The $6^{\text {th }}$ "STARS of MATHEMATICS" Competition - Juniors December 8, $2012 \quad \star \star \star$ ICHB - Bucharest

Solutions

Problem 1. Let ℓ be a line in the plane, and a point $A \notin \ell$. Determine the locus of the points Q in the plane, for which there exists a point $P \in \ell$ so that $A Q=P Q$ and $\angle P A Q=45^{\circ}$.

> Dan Schwarz

Solution. We claim the locus of the points Q is made by the two main angle bisector lines through O, the foot of the perpendicular dropped from A onto ℓ.

The angle $\angle A Q P$ being right (since the triangle $A Q P$ is isosceles), the same as $\angle A O P$, it follows the points A, O, P, Q are concyclic, therefore we have $\angle Q O A=\angle Q P A=45^{\circ}$, or else $\angle Q O A=180^{\circ}-\angle Q P A=135^{\circ}$, so $O Q$ is one of the two main angle bisectors through O. Of course, there appear two degenerate positions, when $P \equiv O$ and when $Q \equiv O$, but they are trivial. The fullness of the locus readily ensues from the fact a construction is possible in all cases (or else by a continuity argument).

Figure courtesy of Andrei Eckstein.
An alternative proof, avoiding cyclic quadrilaterals, runs as follows. I will only present a case when prolonging $P Q$ it meets $O A$ at a point T on the same side of ℓ as A. Since $A Q$ is an antiparallel in $\triangle T O P$, it follows triangles $T Q A$ and $T O P$ are similar, therefore $\frac{T Q}{T O}=\frac{Q A}{O P}$. But $Q A=Q P$, and so $\frac{T Q}{T O}=\frac{Q P}{O P}$, meaning $O Q$ is the angle bisector of $\angle T O P$. Any other case is treated in a similar manner.

The condition $A \notin \ell$ is not strictly necessary; that case is however trivial. The problem has been also, for any angle $\angle P A Q=\alpha \in\left(0,90^{\circ}\right)$, asked to the Seniors, arriving at similar conclusions.

Problem 2. Prove the value of the expression
$\frac{\sqrt{n+\sqrt{0}}+\sqrt{n+\sqrt{1}}+\sqrt{n+\sqrt{2}}+\cdots+\sqrt{n+\sqrt{n^{2}-1}}+\sqrt{n+\sqrt{n^{2}}}}{\sqrt{n-\sqrt{0}}+\sqrt{n-\sqrt{1}}+\sqrt{n-\sqrt{2}}+\cdots+\sqrt{n-\sqrt{n^{2}-1}}+\sqrt{n-\sqrt{n^{2}}}}$ is constant over all positive integers n.

Solution. (D. Schwarz) For all real numbers $0 \leq n, m \leq n^{2}$, we have

$$
\sqrt{n+\sqrt{m}}=\sqrt{\frac{n+\sqrt{n^{2}-m}}{2}}+\sqrt{\frac{n-\sqrt{n^{2}-m}}{2}}
$$

Take now a positive integer n, and sum over all integers m between 0 and n^{2}

$$
\begin{aligned}
& \sum_{m=0}^{n^{2}} \sqrt{n+\sqrt{m}} \\
& \sum_{m=0}^{n^{2}} \sqrt{\frac{n+\sqrt{n^{2}-m}}{2}}+\sum_{m=0}^{n^{2}} \sqrt{\frac{n-\sqrt{n^{2}-m}}{2}}= \\
& \frac{1}{\sqrt{2}} \sum_{m=0}^{n^{2}} \sqrt{n+\sqrt{m}}+\frac{1}{\sqrt{2}} \sum_{m=0}^{n^{2}} \sqrt{n-\sqrt{m}}
\end{aligned}
$$

It follows

$$
\sum_{m=0}^{n^{2}} \sqrt{n+\sqrt{m}}=\frac{1}{\sqrt{2}-1} \sum_{m=0}^{n^{2}} \sqrt{n-\sqrt{m}}
$$

therefore

$$
\left(\sum_{m=0}^{n^{2}} \sqrt{n+\sqrt{m}}\right) /\left(\sum_{m=0}^{n^{2}} \sqrt{n-\sqrt{m}}\right)=1+\sqrt{2} .
$$

Such constant value is unexpected; a quick computation for $n=1$ (and maybe also other small values of n) will expose it, and then remembering the formula for nested square roots finishes the proof by an easy double-counting argument.

