

Problem 1. Let ℓ be a line in the plane, and a point $A \notin \ell$. Determine the locus of the points Q in the plane, for which there exists a point $P \in \ell$ so that AQ = PQ and $\angle PAQ = 45^{\circ}$. DAN SCHWARZ

Solution. We claim the locus of the points Q is made by the two main angle bisector lines through O, the foot of the perpendicular dropped from A onto ℓ .

The angle $\angle AQP$ being right (since the triangle AQP is isosceles), the same as $\angle AOP$, it follows the points A, O, P, Q are concyclic, therefore we have $\angle QOA = \angle QPA = 45^\circ$, or else $\angle QOA = 180^\circ - \angle QPA = 135^\circ$, so OQ is one of the two main angle bisectors through O. Of course, there appear two degenerate positions, when $P \equiv O$ and when $Q \equiv O$, but they are trivial. The fullness of the locus readily ensues from the fact a construction is possible in all cases (or else by a continuity argument).

Figure courtesy of ANDREI ECKSTEIN.

An alternative proof, avoiding cyclic quadrilaterals, runs as follows. I will only present a case when prolonging *PQ* it meets *OA* at a point *T* on the same side of ℓ as *A*. Since *AQ* is an antiparallel in $\triangle TOP$, it follows triangles *TQA* and *TOP* are similar, therefore $\frac{TQ}{TO} = \frac{QA}{OP}$. But QA = QP, and so $\frac{TQ}{TO} = \frac{QP}{OP}$, meaning *OQ* is the angle bisector of $\angle TOP$. Any other case is treated in a similar manner.

The condition $A \notin \ell$ is not strictly necessary; that case is however trivial. The problem has been also, for any angle $\angle PAQ = \alpha \in (0,90^\circ)$, **asked to the Seniors**, arriving at similar conclusions.

Problem 2. Prove the value of the expression

$$\frac{\sqrt{n+\sqrt{0}} + \sqrt{n+\sqrt{1}} + \sqrt{n+\sqrt{2}} + \dots + \sqrt{n+\sqrt{n^2-1}} + \sqrt{n+\sqrt{n^2}}}{\sqrt{n-\sqrt{0}} + \sqrt{n-\sqrt{1}} + \sqrt{n-\sqrt{2}} + \dots + \sqrt{n-\sqrt{n^2-1}} + \sqrt{n-\sqrt{n^2}}}$$

is constant over all positive integers n.

FOLKLORE (ALSO PHILIPPINES OLYMPIAD)

Solution. (D. Schwarz) For all real numbers $0 \le n, m \le n^2$, we have

$$\sqrt{n+\sqrt{m}} = \sqrt{\frac{n+\sqrt{n^2-m}}{2}} + \sqrt{\frac{n-\sqrt{n^2-m}}{2}}$$

Take now a positive integer n, and sum over all integers m between 0 and n^2

$$\sum_{m=0}^{n^2} \sqrt{n + \sqrt{m}} =$$

$$\sum_{m=0}^{n^2} \sqrt{\frac{n + \sqrt{n^2 - m}}{2}} + \sum_{m=0}^{n^2} \sqrt{\frac{n - \sqrt{n^2 - m}}{2}} =$$

$$\frac{1}{\sqrt{2}} \sum_{m=0}^{n^2} \sqrt{n + \sqrt{m}} + \frac{1}{\sqrt{2}} \sum_{m=0}^{n^2} \sqrt{n - \sqrt{m}}.$$

It follows

$$\sum_{m=0}^{n^2} \sqrt{n + \sqrt{m}} = \frac{1}{\sqrt{2} - 1} \sum_{m=0}^{n^2} \sqrt{n - \sqrt{m}},$$

therefore

$$\left(\sum_{m=0}^{n^2} \sqrt{n+\sqrt{m}}\right) \Big/ \left(\sum_{m=0}^{n^2} \sqrt{n-\sqrt{m}}\right) = \boxed{1+\sqrt{2}}$$

Such constant value is unexpected; a quick computation for n = 1 (and maybe also other small values of n) will expose it, and then remembering the formula for nested square roots finishes the proof by an easy double-counting argument.

Problem 3. For all triplets *a*, *b*, *c* of (pairwise) distinct real numbers, prove the inequality

$$\left|\frac{a+b}{a-b}\right| + \left|\frac{b+c}{b-c}\right| + \left|\frac{c+a}{c-a}\right| \ge 2$$

and determine all cases of equality.

