Stelele Matematicii 2015, Seniori

Problema 1. Arătaţi că există un şir de numere naturale impare $m_{1}<$ $m_{2}<\cdots$ şi un şir de numere naturale $n_{1}<n_{2}<\cdots$, astfel încât m_{k} să fie relativ prim cu n_{k} şi $m_{k}^{4}-2 n_{k}^{4}$ să fie pătrat perfect, oricare ar fi indicele k.

Problema 2. Fie $\gamma, \gamma_{0}, \gamma_{1}, \gamma_{2}$ patru cercuri în plan, astfel încât γ_{i} să fie tangent interior lui γ în punctul A_{i}, iar γ_{i} şi γ_{i+1} să fie tangente exterior în punctul $B_{i+2}, i=0,1,2$ (indicii sunt reduşi modulo 3). Tangenta în B_{i}, comună cercurilor γ_{i-1} and γ_{i+1}, intersectează cercul γ în punctul C_{i}, situat în semiplanul opus lui A_{i} în raport cu dreapta $A_{i-1} A_{i+1}$. Arătaţi că cele trei drepte $A_{i} C_{i}$ sunt concurente.

Problema 3. Fie n un număr natural nenul şi fie a_{1}, \ldots, a_{n} numere naturale nenule. Arătaţi că

$$
\sum_{k=1}^{n} \frac{\sqrt{a_{k}}}{1+a_{1}+\cdots+a_{k}}<\sum_{k=1}^{n^{2}} \frac{1}{k}
$$

Problema 4. Fie S o mulţime finită de puncte în plan, situate în poziţie generală (oricare trei puncte din S nu sunt coliniare), şi fie

$$
D(S, r)=\{\{x, y\}: x, y \in S, \operatorname{dist}(x, y)=r\}
$$

unde r este un număr real strict pozitiv, iar $\operatorname{dist}(x, y)$ este distanţa euclidiană între punctele x şi y. Arătaţi că

$$
\sum_{r>0}|D(S, r)|^{2} \leq 3|S|^{2}(|S|-1) / 4
$$

Stars of Mathematics 2015, Senior Level - Solutions

Problem 1. Show that there are positive odd integers $m_{1}<m_{2}<\cdots$ and positive integers $n_{1}<n_{2}<\cdots$ such that m_{k} and n_{k} are relatively prime, and $m_{k}^{4}-2 n_{k}^{4}$ is a perfect square for each index k.

Folklore
Solution. Let m and n be relatively prime positive integers such that m is odd and $m^{4}-2 n^{4}$ is a perfect square, e.g., $m=3$ and $n=2$. Write $\ell^{2}=m^{4}-2 n^{4}$, so $\ell^{4}=\left(m^{4}-2 n^{4}\right)^{2}=$ $\left(m^{4}+2 n^{4}\right)^{2}-8 m^{4} n^{4}$, and $\ell^{4}-8 m^{4} n^{4}-\left(m^{4}+2 n^{4}\right)^{2}=-16 m^{4} n^{4}=-(2 m n)^{4}$. Multiply the latter by $\ell^{4}-8 m^{4} n^{4}+\left(m^{4}+2 n^{4}\right)^{2}=2 \ell^{4}$ to get

$$
\left(\ell^{4}-8 m^{4} n^{4}+\left(m^{4}+2 n^{4}\right)^{2}\right)\left(\ell^{4}-8 m^{4} n^{4}-\left(m^{4}+2 n^{4}\right)^{2}\right)=-2 \cdot(2 \ell m n)^{4} ;
$$

that is, $\left(\ell^{4}-8 m^{4} n^{4}\right)^{2}-\left(m^{4}+2 n^{4}\right)^{4}=-2 \cdot(2 \ell m n)^{4}$. Letting $m^{\prime}=m^{4}+2 n^{4}$ and $n^{\prime}=2 \ell m n$, clearly $m^{\prime}>m, m^{\prime}$ is odd, $n^{\prime}>n$, the difference $m^{\prime 4}-2 n^{\prime 4}$ is a perfect square, and it is readily checked that m^{\prime} and n^{\prime} are relatively prime. The conclusion follows.

Problem 2. Let $\gamma, \gamma_{0}, \gamma_{1}, \gamma_{2}$ be coplanar circles such that γ_{i} is internally tangent to γ at A_{i}, and γ_{i} and γ_{i+1} are externally tangent at $B_{i+2}, i=0,1,2$ (indices are reduced modulo 3). The tangent at B_{i}, common to γ_{i-1} and γ_{i+1}, meets γ at C_{i}, located in the half-plane opposite A_{i} with respect to the line $A_{i-1} A_{i+1}$. Show that the three lines $A_{i} C_{i}$ are concurrent.

