Calarasi 2014

Problema 1. Doui cercuri secante Cy, Co au punctele comune A si A’. Tangenta in A la C;
taie Co In B, tangenta in A la Cy taie C; in C, iar dreapta BC taie din nou C; i Co in Dy,
respectiv Dy. Se considera punctele Ey € (ADy) si By € (AD3), astfel incat AE, = AFEs.
Dreptele BE; si AC' se intersecteaza in punctul M, dreptele CFEy si AB se intersecteaza in
punctul N, iar dreptele M N si BC se intersecteaza in punctul P. Aratati ca PA este tangenta
la cercul circumscris triunghiului ABC.

Problema 2. Fie S o multime de numere naturale nenule, astfel incat |\/x] = |/y], oricare
ar fi elementele x si y ale lui S. Aratati ca produsele xy, unde x,y € S, sunt distincte doua
cate doua.

Problema 3. Aratati ca, oricare ar fi numarul intreg n > 2, existda o multime de n numere
intregi compuse, coprime doua cate doua, care formeaza o progresie aritmetica.

Problema 4. Fie n un numar natural nenul si fie A triunghiul cu varfurile in punctele
laticiale (0,0), (n,0) si (0,n). Determinati cardinalul maxim al unei multimi S de puncte
laticiale situate in interiorul sau pe bordul lui A, astfel incat segmentul determinat de oricare
douéa puncte distincte din S sa nu fie paralel cu niciuna dintre laturile lui A.



Calarasi 2014 — Solutions

Problem 1. Two circles v, and -5 cross one another at two points; let A be one of these
points. The tangent to v, at A meets again o at B, the tangent to 2 at A meets again g
at C, and the line BC meets again v; and v at Dy and Do, respectively. Let E1 and Es be
interior points of the segments AD; and AD>, respectively, such that AE; = AFE5. The lines
BE, and AC meet at M, the lines CEy and AB meet at N, and the lines M N and BC meet
at P. Show that the line PA is tangent to the circle ABC.

Solution. We shall prove that PA?> = PB - PC. By Stewart’s relation, PA? - BC + AB? -
PC + AC? - PB = PB - PC - BC, this amounts to showing PB - AC? = PC - AB?.

To begin, apply Menelaus’ theorem to triangles ABDy, AC D1, ABC and transversals N F>C,
MFELB, MNP, respectively, to write

NB CDy EQA_l MA E,D; Bc_1 MC NA PB
NA CB E;D, =~ MC FE,A BD, ' MA NB PC

so, multiplying the three,
E1Dy CDy; PB

E,D, BD, PC " (*)
on account of AEy = AFE5. Since LZAD\B = /BAC = LAD>C, it follows that AD; = ADs,
so E1D; = E3Ds, with reference again to AE; = AE,. Consequently, PB/PC = BD;/C Ds,
by ().

Finally, similarity of the triangles ABC and D1 BA yields BD; = AB?/BC. Similarly, C Dy =
AC?/BC, so PB - AC? = PC - AB?, by the preceding. This ends the proof.

Problem 2. Let S be a set of positive integers such that |\/z] = [/y] for all 2,y € S. Show
that the products xy, where x,y € S, are pairwise distinct.

Solution. We first show that if z1, x9, x3, x4 are (not necessarily distinct) members of S
such that z1x9 < x314, then 1 + 20 < x3 + 24.

Suppose, if possible, that 1 + 2o > x3 + x4. Let n = |\/z], x € S, and write 2, = n? + wy,
where the wy are non-negative integers less than 2n+ 1, to deduce that w; +ws —ws — w4 > 1.
The condition 2179 < w324 yields (wy + wy — w3 — wy)n? < wawy — wiws, so w3 > 0 and

n? < (w1 +wa — w3 — wy)n® < wawg — wiwz < ws(wy + wy — W3) — Wiws

= (w1 — wz)(ws — wz) < (w1 —w3) + (ws — wa))* /4 = (wr — wa)*/4 < n?,



which is a contradiction.

Thus, if x1, x2, x3, T4 are members of S such that xiz9 = x3x4, then x1 + 29 = 23 + T4, S0
2?2+ w374 = 71 (71 +22) = T1(T3 + 24), 101, (21— 23) (71 — 74) = 0 whence x1 = z3 or 1 = 4.
The conclusion now follows at once.

Remark. The result is sharp, in the sense that the conclusion may fail if the square roots of
the members of S do not all have the same integral part. This is the case if, for instance, n2,
n? +n and (n + 1)? are all members of S, since n?(n + 1)% = (n? 4+ n)(n? + n).

Problem 3. Given any integer n > 2, show that there exists a set of n pairwise coprime
composite integers in arithmetic progression.

Solution. Fix a prime p > n and an integer N > p + (n — 1)n! and consider the arithmetic
progression of length n consisting of the numbers N! +p+ kn!, k=0,1,...,n — 1.

Suppose, if possible, that ¢ is a prime factor of two of these numbers. Then ¢ divides their
difference which is of the form kn!, for some positive integer k < n. It follows that ¢ does not
exceed n, so n! and N! are both divisible by ¢, and consequently so is p — a contradiction.

Problem 4. Let n be a positive integer and let A be the closed triangular domain with
vertices at the lattice points (0,0), (n,0) and (0,7n). Determine the maximal cardinality a
set S of lattice points in A may have, if the line through every pair of distinct points in .S is
parallel to no side of A.

Solution. The required maximum is [2n/3] + 1 and is achieved, for instance, for

S ={(2k, |n/3] —k): k=0,...,[n/3]} U{(2k+1,2[n/3] — k): &k /3] =1},
if n =0 or n =1 modulo 3, and

S={(2k |n/3] —k): k=0,...,[n/3]} U{(2k+1,2[n/3] —k+1): k /33,

if n = 2 modulo 3.

If (z,y) is a point in A, and z = z(x,y) is the distance from (z,y) to the side through (n,0)
and (0,n), then
T+y+2V2=n; (1)

and if, in addition, (z,y) is a lattice point, then z, y and zv/2 are all non-negative integers
(not exceeding n).

Now, let S be a set of lattice points in A satisfying the condition in the statement, and sum
(1) over all points (z,y) in S to get

Yozt > y+ > aV2=n|S|. (2)

(z,y)ES (z,y)ES (z,y)eS

As (z,y) runs through S, each of the three coordinates z, y and zv/2 runs through |S| non-
negative disitnct integers, so each of the three sums in (2) is greater than or equal to 0+ 1 +

+ (IS| = 1) = |S|(]S| — 1)/2. Consequently, 3|S|(|S| —1)/2 < n|S], so |S| <2n/3 + 1 and
the conclusion follows.



