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Problema 1. Aratati ca existd un gir de numere naturale impare m; <
mg < --- gi un gir de numere naturale n; < ny < ---, astfel incat my, sa fie
relativ prim cu nyg si mﬁ — 2nﬁ sa fie patrat perfect, oricare ar fi indicele k.

Problema 2. Fie v, 79, 71, 72 patru cercuri in plan, astfel incat +; sa fie
tangent interior lui v in punctul A;, iar ~; si v;4+1 sa fie tangente exterior
in punctul Bjyo, i = 0,1,2 (indicii sunt redusi modulo 3). Tangenta in B;,
comuna cercurilor ;1 and ~;41, intersecteaza cercul v in punctul C;, situat
in semiplanul opus lui A; in raport cu dreapta A;_1A4;41. Aratati ca cele
trei drepte A;C; sunt concurente.

Problema 3. Fie n un numar natural nenul si fie a1, .. ., a,, numere naturale
nenule. Aratati ca

»

k:11+a1+-~-+ak —

=

Problema 4. Fie S o multime finita de puncte in plan, situate in pozitie
generala (oricare trei puncte din S nu sunt coliniare), si fie

D(S,r) ={{z,y}: z,y € S, dist(z,y) =1},

unde r este un numar real strict pozitiv, iar dist(z, y) este distanta euclidiana
intre punctele x si y. Aratati ca

> ID(S,r)? < 3|S12(S| — 1) /4.

r>0
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Problem 1. Show that there are positive odd integers mq < mo < --- and positive integers
np < ng < --- such that my and ny are relatively prime, and mﬁ — Qnﬁ is a perfect square for

each index k.
Folklore

Solution. Let m and n be relatively prime positive integers such that m is odd and m?* — 2n*
is a perfect square, e.g., m = 3 and n = 2. Write /2 = m* — 2n?, so #* = (m* — 2n?)? =
(m* 4 2n*)?2 — 8m*n?, and ¢* — 8m*n* — (m* + 2n*)? = —16m*n* = —(2mn)*. Multiply the
latter by ¢4 — 8mint + (m? 4 2n1)? = 244 to get

(¢t = 8m*n* + (m* + 2n*)?) (¢* — 8m*n* — (m* + 2nt)?) = -2 (2mn)*;

that is, (¢4 — 8m*n?)? — (m* 4+ 2n*)* = —2. (2¢mn)%. Letting m’ = m* + 2n* and n’ = 20mn,
clearly m’ > m, m’ is odd, n’ > n, the difference m’* —2n’* is a perfect square, and it is readily
checked that m’ and n’ are relatively prime. The conclusion follows.

Problem 2. Let v, 79, 71, 72 be coplanar circles such that ~; is internally tangent to v at A;,
and 7; and 7,41 are externally tangent at B;yo, 9 = 0,1, 2 (indices are reduced modulo 3). The
tangent at B;, common to ;—1 and 7,41, meets v at C;, located in the half-plane opposite A;
with respect to the line A;_1A4;11. Show that the three lines A;C; are concurrent.

Flavian Georgescu

Solution 1. Let v; cross the lines 4;C;+1 and A;Ciy2 again at X; 19 and Y;41, respectively.
Since the homothety centred at A;, transforming ~; into v, sends X;12 to C;11 and Y41 to
CZ‘+2, the lines X7;+2}/;+1 and Ci+1CZ-+2 are parallel, SO AiCi+1/AiCi+2 = Xi_:,_QCZ'_;_l/Yi_;_lCZ‘_;,_Q.
On the other hand, since C; has equal powers relative to ;41 and 42, C; X;y1-CiAi10 =
CZBZ2 = Cini_g_g . CiAi—i-h it follows that Cz'Xi—H = CZB?/CIAH_Q and CiYVH_Q = CszQ/CzAH-l
Hence A;Ci11/AiCiva = (Biy1Cit1/Bit2Ci12)*(AiCiy2/AiCit1), so AiCiy1/AiCipe =
Bi+1Ci+1/Bi+20i+2, and consequently H,?Zo(AiCi+1/AZ'CZ‘+2) = H?:()(Bi+lci+1/Bi+20i+2) =
1. Since the sines of the angles C;A;C; are proportional to the lengths of the corresponding
chords A;C}, the conclusion follows by Ceva’s theorem in trigonometric form in the triangle

CoC1Co.

Solution 2. Let the tangents to v at A; and A;11 meet at D;yo2 (fig 1), and notice that the
latter has equal powers relative to ; and ;41 to deduce that it lies on their radical axis,



Bi12Ci19. Consequently, the lines C;D; are concurrent at the radical centre of the ~;, and the
conclusion follows by the lemma below (see Figure 2).

