
Second Test — Solutions

Problem 1. Let ABC be a triangle and let X, Y , Z be interior points on the sides BC, CA,
AB, respectively. Show that the magnified image of the triangle XY Z under a homothecy of
factor 4 from its centroid covers at least one of the vertices A, B, C.

Solution 1. Since the problem is of an affine nature, we may (and will) assume that the
triangle XY Z is equilateral. The triangle ABC has at least one vertex angle, say at A,
greater than or equal to 60◦, so A is covered by the closed circumdisc OY Z, where O is the
centre of the triangle XY Z. Since the latter is covered by the 4-fold blow-up of the triangle
XY Z from O, the conclusion follows.

Solution 2. Suppose, if possible, that none of the vertices A, B, C is covered by the 4-fold
blow-up of the triangle XY Z from its centroid. Then the distance of the point A to the line
Y Z is greater than the distance of the point X to this line, so the area of the triangle AY Z
is greater than the area of the triangle XY Z. Similarly, the triangles BZX and CXY both
have an area greater than that of the triangle XY Z, in contradiction with the well known fact
that of the four triangles AY Z, BZX, CXY , XY Z, the latter has not the smallest area.

Problem 2. Let a be a real number in the open interval (0, 1), let n be a positive integer and
let fn : R→ R, fn(x) = x + x2/n. Show that

a(1− a)n2 + 2a2n + a3

(1− a)2n2 + a(2− a)n + a2
< (fn ◦ · · · ◦ fn︸ ︷︷ ︸

n

)(a) <
an + a2

(1− a)n + a
.

Solution. Let ak = (fn ◦ · · · ◦ fn︸ ︷︷ ︸
k

)(a), k ∈ N, and notice that

1/ak+1 = 1/ak − 1/(ak + n), k ∈ N,

to deduce that 1/an = 1/a−
∑n−1

k=0 1/(ak + n), so

1/a− n/(a + n) < 1/an < 1/a− n/(an + n), (∗)

since the ak form an increasing sequence of positive real numbers. The first inequality above
yields the required upper bound,

an <
an + a2

(1− a)n + a
.

Plugged into the rightmost expression in (∗), this upper bound yields the required lower bound,

an >
a(1− a)n2 + 2a2n + a3

(1− a)2n2 + a(2− a)n + a2
.

Problem 3. Determine all positive integers n such that all positive integers less than n and
coprime to n be powers of primes.

Solution. Let p1 = 2 < p2 = 3 < p3 = 5 < · · · be the sequence of primes and let q and r,
q < r, be the first two primes which do not divide n. A necessary and sufficient condition that



n be of the required type is that n < qr. Each of the primes less than r and different from q
divides n, and so does their product. Therefore the product of all primes less than r does not
exceed nq < q2r. If r = pm, then q ≤ pm−1, so p1p2 · · · pm−2 < pm−1pm.

Notice that 6 is the first index k such that p1p2 · · · pk−2 > pk−1pk. Now, if p1p2 · · · pk−2 >
pk−1pk for some index k ≥ 6, then (by Bertrand-Tchebysheff) p1p2 · · · pk−1 > p2k−1pk >
2pk−1 · 2pk > pkpk+1, so p1p2 · · · pk−2 > pk−1pk for all indices k ≥ 6.

Consequently, m ≤ 5, r = pm ≤ p5 = 11, q ≤ p4 = 7, and n < qr ≤ p4p5 = 7 · 11 = 77.
Examination of the integers less than 77 quickly yields the required numbers: 2, 3, 4, 5, 6, 8,
9, 10, 12, 14, 18, 20, 24, 30, 42, 60.

Problem 4. Let f be the function of the set of positive integers into itself, defined by f(1) = 1,
f(2n) = f(n) and f(2n + 1) = f(n) + f(n + 1). Show that, for any positive integer n, the
number of positive odd integers m such that f(m) = n is equal to the number of positive
integers less than and coprime to n.

Solution. With reference to the recurrence for f , notice that if n is a positive even, respec-
tively odd, integer, then f(n) < f(n + 1), respectively f(n) ≥ f(n + 1), so f(n) < f(n + 1) if
and only if n is even.

With reference again to the recurrence for f , an esay induction shows f(n) and f(n + 1)
coprime for each positive integer n.

Discarding the trivial case n = 1, given a positive integer n ≥ 2, it follows that if m is a
positive odd integer such that f(m) = n, then f(m − 1) is a positive integer less than and
coprime to n.

Next, we prove that for every pair of coprime positive integers (k, n) there exists a unique
positive integer m such that k = f(m) and n = f(m + 1). If, in addition, k < n, then m is
even by the preceding, so m + 1 is a positive odd integer such that f(m + 1) = n and the
conclusion follows.

To prove the above claim, proceed by induction on k + n. The base case, k + n = 2, i.e.
k = n = 1, is clear. If k + n > 2, apply the induction hypothesis to the pair (k, n − k) or
(k − n, n), according as to k < n or k > n. In the former case, k = f(m) = f(2m) and
n = k + f(m + 1) = f(m) + f(m + 1) = f(2m + 1) for some positive integer m; in the latter,
n = f(m + 1) = f(2m + 2) and k = f(m) + n = f(m) + f(m + 1) = f(2m + 1) for some
positive integer m. This establishes the existence of the desired positive integer.

To prove uniqueness, write k = f(m) and n = f(m + 1) for some positive integer m, and
consider again the two possible cases.

If k < n, then m is even, say m = 2m′, where m′ is a positive integer, so k = f(2m′) =
f(m′) and n− k = f(2m′ + 1)− f(m′) = f(m′ + 1). The induction hypothesis applies to the
pair (k, n− k) to imply uniqueness of m′, hence uniqueness of m.

If k > n, then m is odd, say m = 2m′ + 1, where m′ is a non-negative integer, so k − n =
f(2m′+1)−f(2m′+2) = f(m′)+f(m′+1)−f(m′+1) = f(m′) and n = f(2m′+2) = f(m′+1).
The induction hypothesis applies now to the pair (k − n, n) to imply uniqueness of m′, hence
again uniqueness of m. This completes the induction step and ends the proof.
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