Test de Selectie pentru EGMO 2014 (fete) si MofM 2014 - Solutii

Problem 1. Given n + 1 distinct real numbers in the interval [0, 1], prove there exist
1
two of them a # b, such that abla — b| < an’
n
AOPS
Solution. Index the numbers 0 < ag < a1 <--- < a, < 1. If ay = 0 we're done; if not,
n-1 n-1

1 1
Y. agags (e —ag) = 3 a—ay— Y (age1—ap)’| < 350 there will exist0< k< n—1
k=0 k=0

1
such that| ai a1 (args1 — ap) < n (by an averaging argument). |
n

Problem 2. What is the minimum number m(n) of edges of K, (the complete graph
on n = 4 vertices) that can be colored red, such that any K4 subgraph contains a red K3?
For example, m(4) = 3.

AoPS

Solution. The answer is in fact quite easy to get. Assume the edge ab is not red.
Then the fact that among any {a, b, x, y} has to exist a red triangle forces xy to be red,
and moreover, either ax, ay to be red or bx, by to be red. That means K, — {a, b} = Kj,—»
is red. Let A be the set of vertices x such that ax is red, and B be the set of vertices y
such that by is red; it follows AU B = K, \ {a, b}. If we could take x € A\Band y€ B\ A,
then {a, b, x, y} would be a contradiction, so say B\ A = @, thus A = K, \ {a, b}, therefore
K, —{b} = K;,—; is red. That is enough, so’ mn)=n-1n-2)/2| |

Problem 3. Let 0 < p < Q be fixed real numbers, and let a, b, x and y be positive real

ax <p
ay =Q . .

numbers, such that bx <Q Determine the maximum value of (a + b)(x + y), and
by =Q

the cases of equality.

SGALL'S LEMMA

b
Solution. Let us normalize, by taking A = %, U= L m = min{A, y}, M = max{A, u},
1 <p
!/
p'= % and Q' = %, and dividing all inequations by ax, to get ]\nd z 8/ .
mM =Q

We thus need to maximize (1 + m)(1 + M). We claim the maximum is 2(p’ + Q").

elfm<1,thenl+m+M+mM<2+2Q <2(p’'+Q).
elfl<m,then (m-1)(M-1)=0,som+M<1+mM,thusl+m+M+mM <
2(1+ mM) <2(p' + Q). Equality is reached ifand only if p' =1, m=1, M= Q.

Going back to the original variables, the above means’ (a+b)(x+y)<2(p+Q) ‘, with
equality occuring if and only if| p = ax and’ y=xand Q= bx ‘ or’ b=aand Q=ay ‘ |

Problem 4. Say that a (nondegenerate) triangle is funny if it satisfies the condition
that the altitude, median, and angle bisector drawn from one of the vertices partition
the triangle into 4 non-overlapping triangles whose areas form (in some order) a 4-term
arithmetic sequence. (One of these 4 triangles is allowed to be degenerate.) Find, with
proof, all funny triangles.
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Solution. (L. Ploscaru) Sa presupunem ca cele trei ceviene pleacd din A, cu AB < AC
(AABC nu poate evident fi isoscel in A; din ipoteza se deduce si ca triunghiul funny nu
poate fi obtuzunghic in B sau C.). Ordinea dreptelor este

AB -1ndltimea - bisectoarea - mediana — AC

(se demonstreaza eventual uitindu-ne la picioarele lor pe BC). Ideea principala este sa
demonstram cd un triunghi funny ABC e dreptunghic (paranteza din ipoteza face aluzie
la aceasta posibilitate; daca nu erau triunghiuri funny dreptunghice, nu isi avea rostul).

Sd zicem ca M este mijlocul lui BC; atunci arial ABM] = aria[ ACM], deci clar ACM e
triunghiul cu cea mai mare arie. Fie g, g +r, g+ 2r, g + 3r ariile. Cele 3 triunghiuri mici
il partitioneaza pe ABM, deci 3g + 3r = g + 3r, de unde g = 0, iar atunci singurul fel in
care 2 din cele 5 drepte de mai sus pot coincide este AB 1 BC.

Acum problema e aproape gata; luam D piciorul bisectoarei, si prin simpla formula

1
aria = Ebazaxinéll;imea, vom obtine cd {BD,DM, MC} = {x,2x,3x} pentru un x real

pozitiv. Evident MC = 3x;, iar atunci in fiecare dintre cele doud cazuri aplicam teorema
bisectoarei ca sa aflam valoarea raportului AB/AC = cos 4, si am terminat. Obtinem
/A € {arccos(1/5),arccos(1/2) = m/3} (deci unul dintre triunghiuri este cel de unghiuri
30°,60°,90°, dar mai exista un caz). |

Problem 5. For positive real numbers a, b, c with a? + b* + ¢® = 3, prove the inequality

a? b? c? 3

+ + = -

1+bc l+ca 1l+ab 2
and determine its case(s) of equality.

Show that if a® + b + ¢? < 3, the inequality may hold no more.

DAN SCHWARZ, variant of Italian Test

Solution. It is enough to consider the case a® + b* + ¢? = 3. Indeed, for k = 1 we have
(ka)? . a?