Lemma. Let PyPi P> be a triangle, and let T; be the touchpoint of the side Pij41Piro and
the incircle v of the triangle PoyPy Py. Let further Z; be a point on the arc Ty 1Tivo of v not
containing T;. Then the lines T; Z; are concurrent if and only if the lines P;Z; are concurrent.

The lemma can be proved either projectively, by sending the point of intersection of Ty Zy
and 7177 to the incentre, or by a trigonometric version of Ceva’s theorem.

Problem 3. Let n be a positive integer and let aq, ..., a, be n positive integers. Show that
n
<
; 14+ a1 + Z k

G. I. Natanson

Solution. Set by =1 and by =1+ay; +---+ax, k=1,...,n, to obtain a strictly increasing
string of positive integers 1 = by < b; < --- < by, and write the sum in the left-hand member
in the form S°7_, (bx — br_1)"/2 /by

Next, let m = min {k: by > n?} > 1 — if there is no by > n?, let m = n + 1 —, to split

the above sum into .
o= /b — br_1 N
Z T + Z T7 (*)
k

k=1

where empty sums are zero. We show that the first sum does not exceed 222:2 1/k, and the
second is always less than 1.

If £k =1,...,m — 1, write (bk — bk_1)1/2/bk < (bk — bk—l)/bk = 1/bk + -+ 1/bk <
Z?};bk,1+l 1/7, to deduce that the first sum in (%) does not exceed Z;Cn:_ll Z?";bk,lﬂ 1/5 =

bm— 2
Yo 1k <30, 1/k.
Finally, if K =m, ..., n, write (b — bk_l)l/Q/bk < b,;l/2 < 1/n, to deduce that the second
sum in (%), when non-empty, is less than (n —m + 1)/n < 1. The conclusion follows.

Remarks. (1) The upper bound H,,2 can be lowered to (Hy,+ H,2)/2, where Hj, = Z?Zl 1/5.
This can be done by first applying the Cauchy-Schwarz inequality to the first sum in (), then
using the fact that by > k + 1 for all &k, along with the inequalities established above:

m— 1 m—l1 1/2 m—lb b 1/2 m—1 1 1/2 n? 1
k — Pk-1
ee(a) () =(5e) (B

k=1 il k=1 =1

1/2

= (Hy — DY2(H,2 — DY2 < (Hp + Hyp2) /2 — 1.

Since H,4+1 < Hy + 1, this settles the case m = n 4+ 1. Otherwise, m < n, so H,, < Hy, and
the conclusion follows by recalling that the second sum in (x) is less than 1.

(2) If the aj are arbitrary real numbers greater than or equal to 1 — alternatively, but
equivalently, the by are real numbers, bg = 1, and by > 1+0bx_1, k= 1,...,n —, using calculus
we obtain, along the lines in the previous remark, upper bounds of the form (H,+H,2_;+1)/2
or (H, + H,2)/2+ (1 —~v)/2, where v is Euler’s constant, 1/2 <y < 3/5.



Problem 4. Let S be a finite planar set no three points of which are collinear, and let
D(S,r) = {{z,y} : z,y € S, dist(z,y) = r}, where r is a positive real number, and dist(x, y)
is the Euclidean distance between the points x and y. Show that

> 1D, < 3[SP(IS| - 1)/4.

r>0

H. Lefmann, T. Thiele

Solution. Given a point z in S and a real number r, let S(z,7) = {y : y € S, dist(z,y) = r},
and notice that the S(x,r), r > 0, partition S.

The number of non-degenerate isosceles triangles with vertices in S and apex at x is
Zr>0 (lS (gw)\)’ so the total number of non-degenerate isosceles triangles with vertices in S is
N =3 cg r0 ('S(g’r)l), equilateral triangles with vertices in S being counted three times
each. Now,

N — ZZ <|5(9;77”)\> _ ZZ (IS(Z,T)\>

zeS r>0 r>0zeSs
S (a7 2D(Sr)|
>Z|S|<|S| zeS > Z’S|< [S] >
r>0 r>0 2
S
|S‘Z\DST Z\DST ‘5’Z|D 2—<‘2‘>,
r>0 r>0 r>0

by Jensen’s inequality applied to the convex function t — (;) =tt—1)/2,teR.

On the other hand, given two distinct points z and y in .S, there are at most two non-
degenerate isosceles triangles with vertices in S, base xy, and apex at a third point in S\ {z, y}:
the apex must lie on the perpendicular bisector of the segment xy, and since no three points
in § are collinear, there are at most two such. Hence N < 2(|S|)

Combining the lower and upper bounds for N and rearranging terms yields the required
inequality.
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