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Solutions

Problem 1. The positive integer N is said amiable if the

set {1,2, . . . , N } can be partitioned into pairs of elements,

each pair having the sum of its elements a perfect square.

Prove there exist infinitely many amiable numbers which

are themselves perfect squares.
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Solution. Obviously an amiable number N must be even

(for the partition into pairs to be possible). Since there will

be N /2 pairs, but only less than
p

2N possible squares as

sums of elements in pairs, many of the sums will have to be

equal. This suggests trying to manufacture some odd a with

1 < a2 < N , for which our set

{1,2, . . . , a2 −2, a2 −1, a2, a2 +1, . . . , N −1, N }

can be partitioned as

{1, a2 −1}∪ {2, a2 −2}∪·· ·∪ {a2, N }∪ {a2 +1, N −1}∪·· ·

with the sum of elements in the first family of pairs being

1+ (a2 −1) = 2+ (a2 −2) = ·· · =
a2 −1

2
+

a2 +1

2
= a2,

while that in the second family of pairs being

a2 +N = (a2 +1)+ (N −1) = ·· · =
a2 +N −1

2
+

a2 +N +1

2
,

forces a2 +N = b2, for some b = a+2k. Thus sufficient con-

ditions will be N = 4k(k+a), and 1 < a < 4k (so that a2 < N ).

It is enough to take a = 3k, for any odd integer k ≥ 1;

then N = 4k(k + a) = (4k)2, and a2 + N = (5k)2 = b2. Of

course, a more direct approach, based on any other usage

of Pythagorean triples, also works. �

Alternative Solution. (A. Eckstein) We claim all N = 8n,

the multiples of 8, are amiable numbers. Assuming the

claim to hold for all 0 ≤ k < n for some n > 0, let us search

some 0 ≤ k < n such that (8k + 1)+ 8n is a perfect square

m2 (for n = 0 the claim vacuously holds). Then the set

{1,2, . . . ,8k} can be partitioned in doubletons, each having

as sum of its elements a perfect square, since we assume

8k is amiable by the induction hypothesis, while the set

{8k +1,8k +2, . . . ,8n} can be partitioned in doubletons

{8k +1,8k +2, . . . ,8n} =
4(n−k)

⋃

j=1

{8k + j ,8n − j +1},

each having as sum of its elements the perfect square m2.

For this, it is enough to find an odd m satisfying

p
8n +1 ≤ m <

p
16n +1,

and then take k =
m2 −1

8
− n. But for n = 1 we can take

m = 3, for n = 2 we can take m = 5, while for n ≥ 3 we havep
16n +1−

p
8n +1 ≥ 2, thus we can find such m.

Finally, let us take n = 22p−3mp , when N = 8n = (4m)p ,

which proves infinitely many p-powers are amiable, for any

integer p ≥ 2. �

Remarks. Two questions naturally come to mind. Do

there exist infinitely many even numbers (let alone perfect

squares) which are not amiable numbers?[1] Can then one

characterize all amiable numbers? The first such amiable

number, which is not a multiple of 8, can be checked to be

N = 14 (and N = 18 is the next)

{1,2, . . . ,14} = {1,8}∪
(

7
⋃

j=2

{ j ,16− j }

)

.

Problem 2. Let ℓ be a line in the plane, and a point A 6∈ ℓ.

Also let α ∈ (0,π/2) be fixed. Determine the locus of the

points Q in the plane, for which there exists a point P ∈ ℓ

such that AQ = PQ and ∠PAQ =α.
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Figure courtesy of ANDREI ECKSTEIN.

Solution. Let the circumcircle of△APQ meet the line ℓ at

a second point B . From the concyclicity of points A,B ,P,Q

follows that the angle made by the lines AB and ℓ is 2α; this

means that whenα=π/4 the point B coincides with the foot

O of the perpendicular dropped from A onto ℓ, while when

α 6= π/4 the point B must occupy anyone of only two fixed

positions on ℓ, B1 and B2, symmetrical with respect to O. Of

course, there appear two degenerate positions, when P ≡ B

and when Q ≡ B , but they are trivial.

There exists therefore some pointΩon the line AO (which

coincides with O when α = π/4) so that the locus is made

by the two lines through Ω, at angles π/2−α with AO . As

for the fullness of the locus, it readily ensues from the fact a

construction is possible in all cases (or else by a continuity

argument).
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The condition A 6∈ ℓ is not strictly necessary; that case is

however trivial, in the notations of above, with A ≡ Ω, and

the two lines of the locus passing through A and making an

angle α with ℓ. For just α= π/4, the problem has also been

asked to the Juniors. �

Analytical Solution. Consider the system of orthogonal

coordinates in the plane, such that A(0,2µ), the line ℓ is the

Ox axis, and P (2λ,0) with λ running over R. Then the mid-

point of AP has coordinates M(λ,µ). Let the point Q(x, y),

and write the conditions concerning it.

