
Test de Selecţie pentru EGMO 2014 (fete) şi MofM 2014 – Soluţii

Problem 1. Given n +1 distinct real numbers in the interval [0,1], prove there exist

two of them a 6= b, such that ab|a −b| < 1

3n
.

AOPS

Solution. Index the numbers 0 ≤ a0 < a1 < ·· · < an ≤ 1. If a0 = 0 we’re done; if not,
n−1∑
k=0

ak ak+1(ak+1−ak ) = 1

3

(
a3

n −a3
0 −

n−1∑
k=0

(ak+1 −ak )3

)
< 1

3
, so there will exist 0 ≤ k ≤ n−1

such that ak ak+1(ak+1 −ak ) < 1

3n
(by an averaging argument). �

Problem 2. What is the minimum number m(n) of edges of Kn (the complete graph
on n ≥ 4 vertices) that can be colored red, such that any K4 subgraph contains a red K3?
For example, m(4) = 3.

AOPS

Solution. The answer is in fact quite easy to get. Assume the edge ab is not red.
Then the fact that among any {a,b, x, y} has to exist a red triangle forces x y to be red,
and moreover, either ax, ay to be red or bx,by to be red. That means Kn − {a,b} = Kn−2

is red. Let A be the set of vertices x such that ax is red, and B be the set of vertices y
such that by is red; it follows A ∪B = Kn \ {a,b}. If we could take x ∈ A \ B and y ∈ B \ A,
then {a,b, x, y} would be a contradiction, so say B \ A =;, thus A = Kn \ {a,b}, therefore

Kn − {b} = Kn−1 is red. That is enough, so m(n) = (n −1)(n −2)/2 . �

Problem 3. Let 0 < p ≤Q be fixed real numbers, and let a,b, x and y be positive real

numbers, such that


ax ≤ p
ay ≤Q
bx ≤Q
by ≤Q

. Determine the maximum value of (a +b)(x + y), and

the cases of equality.

SGALL’S LEMMA

Solution. Let us normalize, by taking λ = y

x
, µ = b

a
, m = min{λ,µ}, M = max{λ,µ},

p ′ = p

ax
and Q ′ = Q

ax
, and dividing all inequations by ax, to get


1 ≤ p ′
m ≤Q ′
M ≤Q ′

mM ≤Q ′
.

We thus need to maximize (1+m)(1+M). We claim the maximum is 2(p ′+Q ′).

• If m < 1, then 1+m +M +mM < 2+2Q ′ ≤ 2(p ′+Q ′).
• If 1 ≤ m, then (m − 1)(M − 1) ≥ 0, so m + M ≤ 1+mM , thus 1+m + M +mM ≤

2(1+mM) ≤ 2(p ′+Q ′). Equality is reached if and only if p ′ = 1, m = 1, M =Q ′.

Going back to the original variables, the above means (a +b)(x + y) ≤ 2(p +Q) , with

equality occuring if and only if p = ax and y = x and Q = bx or b = a and Q = ay . �

Problem 4. Say that a (nondegenerate) triangle is funny if it satisfies the condition
that the altitude, median, and angle bisector drawn from one of the vertices partition
the triangle into 4 non-overlapping triangles whose areas form (in some order) a 4-term
arithmetic sequence. (One of these 4 triangles is allowed to be degenerate.) Find, with
proof, all funny triangles.
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Solution. (L. Ploscaru) Să presupunem că cele trei ceviene pleacă din A, cu AB < AC
(4ABC nu poate evident fi isoscel în A; din ipoteză se deduce şi că triunghiul funny nu
poate fi obtuzunghic în B sau C .). Ordinea dreptelor este

AB – înălţimea – bisectoarea – mediana – AC

(se demonstrează eventual uitându-ne la picioarele lor pe BC ). Ideea principală este să
demonstrăm că un triunghi funny ABC e dreptunghic (paranteza din ipoteză face aluzie
la această posibilitate; dacă nu erau triunghiuri funny dreptunghice, nu îşi avea rostul).

