Calarasi 2012 — Solutions

Problem 1. Given a positive integer n, determine the maximum number of lattice points in the
plane a square of side length n + 1/(2n + 1) may cover.

Solution. The required maximum is (n+ 1)2. Clearly, the square [—€/2,n+¢/2] x [—€/2,n+¢/2],
0 < e < 1, covers exactly (n + 1)? lattice points.

We now proceed to show that any (closed) square of side length n +¢€, 0 < e < 1/(2n + 1),
covers at most (n + 1)? lattice points.

The case n =1 is settled by a metric argument: the diameter of a square of side length 1+ € is
(14-€)v/2, whereas the diameter of any configuration of five lattice points is at least v/5 > (1+¢€)v/2
in the slightly wider range 0 < e < /10/2 — 1.

Henceforth assume n > 2 and consider the convex hull K of the lattice points covered by a
square of side length n +¢, 0 < e < 1/(2n + 1). Clearly, area K < (n + ¢€)?, the area of the square.
On the other hand, by Pick’s theorem, area K = m — k/2 — 1, where m is the number of lattice
points covered by K, and k is the numer of lattice points on the boundary of K. Therefore,

m=areaK +k/24+1<(n+e?+k/2+1.

To find an upper bound for k, notice that the perimeter of K does not exceed the perimeter of the
square which is 4(n +¢€) <4n+4/(2n+ 1) < 4n+ 1, for n > 2. Since the distance between two
lattice points is at least 1, it follows that & < 4n. Consequently,

m<(n+e?+2n+l=mn+12+2ne+e2<(n+1)>%+1
in the slightly wider range 0 < € < v/n2 + 1 — n. The conclusion follows.

Problem 2. Let ABC be an acute triangle and let A;, By, Cy be points on the sides BC', C' A and
AB, respectively. Show that the triangles ABC and A;B;Cy are similar (/A = ZA,, /B = /B;,
ZC = /() if and only if the orthocentre of the triangle A;B1Cy and the circumcentre of the
triangle ABC' coincide.

Solution. Let triangles ABC and A;BC; be similar, /A = LAy = «a, LB = /By =3, ZC =
/C1 = 7, and let O be the orthocentre of the triangle A1 B1Ci. Then ZO0B1C; = 90°—~, ZOC1 By =
90°—f, so £B10OC; = 180°—(90°—~v)—(90°— ) = 5+~. Since LB1AC1+/B10C = a+ [+, the
quadrangle AC10OB; is cyclic, so ZOAB; = 90° — 8 and ZOAC) = ZOB1C7 = 90° — ~. Similarly,
the quadrangles BA;OCt and CB10OA; are cyclic, so ZOBCi; = 90° — v, ZOBA; = 90° — . and
ZOCA; =90° — a, ZOC By = 90° — 3. Consequently, O is the circumcentre of the triangle ABC.

Conversely, let the circumcentre O of the triangle ABC be the orthocentre of the triangle
A1B1Cy. Let ZA=a, /B=f, /C =~ and LA = a1, /By = 1, ZC1 = 1. Let the points B’
on the side CA and C’ on the side AB be such that the quadrangles CB'OA; and BA;OC’ are
cyclic. Then so is the quadrangle AC'OB’. Hence Z0C'B' = ZOAB' = ZOAC = 90° — (3. Since
the supplementary angle of the angle A;0C"is /3, the lines A0 and B’C’ are perpendicular, so the
lines B'C’' and B1C are parallel.

Since O is the orthocentre of the triangle A;B1C4, the line B1C; separates A and O, and
431001 = 1800 — a].

Since the quadrangle A1OB’C is cyclic, ZA;OB’ = 180° —~ and, similarly, ZA;0C" = 180° — 3.
The sum of these two angles is 180° 4+ «, so the points A and O lie on opposite sides of the line
B'C'.



Without loss of generality, we may (and will) assume that the line B'C” is closer to the point
A than the line B1C;. Then ZB'OC’ < Z/B10C4 and £B'A1C’ < £B1A1C1, so

/B'OC" + ZB/AIC/ < /B10OC: + £LB1ACh. (*)

Since /B'AC' = /B'A,0 + ZOA,C' = /B'CO + ZOBC' = ZACO + ZOBA = 90° — 3 +
90° — v = a, it follows that /B'OC’ + /B'A1C" = 180° — o + o« = 180°.

Also, Z/B10OC1 + £B1A1C1 = 180° — a1 + a1 = 180°.

Thus equality holds in (%), and this is the case only if ZB'OC" = ZB;0C, and /B'A;C" =
/B1ACy; that is, a; = a and the lines B'C’ and BC} coincide. Then 3, = 3 and y; = 7, so the
triangles A1 B1C and ABC are indeed similar.

