
Third Test — Solutions

Problem 1. Let ABC be an isosceles triangle, AB = AC, and let M and N be points on the
sides BC and CA, respectively, such that the angles BAM and CNM are equal. The lines
AB and MN meet at P . Show that the internal angle bisectrices of the angles BAM and
BPM meet at a point on the line BC.

Solution. By the internal angle bisectrix theorem, it is sufficient to show that PB/PM =
AB/AM . Since the angles BAM and CNM , respectively ABM and MCN , are equal, so are
the angles AMB and CMN . Hence the angles BMP and AMC are equal, and since the angles
MBP and ACM are also equal, the triangles BMP and CMA are similar. Consequently,
BP/AC = MP/AM . Finally, rewrite the latter in the form BP/MP = AC/AM and replace
AC by AB = AC.

Problem 2. For every positive integer n, let σ(n) denote the sum of all positive divisors of
n (1 and n, inclusive). Show that a positive integer n, which has at most two distinct prime
factors, satisfies the condition σ(n) = 2n − 2 if and only if n = 2k

(
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)
, where k is a

non-negative integer and 2k+1 + 1 is prime.

Solution. Sufficiency is a routine verification. To prove necessity, assume first that n = 2kpl,
where k and l are non-negative integers, and p is an odd prime. Notice that l must be positive,
so
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whence (since σ is multiplicative)(
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By the first inequality,
(
2k+1 − 1

)
(1 + 1/p) < 2k+1, so p > 2k+1 − 1, i.e., p ≥ 2k+1 + 1 since p

is odd. On the other hand, p < 2k+1 + 2(p− 1)/pl, by the second inequality, so 2(p− 1) > pl,
and consequently l = 1 and p = 2k+1 + 1.

To rule out the case n = pkql, where p and q are distinct odd primes, and k and l are
positive integers, write
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Alternatively, but equivalently,
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so min(p, q) = 3, say p = 3. Then 3/(q−1)+4/n > 1, and it follows that q = 5 and k = l = 1,
i.e., n = 15 which does not satisfy the condition σ(n) = 2n− 2. This completes the proof.

Remarks. A positive integer n satisfying the condition σ(n) = 2n − 2 is called a perfect-
plus-two (pp2) number. The result in the problem shows that 3 = 20(20+1 + 1), 10 = 2 · 5 =
21(21+1 + 1), 136 = 23 · 17 = 23(23+1 + 1), 128 · 257 = 27(27+1 + 1) are all pp2 integers.



It can be shown that a pp2 odd integer greater than 3, if any, must have at least four
distinct prime factors, and if, in addition, it is not divisible by 3, then it must have at least
seven distinct prime factors.

Pp1 integers, i.e., positive integers n such that σ(n) = 2n − 1, have equally well been
considered, but the powers of 2 are the only ones known.

Problem 3. Determine the smallest real constant c such that
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for all positive integers n and all positive real numbers x1, . . ., xn.

Solution. The best constant is c = 4. We first show that, if n is a positive integer and x1,
. . ., xn are positive real numbers, then
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so c ≤ 4. To prove the above inequality, proceed by induction on n. The base case, n = 1, is
clear. For the induction step, let x̄k = (x1 + · · ·+ xk)/k, k ≥ 1, and notice that it is sufficient
to show that (2n+3)x̄2n+1−2nx̄2n < 4x2n+1. Since xn+1 = (n+1)x̄n+1−nx̄n, this is equivalent
to 2n(2n + 1)x̄2n − 8n(n + 1)x̄nx̄n+1 + (4n2 + 6n + 1)x̄2n+1 > 0. The left-hand member is a
quadratic form in x̄n and x̄n+1 whose discriminant is −2n and the inequality follows.

To show c ≥ 4, we prove that
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Divergence of the harmonic series settles the case. Write 1/
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Finally, notice that 1/(2k
√
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k, k ≥ 2, to get
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and deduce thereby the desired inequality.

Problem 4. Let n be a positive integer, and let An, respectively Bn, be the set of non-
negative integers k < n such that the number of distinct prime factors of gcd(k, n) is even,
respectively odd. Show that |An| = |Bn| if n is even, and |An| > |Bn| if n is odd.

Solution. Since gcd(k, n) depends only upon the residue class of k modulo n, |An| − |Bn| =∑
k(−1)s(k,n), where s(k, n) is the number of distinct prime factors of gcd(k, n), and k ranges

over any complete residue system modulo n.
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We shall prove that the above sum equals n
∏

p|n(1−2/p), p prime, whence the conclusion;
the latter is precisely the number of positive integers k < n such that k and k + 1 are both
coprime to n.

In the above notation, let e(k, n) = (−1)s(k,n) and let f(n) =
∑

k e(k, n). We show that
f is a numerical multiplicative function — that is, if n1 and n2 are coprime positive integers,
then f(n1n1) = f(n1)f(n2).

If n1 and n2 are coprime positive integers, then e(k, n1n2) = e(k, n1)e(k, n2). Further, if
ki ranges once over a complete residue system modulo ni, i = 1, 2, then k = k1n2 + k2n1
ranges once over a complete residue system modulo n1n2, and e(k, ni) = e(ki, ni), i = 1, 2.
Hence e(k, n1n2) = e(k, n1)e(k, n2) = e(k1, n1)e(k2, n2), and f(n1n2) =

∑
k e(k, n1n2) =∑

k1

∑
k2
e(k1, n1)e(k2, n2) = f(n1)f(n2).

Finally, if p is a prime, and m is a positive integer, then f(pm) equals the number of k’s
coprime to p, which is pm − pm−1, minus the number of k’s divisible by p, which is pm−1, so
f(pm) = pm(1− 2/p). This ends the proof.
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