Să zicem că M este mijlocul lui BC ; atunci aria[AB M ] = aria[AC M ], deci clar AC M e
triunghiul cu cea mai mare arie. Fie q , q + r , q +2r , q +3r ariile. Cele 3 triunghiuri mici
îl partiţionează pe AB M , deci 3q +3r = q +3r , de unde q = 0, iar atunci singurul fel în
care 2 din cele 5 drepte de mai sus pot coincide este AB ⊥ BC .

Acum problema e aproape gata; luăm D piciorul bisectoarei, şi prin simpla formulă

aria = 1

2
baza×înălţimea, vom obţine că {BD,DM , MC } = {x,2x,3x} pentru un x real

pozitiv. Evident MC = 3x, iar atunci în fiecare dintre cele două cazuri aplicăm teorema
bisectoarei ca să aflăm valoarea raportului AB/AC = cos A, şi am terminat. Obţinem
∠A ∈ {arccos(1/5),arccos(1/2) = π/3} (deci unul dintre triunghiuri este cel de unghiuri
30◦,60◦,90◦, dar mai există un caz). �

Problem 5. For positive real numbers a,b,c with a2+b2+c2 ≥ 3, prove the inequality

a2

1+bc
+ b2

1+ ca
+ c2

1+ab
≥ 3

2

and determine its case(s) of equality.
Show that if a2 +b2 + c2 < 3, the inequality may hold no more.

DAN SCHWARZ, variant of Italian Test

Solution. It is enough to consider the case a2 +b2 + c2 = 3. Indeed, for k ≥ 1 we have
(ka)2

1+ (kb)(kc)
≥ a2

1+bc
et.al.

We then have 1+ bc ≤ 1+ b2 + c2

2
= 5−a2

2
, hence

a2

1+bc
≥ 2a2

5−a2 et.al. Then the

function f : [0,3] → R given by f (t ) = 2t

5− t
= 10

5− t
− 2 is clearly convex, therefore we

have (by Jensen’s inequality)

f (a2)+ f (b2)+ f (c2) ≥ 3 f

(
a2 +b2 + c2

3

)
= 3 f (1) = 3

2
.

Thus the inequality is proved, with the obvious equality case when a2 +b2 + c2 = 3 and
a = b = c = 1.

For a2+b2+c2 < 3 the inequality will hold no more; just consider 0 < a = b = c = k < 1,

and then LHS = 3k2

1+k2 < 3

2
. �

Alternative Solution. Trying the Cauchy-Schwarz inequality, just for a2 +b2 + c2 = 3
(seen to be enough)

a2

1+bc
+ b2

1+ ca
+ c2

1+ab
≥ (a +b + c)2

3+bc + ca +ab
= 3+2(ab +bc + ca)

3+ab +bc + ca

will not work this time, since the hopeful continuation towards value
3

2
would require

6+4(ab +bc +ca) ≥ 9+3(ab +bc +ca), i.e. ab +bc +ca ≥ 3, which in fact it is precisely
the other way around.
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If however we try a common trick, and write

a2

1+bc
+ b2

1+ ca
+ c2

1+ab
= a4

a2 +a2bc
+ b4

b2 +b2ca
+ c4

c2 + c2ab
,

then we can continue by Cauchy-Schwarz

a4

a2 +a2bc
+ b4

b2 +b2ca
+ c4

c2 + c2ab
≥ (a2 +b2 + c2)2

(a2 +b2 + c2)+abc(a +b + c)
= 9

3+abc(a +b + c)
.

Now, in order to continue with ≥ 3

2
, we need abc(a +b + c) ≤ 3, which holds true, since

abc ≤
(

a2 +b2 + c2

3

)3/2

= 1 and a +b + c ≤
√

3(a2 +b2 + c2) = 3; the equality case follows

as above. �

Alternative Solution. (C. Popescu) The required inequality is a consequence of the
following inequality ∑ a2

1+bc
≥ 3(a2 +b2 + c2)

3+a2 +b2 + c2 .

To prove the latter, apply Jensen’s inequality to the convex function t 7→ (1+ t )−1, t >−1,
at t1 = bc, t2 = ca and t3 = ab, with weights λ1 = a2/(a2 +b2 +c2), λ2 = b2/(a2 +b2 +c2)
and λ3 = c2/(a2 +b2 + c2), respectively, to obtain∑ a2

a2 +b2 + c2 · 1

1+bc
≥ 1

1+∑ a2

a2+b2+c2 ·bc
= a2 +b2 + c2

a2 +b2 + c2 +abc(a +b + c)
,

and get thereby ∑ a2

1+bc
≥ (a2 +b2 + c2)2

a2 +b2 + c2 +abc(a +b + c)
.

