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i ! Solutions ! i

Problem 1. Let ¢ be a line in the plane, and a point A ¢ ¢.
Determine the locus of the points Q in the plane, for which
there exists a point P € ¢ so that AQ = PQ and ZPAQ =45°.

DAN SCHWARZ

Solution. We claim the locus of the points Q is made
by the’ two main angle bisector lines through O |, the foot of
the perpendicular dropped from A onto 4.

The angle ZAQP being right (since the triangle AQP is
isosceles), the same as ZAOP, it follows the points A, O, P,Q
are concyclic, therefore we have ZQOA = ZQPA = 45°, or
else ZQOA =180°—-ZQPA =135° so OQ is one of the two
main angle bisectors through O. Of course, there appear
two degenerate positions, when P = O and when Q = O, but
they are trivial. The fullness of the locus readily ensues from
the fact a construction is possible in all cases (or else by a
continuity argument).
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Figure courtesy of ANDREI ECKSTEIN.

An alternative proof, avoiding cyclic quadrilaterals, runs
as follows. I will only present a case when prolonging PQ
it meets OA at a point T on the same side of £ as A. Since
AQ is an antiparallel in ATOP, it follows triangles TQA and

TOP are similar, therefore —Q = Q— . But QA= QP, and so
TQ QP TO OP’

T0 - OP’ , meaning OQ is the angle bisector of ZTOP. Any
other case is treated in a similar manner.

The condition A ¢ ¢ is not strictly necessary; that case is
however trivial. The problem has been also, for any angle
ZPAQ = a € (0,90°), asked to the Seniors, arriving at similar
conclusions. |

Problem 2. Prove the value of the expression
\/n+\/6+\/n+\/T+\/n+\/§+-~-+\/n+\/n2—1+\/n+m
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is constant over all positive integers n.
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Solution. (D. Schwarz) For all real numbers 0 < n, m < n?,
we have

m:\/n+\/;12—m +\/n—v;12—m.

Take now a positive integer n, and sum over all integers m

between 0 and 72
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Such constant value is unexpected; a quick computation for
n =1 (and maybe also other small values of n) will expose it,
and then remembering the formula for nested square roots
finishes the proof by an easy double-counting argument. l

Problem 3. For all triplets a, b, ¢ of (pairwise) distinct real
numbers, prove the inequality
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and determine all cases of equality.

Prove that if we also impose a, b, ¢ = 0, then
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with the value 3 being the best constant possible.
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Solution. Denote x = , Y= , 2=
a-b b—c c—a

; then it
is easily seen that

[Jex-D=

whence xy+ yz+zx =-1.
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But since (xy)(yz)(zx) = (xyz)2 >0 we must have at least
one of the factors being non-negative, say xy = 0. Then

lx| + |yl + |zl =[x+ yl + 1zl = 2¢/|zx + yz| =24/T+ xy = 2.
Equality occurs for xy = 0, say x = 0, and also |y| = 1, with

z = -y, when b = —a and ¢ = 0. Thus equality cases are

’{a, b,c} ={t,—t,0} |, for ¢ # 0. However, since clearly the




value of the expression for a, b, c is the same as that for

ta, tb, tc, with t # 0, the only essential solutionis|{1,—1,0} |

If we also impose a, b, ¢ = 0 then, since the expression is
symmetric, we may assume 0 < a < b < c¢. Consequently
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The fact we can approach 3 as close as wanted is simply
argued by taking a =0, c = (2n + 1) b for some n € N*, when
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is taking as small a value as wanted for large enough n. W

Remarks. Consider o = a + b + ¢; the inequality becomes
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Taking @' =a—o0, b'=b-0, ¢’ = c— 0, it writes again
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a seemingly more difficult inequality, asked to the Seniors.
Its equality cases are totally similar. However, imposing
there a’,b’,c’ = 0 just rules out the equality cases, and 2
stays best constant possible.

