Second Selection Test — Solutions

Problem 1. Let a and b be distinct positive real numbers such that $\lfloor na \rfloor$ divides $\lfloor nb \rfloor$ for every positive integer n. Show that a and b are both integer.

Solution. Since the $\lfloor nb \rfloor / \lfloor na \rfloor$ form a sequence of positive integers converging to b/a, it follows that b = ma for some integer $m \ge 2$, and $\lfloor nb \rfloor = m \lfloor na \rfloor$ for all n large enough. Consequently, if n is large enough, then $\lfloor nma \rfloor = m \lfloor na \rfloor$, so $mna < m \lfloor na \rfloor + 1$; that is, $na < \lfloor na \rfloor + 1/m \le \lfloor na \rfloor + 1/2$. Hence $\{na\} = na - \lfloor na \rfloor < 1/2$, so the set $\{\{na\}: n \in \mathbb{Z}_+\}$ is not dense in the closed unit interval [0, 1], and a must be rational, say a = p/q, where p and q are coprime positive integers. If $q \ge 2$, choose n large enough such that $np \equiv -1 \pmod{q}$, to reach a contradiction: $1/2 > \{na\} = \{np/q\} = \{(q-1)/q\} = 1 - 1/q \ge 1/2$. Consequently, q = 1 and the conclusion follows.

Problem 2. The vertices of two acute triangles all lie on a same circle. The midpoints of two sides of one triangle both lie on the nine-point circle of the other triangle. Show that the two triangles share the same nine-point circle.

Solution. We shall start stating a well-known result.

Lemma. Let ABC be a triangle with circumcenter O and nine point center N. If O' is the reflection of O across BC then the points A, N, O' are collinear and NA = NO'.

Proof. This is a simple consequence of the fact that O' is the circumcenter of BHC (*H* being the ortocenter of ABC) and the remark that the nine point circle of ABC is the homothetic image of the circumcenter of BHC under $\mathcal{H}(A, 1/2)$.

Returning to the problem, consider a triangle ABC inscribed in Γ of center O and nine point center γ of center N. The second triangle is XYZ such that the midpoints of XY and XZ lie on γ . This can be reformulated by saing that Y, Z are the intersection points of the image of γ under $\mathcal{H}(X, 2)$ (say γ') with Γ .

We have two cases: $\gamma' = \Gamma$ and $\gamma' \neq \Gamma$. If $\gamma' \neq \Gamma$ they must be symetric with respect to YZ. By construction, the center O' of γ' and the circumcenter O of ABC are symetric with respect to YZ. By the Lemma, the nie point center N' of XYZ coincides with the midpoint of XO'. But N is the midpoint of XO', so N = N', and we are done.

If $\gamma' = \Gamma$, it follows that $\mathcal{H}(X, 2)$ maps γ into Γ . But the two homotheties that map γ into Γ are $\mathcal{H}(G, -2)$ and $\mathcal{H}(H, 2)$. Thus we must have $X \equiv H$, meaning that the ortocenter of *ABC* lies on Γ . This happens iff triangle *ABC* is right-angled. Since, by hypothesis *ABC* is aucte, this case cannot hold.

Remark. We point out, that by taking ABC to be right angled, say in $A, X \equiv A, Y$ and Z arbitrary on Γ , then theh Euler circle of AYZ is symetric of γ across Y'Z', ehere Y' and Z' are the midpoints of XY and XZ (IN this case γ is tangent in A at Γ having half of its radius).

Problem 3. Let S be the set of rational numbers of the form

$$\frac{(a_1^2+a_1-1)(a_2^2+a_2-1)\cdots(a_n^2+a_n-1)}{(b_1^2+b_1-1)(b_2^2+b_2-1)\cdots(b_n^2+b_n-1)},$$

where $n, a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ run through the positive integers. Show that S contains infinitely many primes.

Solution. Clearly, S is closed under multiplication and division: if r and s are members of S, so are rs and r/s.

If a is a positive integer, and $p \neq 5$ is a prime factor of $a^2 + a - 1$, then $p \equiv \pm 1 \pmod{5}$. To prove this, notice that $(2a + 1)^2 \equiv 5 \pmod{p}$, so 5 is a quadratic residue modulo p. By quadratic reciprocity, p is a quadratic residue modulo 5, so $p \equiv \pm 1 \pmod{5}$. Notice also that S contains 5, for $5 = 2^2 + 2 - 1$.

We now show by induction that S contains all primes congruent to ± 1 modulo 5. Since there are infinitely many such, the conclusion follows. To begin, notice that 11 and 19 both are in S: $11 = 3^2 + 3 - 1$, and $19 = 4^2 + 4 - 1$.

Consider now a prime $q \equiv \pm 1 \pmod{5}$, and assume that S contains all primes p < q, $p \equiv \pm 1 \pmod{5}$. Since q is a quadratic residue modulo 5, quadratic reciprocity shows that 5 is a quadratic residue modulo q, so there exists a in $\{1, 2, \ldots, q - 1\}$ such that $a^2 + a - 1 = mq$ for some positive integer m. Notice that $a^2 + a - 1 \leq (q - 1)^2 + (q - 1) - 1 = q^2 - q - 1 < q^2$, to deduce that m < q. If m = 1, then $q = a^2 + a - 1$ which is a member of S. If m > 1, and p is a prime factor of m, then p is also a prime factor of $a^2 + a - 1$, so p = 5 or $p \equiv \pm 1 \pmod{5}$. In either case, p is a member of S, so m is a member, for S is closed under multiplication. Since $q = (a^2 + a - 1)/m$, and S is closed under division, it follows that q is indeed a member of S. This completes the proof.

Remark. Since S contains all primes congruent to $\pm 1 \mod 5$, it must contain 31. Although there is no integer a such that $a^2 + a - 1 = 31$, the latter may be written in the form $(12^2 + 12 - 1)/(2^2 + 2 - 1)$ which explicitly exhibits 31 as a member of S.

Problem 4. Given an integer $k \ge 2$, exhibit an infinite set \mathcal{A} of sets of positive integers satisfying the two conditions below:

- (a) The intersection of the members of every k-element subset of \mathcal{A} is a singleton set; and
- (b) The intersection of the members of every (k+1)-element subset of \mathcal{A} is empty.

Solution. Biject the set of k-element sets of positive integers with the set of positive integers to label the former $S_1, S_2, \ldots, S_n, \ldots$. For every positive integer m, set $A_m = \{n \colon m \in S_n\}$.

If m and m' are distinct positive integers, there exist distinct positive integers n and n' such that $m \in S_n$ and $m' \in S_{n'}$. Consequently, $n \in A_m \setminus A_{m'}$ and $n' \in A_{m'} \setminus A_m$; in particular, $A_m \neq A_{m'}$, so the A's form an infinite set \mathcal{A} .

Next, if m_1, m_2, \ldots, m_k are distinct positive integers, then $A_{m_1} \cap A_{m_2} \cap \ldots \cap A_{m_k} = \{n\}$, where n is the index of the label of the set $\{m_1, m_2, \ldots, m_k\}$ in the list S_1, S_2, \ldots . Consequently, \mathcal{A} satisfies (a).

Finally, if $m_1, m_2, \ldots, m_k, m_{k+1}$ are distinct positive integers, then $\{m_1, m_2, \ldots, m_k\}$ and $\{m_2, \ldots, m_k, m_{k+1}\}$ have different labels in the list S_1, S_2, \ldots , so $A_{m_1} \cap A_{m_2} \cap \ldots \cap A_{m_k} \cap A_{m_{k+1}}$ is empty. Consequently, \mathcal{A} satisfies (b).