
Călăraşi 2012 — Solutions

Problem 1. Given a positive integer n, determine the maximum number of lattice points in the
plane a square of side length n+ 1/(2n+ 1) may cover.

Solution. The required maximum is (n+ 1)2. Clearly, the square [−ε/2, n+ ε/2]× [−ε/2, n+ ε/2],
0 ≤ ε < 1, covers exactly (n+ 1)2 lattice points.

We now proceed to show that any (closed) square of side length n + ε, 0 ≤ ε ≤ 1/(2n + 1),
covers at most (n+ 1)2 lattice points.

The case n = 1 is settled by a metric argument: the diameter of a square of side length 1 + ε is
(1+ε)

√
2, whereas the diameter of any configuration of five lattice points is at least

√
5 > (1+ε)

√
2

in the slightly wider range 0 ≤ ε <
√

10/2− 1.
Henceforth assume n ≥ 2 and consider the convex hull K of the lattice points covered by a

square of side length n+ ε, 0 ≤ ε ≤ 1/(2n+ 1). Clearly, areaK ≤ (n+ ε)2, the area of the square.
On the other hand, by Pick’s theorem, areaK = m − k/2 − 1, where m is the number of lattice
points covered by K, and k is the numer of lattice points on the boundary of K. Therefore,

m = areaK + k/2 + 1 ≤ (n+ ε)2 + k/2 + 1.

To find an upper bound for k, notice that the perimeter of K does not exceed the perimeter of the
square which is 4(n + ε) ≤ 4n + 4/(2n + 1) < 4n + 1, for n ≥ 2. Since the distance between two
lattice points is at least 1, it follows that k ≤ 4n. Consequently,

m ≤ (n+ ε)2 + 2n+ 1 = (n+ 1)2 + 2nε+ ε2 < (n+ 1)2 + 1

in the slightly wider range 0 ≤ ε <
√
n2 + 1− n. The conclusion follows.

Problem 2. Let ABC be an acute triangle and let A1, B1, C1 be points on the sides BC, CA and
AB, respectively. Show that the triangles ABC and A1B1C1 are similar (∠A = ∠A1, ∠B = ∠B1,
∠C = ∠C1) if and only if the orthocentre of the triangle A1B1C1 and the circumcentre of the
triangle ABC coincide.

Solution. Let triangles ABC and A1B1C1 be similar, ∠A = ∠A1 = α, ∠B = ∠B1 = β, ∠C =
∠C1 = γ, and letO be the orthocentre of the triangleA1B1C1. Then ∠OB1C1 = 90◦−γ, ∠OC1B1 =
90◦−β, so ∠B1OC1 = 180◦−(90◦−γ)−(90◦−β) = β+γ. Since ∠B1AC1+∠B1OC1 = α+β+γ, the
quadrangle AC1OB1 is cyclic, so ∠OAB1 = 90◦ − β and ∠OAC1 = ∠OB1C1 = 90◦ − γ. Similarly,
the quadrangles BA1OC1 and CB1OA1 are cyclic, so ∠OBC1 = 90◦ − γ, ∠OBA1 = 90◦ − α and
∠OCA1 = 90◦ − α, ∠OCB1 = 90◦ − β. Consequently, O is the circumcentre of the triangle ABC.

Conversely, let the circumcentre O of the triangle ABC be the orthocentre of the triangle
A1B1C1. Let ∠A = α, ∠B = β, ∠C = γ and ∠A1 = α1, ∠B1 = β1, ∠C1 = γ1. Let the points B′

on the side CA and C ′ on the side AB be such that the quadrangles CB′OA1 and BA1OC
′ are

cyclic. Then so is the quadrangle AC ′OB′. Hence ∠OC ′B′ = ∠OAB′ = ∠OAC = 90◦ − β. Since
the supplementary angle of the angle A1OC’is β, the lines A1O and B′C ′ are perpendicular, so the
lines B′C ′ and B1C1 are parallel.

Since O is the orthocentre of the triangle A1B1C1, the line B1C1 separates A and O, and
∠B1OC1 = 180◦ − α1.

Since the quadrangle A1OB
′C is cyclic, ∠A1OB

′ = 180◦−γ and, similarly, ∠A1OC
′ = 180◦−β.

The sum of these two angles is 180◦ + α, so the points A and O lie on opposite sides of the line
B′C ′.



Without loss of generality, we may (and will) assume that the line B′C ′ is closer to the point
A than the line B1C1. Then ∠B′OC ′ ≤ ∠B1OC1 and ∠B′A1C

′ ≤ ∠B1A1C1, so

∠B′OC ′ + ∠B′A1C
′ ≤ ∠B1OC1 + ∠B1A1C1. (∗)

Since ∠B′A1C
′ = ∠B′A1O + ∠OA1C

′ = ∠B′CO + ∠OBC ′ = ∠ACO + ∠OBA = 90◦ − β +
90◦ − γ = α, it follows that ∠B′OC ′ + ∠B′A1C

′ = 180◦ − α+ α = 180◦.
Also, ∠B1OC1 + ∠B1A1C1 = 180◦ − α1 + α1 = 180◦.
Thus equality holds in (∗), and this is the case only if ∠B′OC ′ = ∠B1OC1 and ∠B′A1C

′ =
∠B1A1C1; that is, α1 = α and the lines B′C ′ and B1C1 coincide. Then β1 = β and γ1 = γ, so the
triangles A1B1C1 and ABC are indeed similar.