Now,

abc(a +b + c) ≤ 1

33 (a +b + c)3(a +b + c) ≤ 1

33 ·32(a2 +b2 + c2)2 = 1

3
(a2 +b2 + c2)2,

so ∑ a2

1+bc
≥ (a2 +b2 + c2)2

a2 +b2 + c2 + 1
3 (a2 +b2 + c2)2

= 3(a2 +b2 + c2)

3+a2 +b2 + c2 .

This ends the proof. �

Remarks. Notice that

a4

1+bc
+ b4

1+ ca
+ c4

1+ab
≥ (a2 +b2 + c2)2

3+bc + ca +ab
= 9

3+ab +bc + ca
≥ 3

2

again works immediately.

The original Italian Test problem was to prove for a2 +b2 + c2 = 3 the inequality

1

1+bc
+ 1

1+ ca
+ 1

1+ab
≥ 3

2
,

much easier to handle. A "brute force" solution is also possible here, but more difficult
to compute for the variant asked above. In fact a2 + b2 + c2 ≤ 3 is both needed, and
enough, for the Italian problem.

Combining the two, both holding for a2 +b2 + c2 = 3, allows us to then claim that

1+a2

1+bc
+ 1+b2

1+ ca
+ 1+ c2

1+ab
≥ 3.

In a continuation to his Alternative Solution, Călin Popescu also offers the following
generalization.
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It can be shown along the same lines that if n is a positive integer, α is a real number
larger than 1, and a1, . . ., an are positive real numbers, then

n∑
k=1

aα
k

1+a1 · · ·ak−1ak+1 · · ·an
≥ n(n−1)/α∑n

k=1 aα
k

n(n−1)/α+ (∑n
k=1 aα

k

)(n−1)/α
.

In particular, if n ≥ 3 and α= n −1, then

n∑
k=1

an−1
k

1+a1 · · ·ak−1ak+1 · · ·an
≥ n

∑n
k=1 an−1

k

n +∑n
k=1 an−1

k

,

so, if a is a positive real number lesser than n, and
n∑

k=1
an−1

k ≥ an

n −a
, then

n∑
k=1

an−1
k

1+a1 · · ·ak−1ak+1 · · ·an
≥ a.

Problem 6. Find the formula of the general term of a real numbers sequence (xn)n≥1

satisfying {
x1 = 3

3(xn+1 −xn) =
√

x2
n+1 +16+

√
x2

n +16

AOPS

Solution. It is clear the sequence is (strictly) increasing. Then

3(xn+1 −xn) =
√

x2
n+1 +16+

√
x2

n +16 = (xn+1 −xn)(xn+1 +xn)√
x2

n+1 +16−
√

x2
n +16

allows us to write xn+1 + xn = 3

(√
x2

n+1 +16−
√

x2
n +16

)
. So 4xn+1 −5xn = 3

√
x2

n +16.

Square it, write it for the next index, subtract the two and factorize, in order to get
8(xn+2 − xn)(2xn+2 − 5xn+1 + 2xn) = 0, hence 2xn+2 − 5xn+1 + 2xn = 0. By the known
methods, the general solution is xn = α2n +β2−n . Since the sequence can in fact be
prolonged to the left, to x0 = 0, the coefficients can be determined to be α = 2, β = −2,

so xn = 2n+1 −2−n+1 .

Alternatively, if we compute the first few terms and "guess" this formula, it is a simple
task to check it verifies the recurrence formula, since

3(xn+1 −xn) = 3

(
2n+2 − 1

2n −2n+1 + 1

2n−1

)
= 3

(
2n+1 + 1

2n

)
,√

x2
n+1 +16+

√
x2

n +16 =
(
2n+2 + 1

2n

)
+

(
2n+1 + 1

2n−1

)
= 3

(
2n+1 + 1

2n

)
.

There are merits in it, especially if one has seen in the past such relations. �
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