Călărași 2012 — Solutions

Problem 1. Given a positive integer n, determine the maximum number of lattice points in the plane a square of side length n + 1/(2n + 1) may cover.

Solution. The required maximum is $(n+1)^2$. Clearly, the square $[-\epsilon/2, n+\epsilon/2] \times [-\epsilon/2, n+\epsilon/2]$, $0 \le \epsilon < 1$, covers exactly $(n+1)^2$ lattice points.

We now proceed to show that any (closed) square of side length $n + \epsilon$, $0 \le \epsilon \le 1/(2n + 1)$, covers at most $(n + 1)^2$ lattice points.

The case n = 1 is settled by a metric argument: the diameter of a square of side length $1 + \epsilon$ is $(1+\epsilon)\sqrt{2}$, whereas the diameter of any configuration of five lattice points is at least $\sqrt{5} > (1+\epsilon)\sqrt{2}$ in the slightly wider range $0 \le \epsilon < \sqrt{10}/2 - 1$.

Henceforth assume $n \ge 2$ and consider the convex hull K of the lattice points covered by a square of side length $n + \epsilon$, $0 \le \epsilon \le 1/(2n + 1)$. Clearly, area $K \le (n + \epsilon)^2$, the area of the square. On the other hand, by Pick's theorem, area K = m - k/2 - 1, where m is the number of lattice points covered by K, and k is the number of lattice points on the boundary of K. Therefore,

$$m = \operatorname{area} K + k/2 + 1 \le (n + \epsilon)^2 + k/2 + 1.$$

To find an upper bound for k, notice that the perimeter of K does not exceed the perimeter of the square which is $4(n + \epsilon) \leq 4n + 4/(2n + 1) < 4n + 1$, for $n \geq 2$. Since the distance between two lattice points is at least 1, it follows that $k \leq 4n$. Consequently,

$$m \le (n+\epsilon)^2 + 2n + 1 = (n+1)^2 + 2n\epsilon + \epsilon^2 < (n+1)^2 + 1$$

in the slightly wider range $0 \le \epsilon < \sqrt{n^2 + 1} - n$. The conclusion follows.

Problem 2. Let ABC be an acute triangle and let A_1 , B_1 , C_1 be points on the sides BC, CA and AB, respectively. Show that the triangles ABC and $A_1B_1C_1$ are similar ($\angle A = \angle A_1$, $\angle B = \angle B_1$, $\angle C = \angle C_1$) if and only if the orthocentre of the triangle $A_1B_1C_1$ and the circumcentre of the triangle ABC coincide.

Solution. Let triangles ABC and $A_1B_1C_1$ be similar, $\angle A = \angle A_1 = \alpha$, $\angle B = \angle B_1 = \beta$, $\angle C = \angle C_1 = \gamma$, and let O be the orthocentre of the triangle $A_1B_1C_1$. Then $\angle OB_1C_1 = 90^\circ -\gamma$, $\angle OC_1B_1 = 90^\circ -\beta$, so $\angle B_1OC_1 = 180^\circ - (90^\circ -\gamma) - (90^\circ -\beta) = \beta + \gamma$. Since $\angle B_1AC_1 + \angle B_1OC_1 = \alpha + \beta + \gamma$, the quadrangle AC_1OB_1 is cyclic, so $\angle OAB_1 = 90^\circ - \beta$ and $\angle OAC_1 = \angle OB_1C_1 = 90^\circ - \gamma$. Similarly, the quadrangles BA_1OC_1 and CB_1OA_1 are cyclic, so $\angle OBC_1 = 90^\circ - \gamma$, $\angle OBA_1 = 90^\circ - \alpha$ and $\angle OCA_1 = 90^\circ - \alpha$, $\angle OCB_1 = 90^\circ - \beta$. Consequently, O is the circumcentre of the triangle ABC.

