
The 6th “STARS of MATHEMATICS” Competition – Juniors

December 8, 2012 ⋆⋆⋆ ICHB – Bucharest

Solutions

Problem 1. Let ℓ be a line in the plane, and a point A 6∈ ℓ.

Determine the locus of the points Q in the plane, for which

there exists a point P ∈ ℓ so that AQ = PQ and ∠PAQ = 45◦.

DAN SCHWARZ

Solution. We claim the locus of the points Q is made

by the two main angle bisector lines through O , the foot of

the perpendicular dropped from A onto ℓ.

The angle ∠AQP being right (since the triangle AQP is

isosceles), the same as ∠AOP , it follows the points A,O,P,Q

are concyclic, therefore we have ∠QOA = ∠QPA = 45◦, or

else ∠QOA = 180◦−∠QPA = 135◦, so OQ is one of the two

main angle bisectors through O. Of course, there appear

two degenerate positions, when P ≡O and when Q ≡O, but

they are trivial. The fullness of the locus readily ensues from

the fact a construction is possible in all cases (or else by a

continuity argument).

Figure courtesy of ANDREI ECKSTEIN.

An alternative proof, avoiding cyclic quadrilaterals, runs

as follows. I will only present a case when prolonging PQ

it meets OA at a point T on the same side of ℓ as A. Since

AQ is an antiparallel in △T OP , it follows triangles TQ A and

T OP are similar, therefore
TQ

T O
=

Q A

OP
. But Q A =QP , and so

TQ

T O
=

QP

OP
, meaning OQ is the angle bisector of ∠T OP . Any

other case is treated in a similar manner.

The condition A 6∈ ℓ is not strictly necessary; that case is

however trivial. The problem has been also, for any angle

∠PAQ =α ∈ (0,90◦), asked to the Seniors, arriving at similar

conclusions. �

Problem 2. Prove the value of the expression
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is constant over all positive integers n.

FOLKLORE (ALSO PHILIPPINES OLYMPIAD)

Solution. (D. Schwarz) For all real numbers 0 ≤ n,m ≤ n2,

we have
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Take now a positive integer n, and sum over all integers m

between 0 and n2
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Such constant value is unexpected; a quick computation for

n = 1 (and maybe also other small values of n) will expose it,

and then remembering the formula for nested square roots

finishes the proof by an easy double-counting argument. �

Problem 3. For all triplets a,b,c of (pairwise) distinct real

numbers, prove the inequality
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and determine all cases of equality.

Prove that if we also impose a,b,c ≥ 0, then
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with the value 3 being the best constant possible.

DAN SCHWARZ

Solution. Denote x =
a +b

a −b
, y =

b + c

b − c
, z =

c +a

c −a
; then it

is easily seen that

∏

(x −1) =
8bca
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∏
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=

∏

(x +1),

whence x y + y z + zx =−1.

But since (x y)(y z)(zx) = (x y z)2 ≥ 0 we must have at least

one of the factors being non-negative, say x y ≥ 0. Then

|x|+ |y |+ |z| ≥ |x + y |+ |z| ≥ 2
√

|zx + y z| = 2
√

1+x y ≥ 2.

Equality occurs for x y = 0, say x = 0, and also |y | = 1, with

z = −y , when b = −a and c = 0. Thus equality cases are

{a,b,c} = {t ,−t ,0} , for t 6= 0. However, since clearly the



2

value of the expression for a,b,c is the same as that for

t a, tb, tc, with t 6= 0, the only essential solution is {1,−1,0} .

If we also impose a,b,c ≥ 0 then, since the expression is

symmetric, we may assume 0 ≤ a < b < c. Consequently
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The fact we can approach 3 as close as wanted is simply

argued by taking a = 0, c = (2n +1)b for some n ∈N
∗, when
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is taking as small a value as wanted for large enough n. �

Remarks. Consider σ= a +b + c; the inequality becomes
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Taking a′ = a −σ, b′ = b −σ, c ′ = c −σ, it writes again
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a seemingly more difficult inequality, asked to the Seniors.

Its equality cases are totally similar. However, imposing

there a′,b′,c ′ ≥ 0 just rules out the equality cases, and 2

stays best constant possible.

Problem 4. Consider a set X with |X | = n ≥ 1 elements. A

family F of distinct subsets of X is said to have property P

if there exist A,B ∈F so that A ⊂ B and |B \ A| = 1.

i) Determine the least value m, so that any family F with

|F | > m has property P .

ii) Describe all families F with |F | = m, and not having

property P .

