., mk, mk+1 are distinct positive integers, then {m1,m2, . . . ,mk} and
{m2, . . . ,mk,mk+1} have different labels in the list S1, S2, . . ., so Am1∩Am2∩. . .∩Amk

∩Amk+1

is empty. Consequently, A satisfies (b).
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