Flavian Georgescu
Solution 1. Let γ_{i} cross the lines $A_{i} C_{i+1}$ and $A_{i} C_{i+2}$ again at X_{i+2} and Y_{i+1}, respectively.
Since the homothety centred at A_{i}, transforming γ_{i} into γ, sends X_{i+2} to C_{i+1} and Y_{i+1} to C_{i+2}, the lines $X_{i+2} Y_{i+1}$ and $C_{i+1} C_{i+2}$ are parallel, so $A_{i} C_{i+1} / A_{i} C_{i+2}=X_{i+2} C_{i+1} / Y_{i+1} C_{i+2}$.

On the other hand, since C_{i} has equal powers relative to γ_{i+1} and $\gamma_{i+2}, C_{i} X_{i+1} \cdot C_{i} A_{i+2}=$ $C_{i} B_{i}^{2}=C_{i} Y_{i+2} \cdot C_{i} A_{i+1}$, it follows that $C_{i} X_{i+1}=C_{i} B_{i}^{2} / C_{i} A_{i+2}$ and $C_{i} Y_{i+2}=C_{i} B_{i}^{2} / C_{i} A_{i+1}$.

Hence $A_{i} C_{i+1} / A_{i} C_{i+2}=\left(B_{i+1} C_{i+1} / B_{i+2} C_{i+2}\right)^{2}\left(A_{i} C_{i+2} / A_{i} C_{i+1}\right)$, so $A_{i} C_{i+1} / A_{i} C_{i+2}=$ $B_{i+1} C_{i+1} / B_{i+2} C_{i+2}$, and consequently $\prod_{i=0}^{2}\left(A_{i} C_{i+1} / A_{i} C_{i+2}\right)=\prod_{i=0}^{2}\left(B_{i+1} C_{i+1} / B_{i+2} C_{i+2}\right)=$ 1. Since the sines of the angles $C_{i} A_{i} C_{j}$ are proportional to the lengths of the corresponding chords $A_{i} C_{j}$, the conclusion follows by Ceva's theorem in trigonometric form in the triangle $C_{0} C_{1} C_{2}$.

Fig. 1

Fig. 2

Solution 2. Let the tangents to γ at A_{i} and A_{i+1} meet at D_{i+2} (fig 1), and notice that the latter has equal powers relative to γ_{i} and γ_{i+1} to deduce that it lies on their radical axis,
$B_{i+2} C_{i+2}$. Consequently, the lines $C_{i} D_{i}$ are concurrent at the radical centre of the γ_{i}, and the conclusion follows by the lemma below (see Figure 2).

Lemma. Let $P_{0} P_{1} P_{2}$ be a triangle, and let T_{i} be the touchpoint of the side $P_{i+1} P_{i+2}$ and the incircle γ of the triangle $P_{0} P_{1} P_{2}$. Let further Z_{i} be a point on the arc $T_{i+1} T_{i+2}$ of γ not containing T_{i}. Then the lines $T_{i} Z_{i}$ are concurrent if and only if the lines $P_{i} Z_{i}$ are concurrent.

The lemma can be proved either projectively, by sending the point of intersection of $T_{0} Z_{0}$ and $T_{1} Z_{1}$ to the incentre, or by a trigonometric version of Ceva's theorem.

Problem 3. Let n be a positive integer and let a_{1}, \ldots, a_{n} be n positive integers. Show that

$$
\sum_{k=1}^{n} \frac{\sqrt{a_{k}}}{1+a_{1}+\cdots+a_{k}}<\sum_{k=1}^{n^{2}} \frac{1}{k} .
$$

G. I. Natanson

Solution. Set $b_{0}=1$ and $b_{k}=1+a_{1}+\cdots+a_{k}, k=1, \ldots, n$, to obtain a strictly increasing string of positive integers $1=b_{0}<b_{1}<\cdots<b_{n}$, and write the sum in the left-hand member in the form $\sum_{k=1}^{n}\left(b_{k}-b_{k-1}\right)^{1 / 2} / b_{k}$.

Next, let $m=\min \left\{k: b_{k}>n^{2}\right\} \geq 1$ - if there is no $b_{k}>n^{2}$, let $m=n+1$-, to split the above sum into

$$
\begin{equation*}
\sum_{k=1}^{m-1} \frac{\sqrt{b_{k}-b_{k-1}}}{b_{k}}+\sum_{k=m}^{n} \frac{\sqrt{b_{k}-b_{k-1}}}{b_{k}} \tag{*}
\end{equation*}
$$

where empty sums are zero. We show that the first sum does not exceed $\sum_{k=2}^{n^{2}} 1 / k$, and the second is always less than 1 .

If $k=1, \ldots, m-1$, write $\left(b_{k}-b_{k-1}\right)^{1 / 2} / b_{k} \leq\left(b_{k}-b_{k-1}\right) / b_{k}=1 / b_{k}+\cdots+1 / b_{k} \leq$ $\sum_{j=b_{k-1}+1}^{b_{k}} 1 / j$, to deduce that the first sum in (*) does not exceed $\sum_{k=1}^{m-1} \sum_{j=b_{k-1}+1}^{b_{k}} 1 / j=$ $\sum_{k=2}^{b_{m-1}} 1 / k \leq \sum_{k=2}^{n^{2}} 1 / k$.