Problem 3. Let p and ¢, p < ¢, be two primes such that 1 4 p + p? 4+ --- 4+ p™ is a power of ¢ for
some positive integer m, and 14 ¢+ ¢> + - - -+ ¢" is a power of p for some positive integer n. Show
that p = 2 and ¢ = 2¢ — 1, where ¢ is prime.

Solution. Let m be the smallest positive integer such that 1 +p + p? +--- + p™ is a power of g,
say ¢°. Then m + 1 must be prime, for if m + 1 = kI, then

1+p+p2+”.+pm: (1+pl+p21+...+p(l€fl)l) (1+p+p2+...+p171)’

so 1+p+p?+---+p'~1is again a power of ¢, and minimality of m forces [ = 1 or k = 1. Similarly,
if n is the smallest positive integer such that 1+ ¢+ ¢>+-- -+ ¢" is a power of p, say p”, then n+ 1
must be prime.

Clearly, p™*! = 1 (mod¢) and p” = 1 (mod q). Since p Z 1 (mod q) and m + 1 is prime, m + 1
must divide 7.

If ¢ # 1 (mod p), a similar argument shows that n + 1 must divide s, so

(P =D (" 1) =p"(p—1)(g—1) > p" g

which is impossible.
Hence ¢ = 1 (mod p), so n + 1 = 0 (mod p) which forces n + 1 = p by primality of n + 1.
Recall that r is divisible by m + 1, say r = r/(m + 1), to write
l4+q++ - +q"=p" =" =(@p-1)+1)"
and deduce thereby that ¢° divides g +¢? +---+¢". This forces s =1,s0 ¢ =1+p+p?>+---+p™.
Now suppose, if possible, that p # 2. Since p" divides

¢ —1=¢"—1=(1+p+p’+- ") —1=p" +p°N,

it follows that » = 2, so m = 1. Hence ¢ = p + 1 which is even — a contradiction.
Consequently, p=2,son=1,¢g=1+2+22+...2" =27+l _ 1 where m + 1 is prime, and
r=m+ 1.

Problem 4. Given a positive integer n, show that the set {1,2,---,n} can be partitioned into m
sets, each with the same sum, if and only if m is a divisor of n(n + 1)/2 which does not exceed
(n+1)/2.



Solution. The necessity of the two conditions is easy to establish. If each block in the partition
has the sum s, then ms =142+ ---4+n =n(n+1)/2, which gives the divisibility condition. Also,
n > 2m — 1, for there can be at most one block with a single element.

To prove sufficiency, call a set of parameters n, m, s admissible if ms = n(n + 1)/2 and
n>2m—1. If n =2m — 1, then s = 2m — 1, and the partition is unique:

{2m -1}, {2m-2,1}, {2m—-3,2}, ---, {m,m—1}.
Similarly, if n = 2m, then s = 2m + 1, and the partition is again unique:
{2m,1}, {2m—-1,2}, ---, {m+1,m}.

If n > 2m induct on n. Given an admissible set of parameters n, m, s, construct a new partition
from an old partition corresponding to some admissible set of parameters n’, m’, s’, where n’ < n.
The proof will be divided into cases. In each case, the condition m's’ = n'(n’ 4+ 1)/2 will be clear
from the construction, but we must check that n’ > 2m/ — 1.

If2m<n<4m—1,thenn+1<s<2n,soifweset n'=s—n—1,then 0 <n’ <n—1. We
consider two subcases.

If sisodd,lee m " =m—n+(s—1)/2 and s’ = s. Here n’ —2m’ =n —2m > 0, so n’ > 2m/.
As new blocks, use the old ones and the n — (s — 1)/2 pairs

{n,s—n}, {n—1,s—n+1}, -+, {(s+1)/2,(s—1)/2}.

If s is even, let m' =2m —2n+ s — 1 and s’ = s/2. A straightforward calculation shows that
2m(n' —2m') = (n — 2m)(4m — 1 —n) > 0, so n’ > 2m’ again. The old blocks and the singleton
{s'} combine in pairs to form m — n + s’ new blocks. The other new blocks are the n — s’ pairs

{n,s—n}, {n—-1,s—n+1}, -, {+1,§ -1}

Finally, if n > 4m — 1, let ' = n —2m, m' = m, and s = s — 2n + 2m — 1. Clearly,
n’ > 2m — 1 = 2m/ — 1. The new blocks are obtained from the old blocks by adjoining the m pairs

{n,n—2m+1}, {n—1,n-2m+2}, -, {m—m+1n—m}

in any order. This completes the proof.