Problem 3. For all triplets a, b, c of (pairwise) distinct real numbers, prove the inequality

$$
\left|\frac{a+b}{a-b}\right|+\left|\frac{b+c}{b-c}\right|+\left|\frac{c+a}{c-a}\right| \geq 2
$$

and determine all cases of equality.
Prove that if we also impose $a, b, c \geq 0$, then

$$
\left|\frac{a+b}{a-b}\right|+\left|\frac{b+c}{b-c}\right|+\left|\frac{c+a}{c-a}\right|>3,
$$

with the value 3 being the best constant possible.
DAN Schwarz
Solution. Denote $x=\frac{a+b}{a-b}, y=\frac{b+c}{b-c}, z=\frac{c+a}{c-a}$; then it is easily seen that

$$
\prod(x-1)=\frac{8 b c a}{\prod(a-b)}=\frac{8 a b c}{\Pi(a-b)}=\prod(x+1)
$$

whence $x y+y z+z x=-1$.
But since $(x y)(y z)(z x)=(x y z)^{2} \geq 0$ we must have at least one of the factors being non-negative, say $x y \geq 0$. Then

$$
|x|+|y|+|z| \geq|x+y|+|z| \geq 2 \sqrt{|z x+y z|}=2 \sqrt{1+x y} \geq 2
$$

Equality occurs for $x y=0$, say $x=0$, and also $|y|=1$, with $z=-y$, when $b=-a$ and $c=0$. Thus equality cases are $\{a, b, c\}=\{t,-t, 0\}$, for $t \neq 0$. However, since clearly the
value of the expression for a, b, c is the same as that for $t a, t b, t c$, with $t \neq 0$, the only essential solution is $\{1,-1,0\}$.

If we also impose $a, b, c \geq 0$ then, since the expression is symmetric, we may assume $0 \leq a<b<c$. Consequently

$$
\left|\frac{a+b}{a-b}\right|+\left|\frac{b+c}{b-c}\right|+\left|\frac{c+a}{c-a}\right|=3+\frac{2 a}{b-a}+\frac{2 b}{c-b}+\frac{2 a}{c-a}>3
$$

The fact we can approach 3 as close as wanted is simply argued by taking $a=0, c=(2 n+1) b$ for some $n \in \mathbb{N}^{*}$, when

$$
\frac{2 a}{b-a}+\frac{2 b}{c-b}+\frac{2 a}{c-a}=\frac{1}{n}
$$

is taking as small a value as wanted for large enough n.
Remarks. Consider $\sigma=a+b+c$; the inequality becomes

$$
\left|\frac{a-\sigma}{b-c}\right|+\left|\frac{b-\sigma}{c-a}\right|+\left|\frac{c-\sigma}{a-b}\right| \geq 2
$$

Taking $a^{\prime}=a-\sigma, b^{\prime}=b-\sigma, c^{\prime}=c-\sigma$, it writes again

$$
\left|\frac{a^{\prime}}{b^{\prime}-c^{\prime}}\right|+\left|\frac{b^{\prime}}{c^{\prime}-a^{\prime}}\right|+\left|\frac{c^{\prime}}{a^{\prime}-b^{\prime}}\right| \geq 2
$$

a seemingly more difficult inequality, asked to the Seniors. Its equality cases are totally similar. However, imposing there $a^{\prime}, b^{\prime}, c^{\prime} \geq 0$ just rules out the equality cases, and 2 stays best constant possible.

Problem 4. Consider a set X with $|X|=n \geq 1$ elements. A family \mathscr{F} of distinct subsets of X is said to have property \mathscr{P} if there exist $A, B \in \mathscr{F}$ so that $A \subset B$ and $|B \backslash A|=1$.
i) Determine the least value m, so that any family \mathscr{F} with $|\mathscr{F}|>m$ has property \mathscr{P}.
ii) Describe all families \mathscr{F} with $|\mathscr{F}|=m$, and not having property \mathscr{P}.

Dan Schwarz
Solution. i) We claim that $m=2^{n-1}$. Denote by $\mathscr{P}(X)$ the set of all parts (subsets) of X (inclusive the empty set \varnothing, and X). It is well-known (and easy to prove) that $\mathscr{P}(X)$ contains $2^{|X|}=2^{n}$ elements. Take an arbitrary $x \in X$, and consider the 2^{n-1} doubletons $\{S, S \cup\{x\}\}$, with $S \in \mathscr{P}(X \backslash\{x\})$. These doubletons make up a partition of $\mathscr{P}(X)$

$$
\mathscr{P}(X)=\bigcup_{S \in \mathscr{P}(X \backslash\{x\})}\{S, S \cup\{x\}\}
$$

By the pigeonhole principle, if $|\mathscr{F}|>2^{n-1}$, then \mathscr{F} will have to contain one full doubleton $\left\{S_{0}, S_{0} \cup\{x\}\right\}$, and then, taking $A=S_{0}$ and $B=S_{0} \cup\{x\}$, we will have $A \subset B$ and $|B \backslash A|=1$, therefore the family \mathscr{F} will have property \mathscr{P}. On the other hand, a family \mathscr{F} with $|\mathscr{F}|=2^{n-1}$, not having property \mathscr{P}, must contain exactly one member each from each of such doubletons, by the same pigeonhole argument; we will see this argument used at point ii).