Conversely, let the circumcentre O of the triangle ABC be the orthocentre of the triangle $A_1B_1C_1$. Let $\angle A = \alpha$, $\angle B = \beta$, $\angle C = \gamma$ and $\angle A_1 = \alpha_1$, $\angle B_1 = \beta_1$, $\angle C_1 = \gamma_1$. Let the points B' on the side CA and C' on the side AB be such that the quadrangles $CB'OA_1$ and BA_1OC' are cyclic. Then so is the quadrangle AC'OB'. Hence $\angle OC'B' = \angle OAB' = \angle OAC = 90^\circ - \beta$. Since the supplementary angle of the angle A_1OC is β , the lines A_1O and B'C' are perpendicular, so the lines B'C' and B_1C_1 are parallel.

Since O is the orthocentre of the triangle $A_1B_1C_1$, the line B_1C_1 separates A and O, and $\angle B_1OC_1 = 180^\circ - \alpha_1$.

Since the quadrangle $A_1OB'C$ is cyclic, $\angle A_1OB' = 180^\circ - \gamma$ and, similarly, $\angle A_1OC' = 180^\circ - \beta$. The sum of these two angles is $180^\circ + \alpha$, so the points A and O lie on opposite sides of the line B'C'. Without loss of generality, we may (and will) assume that the line B'C' is closer to the point A than the line B_1C_1 . Then $\angle B'OC' \leq \angle B_1OC_1$ and $\angle B'A_1C' \leq \angle B_1A_1C_1$, so

$$\angle B'OC' + \angle B'A_1C' \le \angle B_1OC_1 + \angle B_1A_1C_1. \tag{*}$$

Since $\angle B'A_1C' = \angle B'A_1O + \angle OA_1C' = \angle B'CO + \angle OBC' = \angle ACO + \angle OBA = 90^\circ - \beta + 90^\circ - \gamma = \alpha$, it follows that $\angle B'OC' + \angle B'A_1C' = 180^\circ - \alpha + \alpha = 180^\circ$.

Also, $\angle B_1 O C_1 + \angle B_1 A_1 C_1 = 180^\circ - \alpha_1 + \alpha_1 = 180^\circ$.

Thus equality holds in (*), and this is the case only if $\angle B'OC' = \angle B_1OC_1$ and $\angle B'A_1C' = \angle B_1A_1C_1$; that is, $\alpha_1 = \alpha$ and the lines B'C' and B_1C_1 coincide. Then $\beta_1 = \beta$ and $\gamma_1 = \gamma$, so the triangles $A_1B_1C_1$ and ABC are indeed similar.

Problem 3. Let p and q, p < q, be two primes such that $1 + p + p^2 + \cdots + p^m$ is a power of q for some positive integer m, and $1 + q + q^2 + \cdots + q^n$ is a power of p for some positive integer n. Show that p = 2 and $q = 2^t - 1$, where t is prime.

Solution. Let *m* be the smallest positive integer such that $1 + p + p^2 + \cdots + p^m$ is a power of *q*, say q^s . Then m + 1 must be prime, for if m + 1 = kl, then

$$1 + p + p^{2} + \dots + p^{m} = \left(1 + p^{l} + p^{2l} + \dots + p^{(k-1)l}\right)(1 + p + p^{2} + \dots + p^{l-1}),$$

so $1 + p + p^2 + \cdots + p^{l-1}$ is again a power of q, and minimality of m forces l = 1 or k = 1. Similarly, if n is the smallest positive integer such that $1 + q + q^2 + \cdots + q^n$ is a power of p, say p^r , then n + 1 must be prime.

Clearly, $p^{m+1} \equiv 1 \pmod{q}$ and $p^r \equiv 1 \pmod{q}$. Since $p \not\equiv 1 \pmod{q}$ and m+1 is prime, m+1 must divide r.

If $q \not\equiv 1 \pmod{p}$, a similar argument shows that n+1 must divide s, so

$$(p^{m+1} - 1)(q^{n+1} - 1) = p^r q^s (p-1)(q-1) \ge p^{m+1} q^{n+1}$$

which is impossible.