Since MQ2 + AM 2 = AQ2, we have

(

(x −λ)2 + (y −µ)2
)

+
(

λ2 +µ2
)

= x2 + (y −2µ)2.

On the other hand, MQ = AM tanPAQ = t AM (where we

have denoted t = tanα), therefore MQ2 = t 2 AM 2, so

(t 2 +1)(λ2 +µ2) = x2 + (y −2µ)2.

The equality AQ2 = PQ2, i.e. x2 + (y −2µ)2 = (x −2λ)2 + y2,

yields λx = (λ2 +µ2)+µ(y −2µ). Squaring this up results in

(λ2+µ2)x2 =
(

(λ2+µ2)+µ(y−2µ)
)2+µ2x2, which also writes

as (λ2+µ2)2+2(λ2+µ2)µ(y−2µ)
)

+µ2(x2+(y−2µ)2), or again

(λ2+µ2)2+2(λ2+µ2)µ(y−2µ)
)

+µ2(t 2+1)(λ2+µ2). Factoring

out
λ2 +µ2

t 2 +1
6= 0, we are left with

t 2x2 −
(

(y −2µ)+ (t 2 +1)µ
)2 = 0,

which writes as
(

y + (t 2 −1)µ
)2 = (t x)2, translating into the

two lines y =±t x+ (1− t 2)µ, of slopes ± tanα, and the same

ordinate (1− t 2)µ at origin (the point Ω of above). �

Alternative Solutions. (Sketch) Similar computations

with the analytic ones above provide a purely trigonometric

or vectorial solution. For example, the condition AQ = PQ

translates into 〈−−→AM ,
−−→
MQ〉 = 0, writing λ(x−λ)−µ(y−µ) = 0,

while the condition on the constant angle translates into

〈−−→AQ,
−−→
AM〉

AQ · AM
= cosα; both of these conditions coming up to

identical forms with those obtained in the above. �

Problem 3. For all triplets a,b,c of (pairwise) distinct real

numbers, prove the inequality

∣

∣

∣

a

b − c

∣

∣

∣+
∣

∣

∣

∣

b

c −a

∣

∣

∣

∣

+
∣

∣

∣

c

a −b

∣

∣

∣≥ 2

and determine all cases of equality.

Prove that if we also impose a,b,c positive,

then all equality cases disappear, but the value 2 remains

the best constant possible.
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Solution. Denote x =
a

b − c
, y =

b

c −a
, z =

c

a −b
; then it

is easily seen that

∏

(x −1) =
∏

(a −b + c)
∏

(b − c)
=

∏

(a +b − c)
∏

(b − c)
=

∏

(x +1),

whence x y+y z+zx =−1. This relation can also be obtained

(rather than guessed) by writing the homogeneous system

having a,b,c as unknowns, of determinant

∆=

∣

∣

∣

∣

∣

∣

1 −x x

y 1 −y

−z z 1

∣

∣

∣

∣

∣

∣

= (1+ y z)+x(y − y z)+x(y z + z),

which computes to ∆ = 1+ x y + y z + zx. Since the system

originates with a,b,c pairwise distinct, it must also have

some other solution than the trivial one a = b = c = 0, thus

∆= 0, yielding the seminal relation obeyed by x, y, z.

But since (x y)(y z)(zx) = (x y z)2 ≥ 0 we must have at least

one of the factors being non-negative, say x y ≥ 0. Then

|x|+ |y |+ |z| ≥ |x + y |+ |z| ≥ 2
√

|zx + y z| = 2
√

1+x y ≥ 2.

Equality occurs for x y = 0, say x = 0, and also |y | = 1, with

z = −y , when a = 0 and b = −c. Thus all equality cases

are {a,b,c} = {0, t ,−t } , for t 6= 0. However, since clearly

the value of the expression for a,b,c is the same as that for

t a, tb, tc, with t 6= 0, the only essential solution is {0,1,−1} .