A model for a family \mathscr{F} having 2^{n-1} elements, but not having property \mathscr{P}, is the family \mathscr{F}_{e} of all even cardinality subsets of X. This ensures that for any $A, B \in \mathscr{F}_{e}$ with $A \subset B$ we have $|B \backslash A| \geq 2$. It remains to prove that $\left|\mathscr{F}_{e}\right|=2^{n-1}$.

For those of you who know about binomial coefficients, the proof is classical. We have

$$
(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n-1} x^{n-1}+\binom{n}{n} x^{n}
$$

Taking $x=1$ yields $(1+x)^{n}=(1+1)^{n}=2^{n}$; on the other hand, taking $x=-1$ yields $(1+x)^{n}=(1-1)^{n}=0$. This shows that

$$
\binom{n}{0}+\binom{n}{2}+\cdots=\binom{n}{1}+\binom{n}{3}+\cdots=2^{n-1}
$$

and since $\binom{n}{k}$ counts the subsets of X having k elements, it means the LHS is the cardinality of \mathscr{F}_{e}, while the RHS is the cardinality of \mathscr{F}_{o}, the family of all odd cardinality subsets of X, which thus also works as a second model.

In the absence of such knowledge, a simple argument shows that the number of subsets of even cardinality of a set X with n elements is equal to the number of subsets of odd cardinality. For $n=1$ this trivially checks. Now consider a set X with $n>1$ elements and an arbitrary fixed element x of it. A one-to-one correspondence between the subsets of even cardinality of X and the 2^{n-1} subsets of $X \backslash\{x\}$ is now readily established; if such subset S of even cardinality does not contain x, it is mapped to itself, while if it contains x, it is mapped to $S \backslash\{x\}$. Thus the total number of subsets of even cardinality of X is 2^{n-1}, just the same as the total number of subsets of odd cardinality of X.
ii) Let $0 \leq k<n$. If such a family \mathscr{F} contains all subsets of X having cardinality k, then no subset of X of cardinality $k+1$ may belong to \mathscr{F}. This is so, because for any subset B with $|B|=k+1$, taking an arbitrary $x \in B$ and $A=B \backslash\{x\}$, we will have $A \subset B$ and $|B \backslash A|=1$. But $|A|=k$, so $A \in \mathscr{F}$, therefore $B \notin \mathscr{F}$, since \mathscr{F} does not have property \mathscr{P}.
Also, if such a family \mathscr{F} contains no subset of X having cardinality k, then all subsets of X having cardinality $k+1$ must belong to \mathscr{F}. This is so, because for any subset B with $|B|=k+1$, taking an arbitrary $x \in B$ and $A=B \backslash\{x\}$, we will have $A \subset B$ and $|B \backslash A|=1$. But $|A|=k$, so $A \notin \mathscr{F}$, therefore $B \in \mathscr{F}$, since \mathscr{F} does not have property \mathscr{P}, so by the pigeonhole argument previously announced, exactly one member of the doubleton $\{A, B\}$ must belong to \mathscr{F}.

Now, either \varnothing belongs to \mathscr{F}, or it does not. In the former case, it follows by what has been said, that all subsets with $0,2, \ldots$ elements need belong to \mathscr{F}, while those with $1,3, \ldots$ elements must not, hence $\mathscr{F}=\mathscr{F}$ e . In the latter case, again by what has been said, all subsets with $1,3, \ldots$ elements need belong to \mathscr{F}, while those with $0,2, \ldots$ elements must not, hence $\mathscr{F}=\mathscr{F}_{0}$. Thus only the two families $\mathscr{F}_{e}, \mathscr{F}_{o}$ answer the condition.[1]
[1] The issue of the threshold value m, renouncing the condition $|B \backslash A|=1$, is settled by Sperner's theorem, stating that the size of the largest antichain of the poset of the parts of a set with n elements (ordered by inclusion) is $m=\binom{n}{\lfloor n / 2\rfloor}=\binom{n}{\lceil n / 2\rceil}$. So
for $|\mathscr{F}|>m$ there will exist $A, B \in \mathscr{F}$ with $A \subset B$. The model(s) is/are given by the set of parts having $\lfloor n / 2\rfloor$, respectively $[n / 2\rceil$ elements. For even n having $\lfloor n / 2\rfloor=\lceil n / 2\rceil=n / 2$, there is only one model; while for odd n there are two. One may explore other variations on this theme.

