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Problema 1. Două cercuri secante C1, C2 au punctele comune A şi A′. Tangenta ı̂n A la C1
taie C2 ı̂n B, tangenta ı̂n A la C2 taie C1 ı̂n C, iar dreapta BC taie din nou C1 şi C2 ı̂n D1,
respectiv D2. Se consideră punctele E1 ∈ (AD1) şi E2 ∈ (AD2), astfel ı̂ncât AE1 = AE2.
Dreptele BE1 şi AC se intersectează ı̂n punctul M , dreptele CE2 şi AB se intersectează ı̂n
punctul N , iar dreptele MN şi BC se intersectează ı̂n punctul P . Arătaţi că PA este tangentă
la cercul circumscris triunghiului ABC.

Problema 2. Fie S o mulţime de numere naturale nenule, astfel ı̂ncât b
√
xc = b√yc, oricare

ar fi elementele x şi y ale lui S. Arătaţi că produsele xy, unde x, y ∈ S, sunt distincte două
câte două.

Problema 3. Arătaţi că, oricare ar fi numărul ı̂ntreg n ≥ 2, există o mulţime de n numere
ı̂ntregi compuse, coprime două câte două, care formează o progresie aritmetică.

Problema 4. Fie n un număr natural nenul şi fie ∆ triunghiul cu vârfurile ı̂n punctele
laticiale (0, 0), (n, 0) şi (0, n). Determinaţi cardinalul maxim al unei mulţimi S de puncte
laticiale situate ı̂n interiorul sau pe bordul lui ∆, astfel ı̂ncât segmentul determinat de oricare
două puncte distincte din S să nu fie paralel cu niciuna dintre laturile lui ∆.



Călăraşi 2014 — Solutions

Problem 1. Two circles γ1 and γ2 cross one another at two points; let A be one of these
points. The tangent to γ1 at A meets again γ2 at B, the tangent to γ2 at A meets again γ1
at C, and the line BC meets again γ1 and γ2 at D1 and D2, respectively. Let E1 and E2 be
interior points of the segments AD1 and AD2, respectively, such that AE1 = AE2. The lines
BE1 and AC meet at M , the lines CE2 and AB meet at N , and the lines MN and BC meet
at P . Show that the line PA is tangent to the circle ABC.

Solution. We shall prove that PA2 = PB · PC. By Stewart’s relation, PA2 · BC ∓ AB2 ·
PC ±AC2 · PB = PB · PC ·BC, this amounts to showing PB ·AC2 = PC ·AB2.

To begin, apply Menelaus’ theorem to triangles ABD2, ACD1, ABC and transversals NE2C,
ME1B, MNP , respectively, to write

NB
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· CD2

CB
· E2A

E2D2
= 1,

MA
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· E1D1

E1A
· BC
BD1

= 1,
MC

MA
· NA
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= 1,

so, multiplying the three,
E1D1

E2D2
· CD2

BD1
· PB
PC

= 1, (∗)

on account of AE1 = AE2. Since ∠AD1B = ∠BAC = ∠AD2C, it follows that AD1 = AD2,
so E1D1 = E2D2, with reference again to AE1 = AE2. Consequently, PB/PC = BD1/CD2,
by (∗).

Finally, similarity of the triangles ABC and D1BA yields BD1 = AB2/BC. Similarly, CD2 =
AC2/BC, so PB ·AC2 = PC ·AB2, by the preceding. This ends the proof.

Problem 2. Let S be a set of positive integers such that b
√
xc = b√yc for all x, y ∈ S. Show

that the products xy, where x, y ∈ S, are pairwise distinct.

Solution. We first show that if x1, x2, x3, x4 are (not necessarily distinct) members of S
such that x1x2 ≤ x3x4, then x1 + x2 ≤ x3 + x4.

Suppose, if possible, that x1 + x2 > x3 + x4. Let n = b
√
xc, x ∈ S, and write xk = n2 + wk,

where the wk are non-negative integers less than 2n+1, to deduce that w1 +w2−w3−w4 ≥ 1.
The condition x1x2 ≤ x3x4 yields (w1 + w2 − w3 − w4)n

2 ≤ w3w4 − w1w2, so w3 > 0 and

n2 ≤ (w1 + w2 − w3 − w4)n
2 ≤ w3w4 − w1w2 < w3(w1 + w2 − w3)− w1w2

= (w1 − w3)(w3 − w2) ≤ ((w1 − w3) + (w3 − w2))
2 /4 = (w1 − w2)

2/4 ≤ n2,



which is a contradiction.

Thus, if x1, x2, x3, x4 are members of S such that x1x2 = x3x4, then x1 + x2 = x3 + x4, so
x21 +x3x4 = x1(x1 +x2) = x1(x3 +x4), i.e., (x1−x3)(x1−x4) = 0 whence x1 = x3 or x1 = x4.
The conclusion now follows at once.

Remark. The result is sharp, in the sense that the conclusion may fail if the square roots of
the members of S do not all have the same integral part. This is the case if, for instance, n2,
n2 + n and (n+ 1)2 are all members of S, since n2(n+ 1)2 = (n2 + n)(n2 + n).

Problem 3. Given any integer n ≥ 2, show that there exists a set of n pairwise coprime
composite integers in arithmetic progression.

Solution. Fix a prime p > n and an integer N ≥ p + (n − 1)n! and consider the arithmetic
progression of length n consisting of the numbers N ! + p+ kn!, k = 0, 1, . . . , n− 1.

Suppose, if possible, that q is a prime factor of two of these numbers. Then q divides their
difference which is of the form kn!, for some positive integer k < n. It follows that q does not
exceed n, so n! and N ! are both divisible by q, and consequently so is p — a contradiction.

Problem 4. Let n be a positive integer and let ∆ be the closed triangular domain with
vertices at the lattice points (0, 0), (n, 0) and (0, n). Determine the maximal cardinality a
set S of lattice points in ∆ may have, if the line through every pair of distinct points in S is
parallel to no side of ∆.

Solution. The required maximum is b2n/3c+ 1 and is achieved, for instance, for

S = {(2k, bn/3c − k) : k = 0, . . . , bn/3c} ∪ {(2k + 1, 2bn/3c − k) : k = 0, . . . , bn/3c − 1},

if n ≡ 0 or n ≡ 1 modulo 3, and

S = {(2k, bn/3c − k) : k = 0, . . . , bn/3c} ∪ {(2k + 1, 2bn/3c − k + 1): k = 0, . . . , bn/3c},

if n ≡ 2 modulo 3.

If (x, y) is a point in ∆, and z = z(x, y) is the distance from (x, y) to the side through (n, 0)
and (0, n), then

x+ y + z
√

2 = n; (1)

and if, in addition, (x, y) is a lattice point, then x, y and z
√

2 are all non-negative integers
(not exceeding n).

Now, let S be a set of lattice points in ∆ satisfying the condition in the statement, and sum
(1) over all points (x, y) in S to get∑

(x,y)∈S

x+
∑

(x,y)∈S

y +
∑

(x,y)∈S

z
√

2 = n|S|. (2)

As (x, y) runs through S, each of the three coordinates x, y and z
√

2 runs through |S| non-
negative disitnct integers, so each of the three sums in (2) is greater than or equal to 0 + 1 +
· · ·+ (|S| − 1) = |S|(|S| − 1)/2. Consequently, 3|S|(|S| − 1)/2 ≤ n|S|, so |S| ≤ 2n/3 + 1 and
the conclusion follows.
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