If we also impose a,b,c > 0, then the same inequality with

respect to 2 holds, but there is no case of equality. The fact

we can approach 2 as close as wanted is simply argued by

taking an arbitrary 0 < ε< 1/2, and a = ε2, b = 1+ε, c = 1−ε,

when

∣

∣

∣

a

b − c

∣

∣

∣+
∣

∣

∣

∣

b

c −a

∣

∣

∣

∣

+
∣

∣

∣

c

a −b

∣

∣

∣= ε

(

1

2
+

2+ε

1−ε−ε2
−

2−ε

1+ε−ε2

)

+2,

with lim
ε→0

ε

(

1

2
+

2+ε

1−ε−ε2
−

2−ε

1+ε−ε2

)

= 0. �

Remarks. Notice for a +b + c = 0 the inequality becomes

∣

∣

∣

∣

a +b

a −b

∣

∣

∣

∣

+
∣

∣

∣

∣

b + c

b − c

∣

∣

∣

∣

+
∣

∣

∣

c +a

c −a

∣

∣

∣≥ 2,

a relatively easier inequality, asked to the Juniors. Thus, in

this case, the two inequalities are equivalent. This can be

pushed even further. For a new variable σ, the inequality

∣

∣

∣

a −σ

b − c

∣

∣

∣+
∣

∣

∣

∣

b −σ

c −a

∣

∣

∣

∣

+
∣

∣

∣

c −σ

a −b

∣

∣

∣≥ 2

can be proved in exactly the same manner, with all equality

cases being given by {a,b,c} = {σ,τ,2σ−τ}, for τ 6=σ (more-

over, this allows equality cases even when we impose a,b,c

positive, by just taking 0 <σ, 0 < τ< 2σ). Taking σ= a+b+c

yields the alternative inequality, this time in all its generality.

Problem 4. The cells of some rectangular M × n array

are colored, each by one of two colors, so that for any two

columns the number of pairs of cells situated on a same row

and bearing the same color is less than the number of pairs

of cells situated on a same row and bearing different colors.

i) Prove that if M = 2011 then n ≤ 2012 (a model for the

extremal case n = 2012 does indeed exist, but you are not

asked to exhibit one).

ii) Prove that if M = 2011 = n, each of the colors appears

at most 1006 ·2011 times, and at least 1005 ·2011 times.

iii) Prove that if however M = 2012 then n ≤ 1007.
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Solution. i) Let’s more generally work with 2m−1 = 2011.

Denote by ai the number of cells of the first color, and by

bi = n −ai the number of cells of the second color, situated

on row 1 ≤ i ≤ 2m −1. Also denote by A =
2m−1
∑

i=1

ai the total

number of cells of the first color, and by N the total number

of pairs of cells situated on a same row, but bearing different

colors. We proceed by the trusted double counting method.

On one hand, on each row 1 ≤ i ≤ 2m −1 we have exactly

ai bi = ai (n −ai ) such pairs, so

N =
2m−1
∑

i=1

ai (n −ai ) ≤ (2m −1)

(

A

2m −1

)(

n −
A

2m −1

)

by Jensen’s inequality, since f (x) = x(n −x) is concave.

On the other hand, the number of such pairs for any

two columns is at least m (versus at most m − 1 pairs of

cells situated on a same row and bearing a same color), so

N ≥ m

(

n

2

)

=
1

2
mn(n −1).

Putting together the two inequalities from above yields
A(n(2m −1)− A)

2m −1
≥ N ≥

1

2
mn(n −1), thus

A2 −n(2m −1)A+
1

2
(2m −1)mn(n −1) ≤ 0.

The discriminant of this trinomial is

∆= n2(2m −1)2 −2(2m −1)mn(n −1) = n(2m −1)(2m −n).

In order for the inequality to be possible we need ∆≥ 0, thus

n ≤ 2m, which in our particular case means n ≤ 2012. It is

interesting that we achieved the right bound for n, as it will

be seen in the sequel, which will thus provide an alternative

proof (based on linear algebra techniques).

ii) The bounds for the number of apparitions of a color

are given by the roots of the trinomial at i), which are

p
n(2m −1)

(p
n(2m −1)±

p
(2m −1)+1−n

)

2
.

For n = 2m −1 = 2011 this writes
n(n ±1)

2
, thus yielding the

required bounds. (In fact, they indeed can be reached.)

iii) This is tantamount to doing the computations for 2m

rather than 2m − 1 rows. Now, in order to have a strictly

larger number of pairs of cells of different colors, we need

at least m+1 of them for any two columns. Putting together

the inequalities yields
A(2mn − A)

2m
≥ N ≥

1

2
(m +1)n(n −1),

thus

A2 −2mn A+m(m +1)n(n −1) ≤ 0.