> t.al.
1+ (kb)(ke) ~ 1+bc
P’+c? 5-a* 2 2a?
We then have 1+ bc <1+ - a , hence a > a et.al. Then the
2 o 2 10 1+bc  5-a?
function f: [0,3] — R given by f(t) = Erial-rts 2 is clearly convex, therefore we
have (by Jensen’s inequality)
a’+ b+ c? 3
f@+f*) + f(c? zsf(—) =3f(1) = 5

Thus the inequality is proved, with the obvious equality case when a? + b? + ¢ = 3 and
a=b=c=1.
For a?+b?+c? < 3 the inequality will hold no more; just consider0<a=b=c=k<1,
3k 3
andthenIHS = —— < —. |
1+k% 2

Alternative Solution. Trying the Cauchy-Schwarz inequality, just for a® + b*> + ¢®> =3
(seen to be enough)

a? b? c? . (a+b+c)*  3+2(ab+bc+ca)

+ + > =
l1+bc 14ca 1+ab 3+bc+ca+ab 3+ab+bc+ca

3
will not work this time, since the hopeful continuation towards value 3 would require

6+4(ab+bc+ca)=9+3(ab+ bc+ca), i.e. ab+ bc+ ca = 3, which in fact it is precisely
the other way around.
2



If however we try a common trick, and write
a? p? c? a* bt ct
+ + = + + ,
1+bc l+ca l+ab a?+a?bc b>+b%ca c?+c2ab
then we can continue by Cauchy-Schwarz
at p? ct (@? + b? + ¢?)? 9
+ + > = .

a’+a’bc b2+b%ca c?2+ctab (@ +b®+c2)+abca+b+c) 3+abcla+b+c)

3
Now, in order to continue with > X we need abc(a+ b+ c) <3, which holds true, since
3/2
=1land a+ b+ c</3(a?+ b?+ ¢?) = 3; the equality case follows

as above. [ |

a?+b%+c?
abc<|———

Alternative Solution. (C. Popescu) The required inequality is a consequence of the
following inequality
a’ N 3(@®+b*+c?)
Z"1+bc T 3+a2+ b2+
To prove the latter, apply Jensen’s inequality to the convex function ¢ — (1+ 1)}, t > -1,
at t; = bc, t = ca and t3 = ab, with weights A; = a?/(a® + b? + ¢?), A, = b*/(a® + b* + ¢?)
and A3 = ¢?/(a® + b? + ¢?), respectively, to obtain

a? 1 - 1 B a?+ b +c?
Z‘a2+b2+cz.1+bc_ 1+Z%'bc_ a?+b%+c2+abcla+b+c)’
a’+b*+c
and get thereby
a? . (@® + b? + c?)?
Zl+bc_ a?+b%+c2+abcla+b+c)’

Now,

1 1 1
abc(a+b+c)s3—3(a+b+c)3(a+b+c) 53—3-32(a2+b2+62)2: g(a2+h2+cz)2,

so
5 a - (a® + b* + ¢?)? _ 3@+ b+ c?)
l+be ™ @+b2+2+ 1@+ b2 +c2)?  3+a+b2+c?
This ends the proof. |

Remarks. Notice that
at . p* . ct N (@®+b*+c?)* 9
1+bc l+ca l1+ab 3+bc+ca+ab 3+ab+bc+ca

3
2 -

2
again works immediately.

The original Italian Test problem was to prove for a® + b? + ¢ = 3 the inequality
1 1 1 3

1+bc 1+ca 1+ab 2’
much easier to handle. A "brute force" solution is also possible here, but more difficult
to compute for the variant asked above. In fact a? + b? + ¢? < 3 is both needed, and
enough, for the Italian problem.

Combining the two, both holding for a? + b? + ¢? = 3, allows us to then claim that

l1+a?> 1+b* 1+c?
+ + =3.
1+bc l+ca 1l+ab
In a continuation to his Alternative Solution, Calin Popescu also offers the following

generalization.
3



It can be shown along the same lines that if 7 is a positive integer, a is a real number
larger than 1, and a, ..., a, are positive real numbers, then

a (n-1/axn a
Z": A - n Lio1 %
S l+tar-ag1aga - an - pn-Dia g (22:1 ag)(”_”/“
In particular, if =3 and @ = n—1, then
n-1 n n—1
i a o Ml %

= — 1
Sil+araaagacan n+Xp al!

n
e . _ an
so, if a is a positive real number lesser than n, and E ap 1>~ then
n—a

k=1
n n-1
A
> >a.
i ltarag_1age--an

Problem 6. Find the formula of the general term of a real numbers sequence (x,) =1
satisfying

X1 =3
3tns1 — ) = \[2%,, +16+1/2% + 16
AOPS

Solution. It is clear the sequence is (strictly) increasing. Then

(Xn+1 = Xn) (Xn+1 + Xn)
Va2, +16-/x2 +16

allows us to write X,41 + X, = 3 (\/fol +16— \/x% + 16). S0 4x,41 —5x, = 31/ x2 + 16.

Square it, write it for the next index, subtract the two and factorize, in order to get
8(Xp+2 — Xp)(2Xp42 — 5Xp41 +2x,) = 0, hence 2x,42 — 5x,41 +2x, = 0. By the known
methods, the general solution is x, = a2 + f27". Since the sequence can in fact be
prolonged to the left, to xp = 0, the coefficients can be determined to be a =2, f = -2,

so| x, = 2VL+1 _2—n+1 ‘

81 —n) = \/x2,, + 16+ /a2 +16 =

Alternatively, if we compute the first few terms and "guess" this formula, it is a simple
task to check it verifies the recurrence formula, since

1 1 1
3(xn+1 _ xn) =3 (2n+2 _ 2_n _2n+1 + Zn_l) =3 (2n+1 + Z_n) ,

1 1 1
2 2 _ |on+2 n+1 _ n+l1
\/xn+1+16+\/xn+16_(2 +_2n)+(2 +_2n—1)_3(2 +_2n .

There are merits in it, especially if one has seen in the past such relations. |