Finally, if $k=m, \ldots, n$, write $\left(b_{k}-b_{k-1}\right)^{1 / 2} / b_{k}<b_{k}^{-1 / 2}<1 / n$, to deduce that the second sum in (*), when non-empty, is less than $(n-m+1) / n \leq 1$. The conclusion follows.

Remarks. (1) The upper bound $H_{n^{2}}$ can be lowered to $\left(H_{n}+H_{n^{2}}\right) / 2$, where $H_{k}=\sum_{j=1}^{k} 1 / j$. This can be done by first applying the Cauchy-Schwarz inequality to the first sum in (*), then using the fact that $b_{k} \geq k+1$ for all k, along with the inequalities established above:

$$
\begin{aligned}
\sum_{k=1}^{m-1} \frac{\sqrt{b_{k}-b_{k-1}}}{b_{k}} & \leq\left(\sum_{k=1}^{m-1} \frac{1}{b_{k}}\right)^{1 / 2}\left(\sum_{k=1}^{m-1} \frac{b_{k}-b_{k-1}}{b_{k}}\right)^{1 / 2} \leq\left(\sum_{k=1}^{m-1} \frac{1}{k+1}\right)^{1 / 2}\left(\sum_{k=2}^{n^{2}} \frac{1}{k}\right)^{1 / 2} \\
& =\left(H_{m}-1\right)^{1 / 2}\left(H_{n^{2}}-1\right)^{1 / 2} \leq\left(H_{m}+H_{n^{2}}\right) / 2-1
\end{aligned}
$$

Since $H_{n+1}<H_{n}+1$, this settles the case $m=n+1$. Otherwise, $m \leq n$, so $H_{m} \leq H_{n}$, and the conclusion follows by recalling that the second sum in $(*)$ is less than 1.
(2) If the a_{k} are arbitrary real numbers greater than or equal to 1 - alternatively, but equivalently, the b_{k} are real numbers, $b_{0}=1$, and $b_{k} \geq 1+b_{k-1}, k=1, \ldots, n-$, using calculus we obtain, along the lines in the previous remark, upper bounds of the form $\left(H_{n}+H_{n^{2}-1}+1\right) / 2$ or $\left(H_{n}+H_{n^{2}}\right) / 2+(1-\gamma) / 2$, where γ is Euler's constant, $1 / 2<\gamma<3 / 5$.

Problem 4. Let S be a finite planar set no three points of which are collinear, and let $D(S, r)=\{\{x, y\}: x, y \in S$, $\operatorname{dist}(x, y)=r\}$, where r is a positive real number, and $\operatorname{dist}(x, y)$ is the Euclidean distance between the points x and y. Show that

$$
\sum_{r>0}|D(S, r)|^{2} \leq 3|S|^{2}(|S|-1) / 4
$$

H. Lefmann, T. Thiele

Solution. Given a point x in S and a real number r, let $S(x, r)=\{y: y \in S, \operatorname{dist}(x, y)=r\}$, and notice that the $S(x, r), r \geq 0$, partition S.

The number of non-degenerate isosceles triangles with vertices in S and apex at x is $\sum_{r>0}(\underset{2}{|S(x, r)|})$, so the total number of non-degenerate isosceles triangles with vertices in S is $N=\sum_{x \in S} \sum_{r>0}(\stackrel{|S(x, r)|}{2})$, equilateral triangles with vertices in S being counted three times each. Now,

$$
\begin{aligned}
N & =\sum_{x \in S} \sum_{r>0}\binom{|S(x, r)|}{2}=\sum_{r>0} \sum_{x \in S}\binom{|S(x, r)|}{2} \\
& \geq \sum_{r>0}|S|\binom{\frac{1}{|S|} \sum_{x \in S}|S(x, r)|}{2}=\sum_{r>0}|S|\binom{\frac{2|D(S, r)|}{|S|}}{2} \\
& =\frac{2}{|S|} \sum_{r>0}|D(S, r)|^{2}-\sum_{r>0}|D(S, r)|=\frac{2}{|S|} \sum_{r>0}|D(S, r)|^{2}-\binom{|S|}{2},
\end{aligned}
$$

by Jensen's inequality applied to the convex function $t \mapsto\binom{t}{2}=t(t-1) / 2, t \in \mathbb{R}$.
On the other hand, given two distinct points x and y in S, there are at most two nondegenerate isosceles triangles with vertices in S, base $x y$, and apex at a third point in $S \backslash\{x, y\}$: the apex must lie on the perpendicular bisector of the segment $x y$, and since no three points in S are collinear, there are at most two such. Hence $N \leq 2\binom{|S|}{2}$.

Combining the lower and upper bounds for N and rearranging terms yields the required inequality.