Problem 3. Let p and q, p < q, be two primes such that 1 + p+ p2 + · · ·+ pm is a power of q for
some positive integer m, and 1 + q+ q2 + · · ·+ qn is a power of p for some positive integer n. Show
that p = 2 and q = 2t − 1, where t is prime.

Solution. Let m be the smallest positive integer such that 1 + p + p2 + · · · + pm is a power of q,
say qs. Then m+ 1 must be prime, for if m+ 1 = kl, then

1 + p+ p2 + · · ·+ pm =
(

1 + pl + p2l + · · ·+ p(k−1)l
)

(1 + p+ p2 + · · ·+ pl−1),

so 1 +p+p2 + · · ·+pl−1 is again a power of q, and minimality of m forces l = 1 or k = 1. Similarly,
if n is the smallest positive integer such that 1 + q+ q2 + · · ·+ qn is a power of p, say pr, then n+ 1
must be prime.

Clearly, pm+1 ≡ 1 (mod q) and pr ≡ 1 (mod q). Since p 6≡ 1 (mod q) and m + 1 is prime, m + 1
must divide r.

If q 6≡ 1 (mod p), a similar argument shows that n+ 1 must divide s, so

(pm+1 − 1)(qn+1 − 1) = prqs(p− 1)(q − 1) ≥ pm+1qn+1

which is impossible.
Hence q ≡ 1 (mod p), so n+ 1 ≡ 0 (mod p) which forces n+ 1 = p by primality of n+ 1.
Recall that r is divisible by m+ 1, say r = r′(m+ 1), to write

1 + q + q2 + · · ·+ qn = pr =
(
pm+1

)r′
= (qs(p− 1) + 1)r

′

and deduce thereby that qs divides q+ q2 + · · ·+ qn. This forces s = 1, so q = 1 + p+ p2 + · · ·+ pm.
Now suppose, if possible, that p 6= 2. Since pr divides

qn+1 − 1 = qp − 1 = (1 + p+ p2 + · · ·+ pm)p − 1 = p2 + p3N,

it follows that r = 2, so m = 1. Hence q = p+ 1 which is even — a contradiction.
Consequently, p = 2, so n = 1, q = 1 + 2 + 22 + · · · 2m = 2m+1 − 1, where m+ 1 is prime, and

r = m+ 1.

Problem 4. Given a positive integer n, show that the set {1, 2, · · · , n} can be partitioned into m
sets, each with the same sum, if and only if m is a divisor of n(n + 1)/2 which does not exceed
(n+ 1)/2.
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Solution. The necessity of the two conditions is easy to establish. If each block in the partition
has the sum s, then ms = 1 + 2 + · · ·+n = n(n+ 1)/2, which gives the divisibility condition. Also,
n ≥ 2m− 1, for there can be at most one block with a single element.

To prove sufficiency, call a set of parameters n, m, s admissible if ms = n(n + 1)/2 and
n ≥ 2m− 1. If n = 2m− 1, then s = 2m− 1, and the partition is unique:

{2m− 1}, {2m− 2, 1}, {2m− 3, 2}, · · · , {m,m− 1}.

Similarly, if n = 2m, then s = 2m+ 1, and the partition is again unique:

{2m, 1}, {2m− 1, 2}, · · · , {m+ 1,m}.

If n > 2m induct on n. Given an admissible set of parameters n, m, s, construct a new partition
from an old partition corresponding to some admissible set of parameters n′, m′, s′, where n′ < n.
The proof will be divided into cases. In each case, the condition m′s′ = n′(n′ + 1)/2 will be clear
from the construction, but we must check that n′ ≥ 2m′ − 1.

If 2m < n < 4m− 1, then n+ 1 < s < 2n, so if we set n′ = s− n− 1, then 0 < n′ < n− 1. We
consider two subcases.

If s is odd, let m′ = m− n + (s− 1)/2 and s′ = s. Here n′ − 2m′ = n− 2m > 0, so n′ > 2m′.
As new blocks, use the old ones and the n− (s− 1)/2 pairs

{n, s− n}, {n− 1, s− n+ 1}, · · · , {(s+ 1)/2, (s− 1)/2}.

If s is even, let m′ = 2m − 2n + s − 1 and s′ = s/2. A straightforward calculation shows that
2m(n′ − 2m′) = (n − 2m)(4m − 1 − n) > 0, so n′ > 2m′ again. The old blocks and the singleton
{s′} combine in pairs to form m− n+ s′ new blocks. The other new blocks are the n− s′ pairs

{n, s− n}, {n− 1, s− n+ 1}, · · · , {s′ + 1, s′ − 1}.

Finally, if n ≥ 4m − 1, let n′ = n − 2m, m′ = m, and s′ = s − 2n + 2m − 1. Clearly,
n′ ≥ 2m− 1 = 2m′ − 1. The new blocks are obtained from the old blocks by adjoining the m pairs

{n, n− 2m+ 1}, {n− 1, n− 2m+ 2}, · · · , {n−m+ 1, n−m}

in any order. This completes the proof.
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