The (reduced) discriminant of this trinomial is

∆= m2n2 −m(m +1)n(n −1) = mn(m +1−n).

In order for the inequality to be possible we need ∆≥ 0, thus

n ≤ m+1, which in our particular case means n ≤ 1007. It is

a drastic reduction (to half) of the bound on the number of

columns for an odd case 2m +1, like shown before at i). �

Remarks. In fact the equality case n = (2m −1)+1 leads

to A = m(2m − 1) (exactly half the elements of the array).

This of course means equality in all previous inequalities,

thus ai = A/(2m −1) = m and for any two columns exactly

m pairs of cells situated on a same row and bearing different

colors. This can in fact be realized, for example for m = 1, 2

or 4 (see models below).

What follows is just presented for educational purpose,

as it uses linear algebra techniques in order to provide more

insight into the properties of such configurations.

In the sequel the two colors are replaced by the labels +1,

respectively −1; the n columns become vectors in R
2m−1, of

pairwise negative dot-products.

B1 =
(

1 −1
)

m=1
B3 =





1 1 −1 −1

1 −1 −1 1

1 −1 1 −1





m=2

B7 =





















1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 −1 1 −1 1 −1 1 −1





















m=4

The question is, can such models be found for any other

values of m but the powers of 2 ? It can easily be proven that

m needs be even (thus no model for m = 3).

The largest number of pairwise orthogonal vectors in R
d ,

made of ±1 entries, is clearly not larger than the dimension

d of the space. The bound can be shown to be tight for d a

power of 2, by using Sylvester’s construction for Hadamard

matrices (which also extends to provide our above models)

H1 =
(

1
)

, H2 =
(

1 1

1 −1

)

, . . . , H2k+1 =
(

H2k H2k

H2k −H2k

)

, . . .

We need to also mention Hadamard’s conjecture that

such models exist whenever 4 | d (it is not difficult to show

that 4 | d is a necessary condition, and there are no known

counterexamples for it not also being sufficient). We can

build a model for a (d − 1) × d matrix made of ±1 entries

and pairwise negative dot-products of its column vectors

(so m = d/2) by taking a Hadamard matrix of order d , and

conveniently multiplying its columns by ±1 in order that

its last row becomes made of all +1’s, then removing it.

Thus the question of existence for our models is seen to

be equivalent to Hadamard’s conjecture. For the particular

case d = 2012, an actual model is now provided by Paley’s

construction, working when d −1 is a power of some prime,

since 2011 ≡ 3 (mod 4) is precisely such a prime! The

very Hadamard conjecture is in fact attributed to Paley; see

http://en.wikipedia.org/wiki/Hadamard_matrix.

Let us now prove that the largest number of vectors in

R
d , of pairwise negative dot-products, is d +1. The result at

point i) of the problem yields n ≤ (2m−1)+1, which indeed

will be proven to be the best bound (and this for all vectors,

not just those of entries ±1).
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Let us proceed by simple induction on d , starting with the

obvious case d = 1. In dimension d +1, let u be one of the

vectors. Denote by U = < u >⊥ the orthogonal complement

of u, of dimension d . Any of the other vectors v can now

be uniquely written as v = v⊥+ v⊣, with v⊣ =
〈u, v〉
||u||2

u, thus

v⊥ ⊥ u, i.e. v⊥ ∈ U . Notice that the coefficients
〈u, v〉
||u||2

are

negative under our conditions, and also notice we cannot

have v⊥ = 0, since then for a third vector w we would have

0 > 〈v, w〉 = 〈v⊣, w〉 =
〈u, v〉〈u, w〉

||u||2
> 0, contradiction.

Let us consider next the orthogonal components v⊥ ∈U ,

whence 〈v, w〉 = 〈v⊥+ v⊣, w⊥+w⊣〉 = 〈v⊥, w⊥〉+〈v⊥, w⊣〉+
〈v⊣, w⊥〉+〈v⊣, w⊣〉 = 〈v⊥, w⊥〉+

〈u, v〉〈u, w〉
||u||2

, and therefore

〈v⊥, w⊥〉 = 〈v, w〉 −
〈u, v〉〈u, w〉

||u||2
< 0, since 〈v, w〉 < 0 and

〈u, v〉〈u, w〉 > 0. We fall under the induction hypothesis, so

their number is at most d + 1, therefore (together with u)

there were at most (d + 1)+ 1 vectors for dimension d + 1,

and the induction is completed.

In order to build a model, we again reason inductively.