Problem 4. Consider a set X with | X| = n =1 elements. A
family & of distinct subsets of X is said to have property &
if there exist A,B€ % sothat Ac Band |B\ A| =1.

i) Determine the least value m, so that any family % with
|Z| > m has property 2.

ii) Describe all families & with |%| = m, and not having
property £.
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Solution. i) We claim that . Denote by 22(X)
the set of all parts (subsets) of X (inclusive the empty set
@, and X). It is well-known (and easy to prove) that 22(X)
contains 2/X! = 2" elements. Take an arbitrary x € X, and
consider the 2”1 doubletons {S, SU{x}}, with S € 2 (X \ {x}).
These doubletons make up a partition of 22(X)

2X) = U SSuix.
Se2(X\{x})

By the pigeonhole principle, if |%| > 21, then .% will have
to contain one full doubleton {Sy, Sp U {x}}, and then, taking
A= 8pand B = SoU {x}, we will have Ac Band |B\ A| =1,
therefore the family & will have property £2. On the other
hand, a family & with |Z]| = 271 not having property 22,
must contain exactly one member each from each of such
doubletons, by the same pigeonhole argument; we will see
this argument used at point ii).

A model for a family % having 2"~! elements, but not
having property 22, is the family %, of all even cardinality
subsets of X. This ensures that for any A, B € %, with Ac B
we have |B\ A| = 2. It remains to prove that | F,| = 2",

For those of you who know about binomial coefficients,

the proofis classical. We have
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Taking x = 1 yields (1+x)" = (1+1)" =2"; on the other hand,
taking x = —1 yields (1 + x)” = (1 — 1)" = 0. This shows that

(=)o)

and since (}) counts the subsets of X having k elements, it

means the LHS is the cardinality of %,, while the RHS is the
cardinality of %, the family of all odd cardinality subsets of
X, which thus also works as a second model.

In the absence of such knowledge, a simple argument
shows that the number of subsets of even cardinality of a
set X with n elements is equal to the number of subsets of
odd cardinality. For n = 1 this trivially checks. Now consider
aset X with n > 1 elements and an arbitrary fixed element x
of it. A one-to-one correspondence between the subsets of
even cardinality of X and the 2”1 subsets of X \ {x} is now
readily established; if such subset S of even cardinality does
not contain x, it is mapped to itself, while if it contains x, it is
mapped to S\ {x}. Thus the total number of subsets of even
cardinality of X is 2”1, just the same as the total number of
subsets of odd cardinality of X.

ii) Let 0 < k < n. If such a family % contains all subsets
of X having cardinality k, then no subset of X of cardinality
k +1 may belong to &. This is so, because for any subset
B with |B| = k+ 1, taking an arbitrary x € Band A = B\ {x},
we will have A< B and |B\ Al = 1. But |A| =k, so A€ &,
therefore B ¢ &, since & does not have property 2.

Also, if such a family & contains no subset of X having
cardinality k, then all subsets of X having cardinality k + 1
must belong to %. This is so, because for any subset B with
|B| = k+1, taking an arbitrary x € B and A = B\ {x}, we will
have Ac Band |[B\ Al =1. But |A| = k, so A¢ %, therefore
B e %, since & does not have property £, so by the pigeon-
hole argument previously announced, exactly one member
of the doubleton {4, B} must belong to %.

Now, either @ belongs to &, or it does not. In the former
case, it follows by what has been said, that all subsets with
0,2,... elements need belong to %, while those with 1,3,...
elements must not, hence & = %,. In the latter case, again
by what has been said, all subsets with 1,3, ... elements need
belong to &, while those with 0,2,... elements must not,

hence & = %,. Thus only the two families answer
|

the condition.[1]
END

[1] The issue of the threshold value m, renouncing the condition
|B\ A| =1, is settled by Sperner’s theorem, stating that the size
of the largest antichain of the poset of the parts of a set with n

So

elements (ordered by inclusion) is m = (Ln’;ZJ) = (fn’;Z])'

for |%| > m there will exist A, B € & with A < B. The model(s)
is/are given by the set of parts having |n/2], respectively [1/2]
elements. For even n having |n/2] = [n/2] = n/2, there is only
one model; while for odd n there are two. One may explore
other variations on this theme.