Hence $q \equiv 1 \pmod{p}$, so $n + 1 \equiv 0 \pmod{p}$ which forces n + 1 = p by primality of n + 1.

Recall that r is divisible by m + 1, say r = r'(m + 1), to write

$$1 + q + q^{2} + \dots + q^{n} = p^{r} = (p^{m+1})^{r'} = (q^{s}(p-1) + 1)^{r'}$$

and deduce thereby that q^s divides $q + q^2 + \cdots + q^n$. This forces s = 1, so $q = 1 + p + p^2 + \cdots + p^m$.

Now suppose, if possible, that $p \neq 2$. Since p^r divides

$$q^{n+1} - 1 = q^p - 1 = (1 + p + p^2 + \dots + p^m)^p - 1 = p^2 + p^3 N,$$

it follows that r = 2, so m = 1. Hence q = p + 1 which is even — a contradiction.

Consequently, p = 2, so n = 1, $q = 1 + 2 + 2^2 + \cdots + 2^m = 2^{m+1} - 1$, where m + 1 is prime, and r = m + 1.

Problem 4. Given a positive integer n, show that the set $\{1, 2, \dots, n\}$ can be partitioned into m sets, each with the same sum, if and only if m is a divisor of n(n+1)/2 which does not exceed (n+1)/2.

Solution. The necessity of the two conditions is easy to establish. If each block in the partition has the sum s, then $ms = 1 + 2 + \cdots + n = n(n+1)/2$, which gives the divisibility condition. Also, $n \ge 2m - 1$, for there can be at most one block with a single element.

To prove sufficiency, call a set of parameters n, m, s admissible if ms = n(n+1)/2 and $n \ge 2m-1$. If n = 2m-1, then s = 2m-1, and the partition is unique:

$$\{2m-1\}, \{2m-2,1\}, \{2m-3,2\}, \dots, \{m,m-1\}.$$

Similarly, if n = 2m, then s = 2m + 1, and the partition is again unique:

$$\{2m,1\}, \{2m-1,2\}, \cdots, \{m+1,m\}.$$

If n > 2m induct on n. Given an admissible set of parameters n, m, s, construct a new partition from an old partition corresponding to some admissible set of parameters n', m', s', where n' < n. The proof will be divided into cases. In each case, the condition m's' = n'(n'+1)/2 will be clear from the construction, but we must check that $n' \ge 2m' - 1$.

If 2m < n < 4m - 1, then n + 1 < s < 2n, so if we set n' = s - n - 1, then 0 < n' < n - 1. We consider two subcases.

If s is odd, let m' = m - n + (s - 1)/2 and s' = s. Here n' - 2m' = n - 2m > 0, so n' > 2m'. As new blocks, use the old ones and the n - (s - 1)/2 pairs

$$\{n, s-n\}, \{n-1, s-n+1\}, \cdots, \{(s+1)/2, (s-1)/2\}.$$

If s is even, let m' = 2m - 2n + s - 1 and s' = s/2. A straightforward calculation shows that 2m(n' - 2m') = (n - 2m)(4m - 1 - n) > 0, so n' > 2m' again. The old blocks and the singleton $\{s'\}$ combine in pairs to form m - n + s' new blocks. The other new blocks are the n - s' pairs

$$\{n, s-n\}, \{n-1, s-n+1\}, \dots, \{s'+1, s'-1\}.$$

Finally, if $n \ge 4m - 1$, let n' = n - 2m, m' = m, and s' = s - 2n + 2m - 1. Clearly, $n' \ge 2m - 1 = 2m' - 1$. The new blocks are obtained from the old blocks by adjoining the *m* pairs

$$\{n, n-2m+1\}, \{n-1, n-2m+2\}, \dots, \{n-m+1, n-m\}$$

in any order. This completes the proof.