For the starting case d = 1 we can just take a vector u 6= 0 and

−u. For dimension d+1, take an arbitrary vector u 6= 0. Take

a model made of d +1 vectors v ∈ U , the orthogonal com-

plement of u, which is a space of dimension d . Now take

a negative real λ < 0 and consider the vectors v ′ = v +λu.

Then 〈u, v ′〉 = 〈u, v +λu〉 = 〈u, v〉+λ〈u,u〉 =λ||u||2 < 0, and

also 〈v ′, w ′〉 = 〈v +λu, w +λu〉 = 〈v, w〉+λ〈u, v〉+λ〈u, w〉+
λ2 〈u,u〉 = 〈v, w〉 +λ2||u||2 < 0 when λ < 0 is chosen such

that 0 < λ2 <
1

||u||2
min | 〈v, w〉 | over all the pairs among the

d+1 vectors of the induction step model. We have thus built

with the vectors v ′ (together with u) a set of (d+1)+1 vectors

of pairwise negative dot-products in dimension d +1.

So that we further our knowledge, and get information

on a more relaxed issue, we will also prove that the largest

number of not-null vectors in R
d , of pairwise non-positive

dot-products, is 2d .[2]

Let us proceed by simple induction on d , starting with the

obvious case d = 1. In dimension d +1, let u be one of the

vectors. Denote by U = < u >⊥ the orthogonal complement

of u, of dimension d . Any of the other vectors v can now

be uniquely written as v = v⊥+ v⊣, with v⊣ =
〈u, v〉
||u||2

u, thus

v⊥ ⊥ u, i.e. v⊥ ∈ U . Notice that the coefficients
〈u, v〉
||u||2

are

non-positive under our conditions, and also notice that we

can only have v⊥ = 0 once, for some u′ = v (trivially so, since

then u′ = u′
⊣ =λu for some negative real λ).

Let us consider next the orthogonal components v⊥ ∈U ,

whence 〈v, w〉 = 〈v⊥+ v⊣, w⊥+w⊣〉 = 〈v⊥, w⊥〉+〈v⊥, w⊣〉+
〈v⊣, w⊥〉+〈v⊣, w⊣〉 = 〈v⊥, w⊥〉+

〈u, v〉〈u, w〉
||u||2

, and therefore

〈v⊥, w⊥〉 = 〈v, w〉 −
〈u, v〉〈u, w〉

||u||2
≤ 0, since 〈v, w〉 ≤ 0 and

〈u, v〉〈u, w〉 ≥ 0. We fall under the induction hypothesis, so

the number of the not-null vectors is at most 2d , therefore

(together with u and possibly u′) there were at most 2(d +1)

not-null vectors for dimension d + 1, and the induction is

completed.

In order to build a model, notice further that in order

to achieve the bound we must have the pair u, u′, with all

other vectors orthogonal to them. By inductive reasoning

it follows that the only possible model is made by some d

pairwise orthogonal not-null vectors, and other d obtained

from them by multiplication with arbitrary negative scalars.

Of course, the geometric interpretation for negative dot-

products is that the vectors make pairwise obtuse angles,

while for non-positive dot-products is that the vectors make

pairwise obtuse or right angles. Thus we establish reachable

bounds for the maximum number of such vectors, in what-

ever dimension d . When the vectors are made of ±1 entries,

they are among the vertices of the hypercube {−1,+1}d .

I apologize for this lengthy development, but I felt these

pieces of knowledge are worthwhile to be partaken.

END

[1] Is it at all curious that the set {1,2, . . . , N = 2n} can always be

decomposed into n pairs, such that the sum of each pair is a

prime? This is Greenfield’s theorem, and its short and lovely

proof makes use of Bertrand’s postulate. The link that follows

http://nd.edu/∼dgalvin1/pdf/bertrand.pdf gives quite

a worthy reading. The reason to it is that the primes are "more

numerous" than squares; their density is
π(x)

x
∼

1

ln x
(x →∞),

while that of the squares is

p
x

x
∼

1
p

x
.

[2] For vectors made of ±1 entries, the bound can be shown to be

tight for 4 | d whenever a Hadamard matrix Hd of order d does

exist (see above), by building a d ×2d model Ad =
(

Hd −Hd

)

.

The models with ±1 entries bring now no light on the bounds.

For an odd 2m −1 number of rows the dot-products will have

to be negative, so we fall under the conditions of before. For

an even 2m number of rows the (reduced) discriminant will be

∆ = m2n (with bounding roots m(n ±
p

n)), thus establishing

no direct restriction on n.