DAN SCHWARZ

Solution. i) We claim that m = 2n−1 . Denote by P (X )

the set of all parts (subsets) of X (inclusive the empty set

;, and X ). It is well-known (and easy to prove) that P (X )

contains 2|X | = 2n elements. Take an arbitrary x ∈ X , and

consider the 2n−1 doubletons {S,S∪{x}}, with S ∈P (X \{x}).

These doubletons make up a partition of P (X )

P (X ) =
⋃

S∈P (X \{x})

{S,S ∪ {x}}.

By the pigeonhole principle, if |F | > 2n−1, then F will have

to contain one full doubleton {S0,S0 ∪ {x}}, and then, taking

A = S0 and B = S0 ∪ {x}, we will have A ⊂ B and |B \ A| = 1,

therefore the family F will have property P . On the other

hand, a family F with |F | = 2n−1, not having property P ,

must contain exactly one member each from each of such

doubletons, by the same pigeonhole argument; we will see

this argument used at point ii).

A model for a family F having 2n−1 elements, but not

having property P , is the family Fe of all even cardinality

subsets of X . This ensures that for any A,B ∈Fe with A ⊂ B

we have |B \ A| ≥ 2. It remains to prove that |Fe | = 2n−1.

For those of you who know about binomial coefficients,

the proof is classical. We have
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Taking x = 1 yields (1+x)n = (1+1)n = 2n ; on the other hand,

taking x =−1 yields (1+x)n = (1−1)n = 0. This shows that
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counts the subsets of X having k elements, it

means the LHS is the cardinality of Fe , while the RHS is the

cardinality of Fo , the family of all odd cardinality subsets of

X , which thus also works as a second model.

In the absence of such knowledge, a simple argument

shows that the number of subsets of even cardinality of a

set X with n elements is equal to the number of subsets of

odd cardinality. For n = 1 this trivially checks. Now consider

a set X with n > 1 elements and an arbitrary fixed element x

of it. A one-to-one correspondence between the subsets of

even cardinality of X and the 2n−1 subsets of X \ {x} is now

readily established; if such subset S of even cardinality does

not contain x, it is mapped to itself, while if it contains x, it is

mapped to S \ {x}. Thus the total number of subsets of even

cardinality of X is 2n−1, just the same as the total number of

subsets of odd cardinality of X .

ii) Let 0 ≤ k < n. If such a family F contains all subsets

of X having cardinality k, then no subset of X of cardinality

k + 1 may belong to F . This is so, because for any subset

B with |B | = k +1, taking an arbitrary x ∈ B and A = B \ {x},

we will have A ⊂ B and |B \ A| = 1. But |A| = k, so A ∈ F ,

therefore B 6∈F , since F does not have property P .

Also, if such a family F contains no subset of X having

cardinality k, then all subsets of X having cardinality k + 1

must belong to F . This is so, because for any subset B with

|B | = k +1, taking an arbitrary x ∈ B and A = B \ {x}, we will

have A ⊂ B and |B \ A| = 1. But |A| = k, so A 6∈ F , therefore

B ∈F , since F does not have property P , so by the pigeon-

hole argument previously announced, exactly one member

of the doubleton {A,B } must belong to F .

Now, either ; belongs to F , or it does not. In the former

case, it follows by what has been said, that all subsets with

0,2, . . . elements need belong to F , while those with 1,3, . . .

elements must not, hence F = Fe . In the latter case, again

by what has been said, all subsets with 1,3, . . . elements need

belong to F , while those with 0,2, . . . elements must not,

hence F =Fo . Thus only the two families Fe , Fo answer

the condition.[1] �

END

[1] The issue of the threshold value m, renouncing the condition

|B \ A| = 1, is settled by Sperner’s theorem, stating that the size

of the largest antichain of the poset of the parts of a set with n

elements (ordered by inclusion) is m =
(

n

⌊n/2⌋

)

=
(

n

⌈n/2⌉

)

. So

for |F | > m there will exist A,B ∈ F with A ⊂ B . The model(s)

is/are given by the set of parts having ⌊n/2⌋, respectively ⌈n/2⌉
elements. For even n having ⌊n/2⌋ = ⌈n/2⌉ = n/2, there is only

one model; while for odd n there are two. One may explore

other variations on this theme.