Prove that if we also impose $a, b, c \ge 0$, then

$$\left|\frac{a+b}{a-b}\right| + \left|\frac{b+c}{b-c}\right| + \left|\frac{c+a}{c-a}\right| > 3,$$

with the value 3 being the best constant possible.

DAN SCHWARZ

Solution. Denote $x = \frac{a+b}{a-b}$, $y = \frac{b+c}{b-c}$, $z = \frac{c+a}{c-a}$; then it is easily seen that

$$\prod (x-1) = \frac{8bca}{\prod (a-b)} = \frac{8abc}{\prod (a-b)} = \prod (x+1)$$

whence xy + yz + zx = -1.

But since $(xy)(yz)(zx) = (xyz)^2 \ge 0$ we must have at least one of the factors being non-negative, say $xy \ge 0$. Then

$$|x| + |y| + |z| \ge |x + y| + |z| \ge 2\sqrt{|zx + yz|} = 2\sqrt{1 + xy} \ge 2.$$

Equality occurs for xy = 0, say x = 0, and also |y| = 1, with z = -y, when b = -a and c = 0. Thus equality cases are $[a, b, c] = \{t, -t, 0\}$, for $t \neq 0$. However, since clearly the

value of the expression for *a*, *b*, *c* is the same as that for ta, tb, tc, with $t \neq 0$, the only essential solution is $\{1, -1, 0\}$.

If we also impose $a, b, c \ge 0$ then, since the expression is symmetric, we may assume $0 \le a < b < c$. Consequently

$$\left|\frac{a+b}{a-b}\right| + \left|\frac{b+c}{b-c}\right| + \left|\frac{c+a}{c-a}\right| = 3 + \frac{2a}{b-a} + \frac{2b}{c-b} + \frac{2a}{c-a} > 3.$$

The fact we can approach 3 as close as wanted is simply argued by taking a = 0, c = (2n + 1)b for some $n \in \mathbb{N}^*$, when

$$\frac{2a}{b-a} + \frac{2b}{c-b} + \frac{2a}{c-a} = \frac{1}{n}$$

is taking as small a value as wanted for large enough *n*.

Remarks. Consider $\sigma = a + b + c$; the inequality becomes

$$\left|\frac{a-\sigma}{b-c}\right| + \left|\frac{b-\sigma}{c-a}\right| + \left|\frac{c-\sigma}{a-b}\right| \ge 2.$$

Taking $a' = a - \sigma$, $b' = b - \sigma$, $c' = c - \sigma$, it writes again

$$\left|\frac{a'}{b'-c'}\right| + \left|\frac{b'}{c'-a'}\right| + \left|\frac{c'}{a'-b'}\right| \ge 2,$$

a seemingly more difficult inequality, **asked to the Seniors**. Its equality cases are totally similar. However, imposing there $a', b', c' \ge 0$ just rules out the equality cases, and 2 stays best constant possible.

Problem 4. Consider a set *X* with $|X| = n \ge 1$ elements. A family \mathscr{F} of distinct subsets of *X* is said to have property \mathscr{P} if there exist $A, B \in \mathscr{F}$ so that $A \subset B$ and $|B \setminus A| = 1$.

i) Determine the least value *m*, so that any family \mathscr{F} with $|\mathscr{F}| > m$ has property \mathscr{P} .

ii) Describe all families \mathscr{F} with $|\mathscr{F}| = m$, and not having property \mathscr{P} .

DAN SCHWARZ

Solution. i) We claim that $[m = 2^{n-1}]$. Denote by $\mathscr{P}(X)$ the set of all parts (subsets) of *X* (inclusive the empty set \emptyset , and *X*). It is well-known (and easy to prove) that $\mathscr{P}(X)$ contains $2^{|X|} = 2^n$ elements. Take an arbitrary $x \in X$, and consider the 2^{n-1} doubletons $\{S, S \cup \{x\}\}$, with $S \in \mathscr{P}(X \setminus \{x\})$. These doubletons make up a partition of $\mathscr{P}(X)$

$$\mathscr{P}(X) = \bigcup_{S \in \mathscr{P}(X \setminus \{x\})} \{S, S \cup \{x\}\}$$

By the pigeonhole principle, if $|\mathscr{F}| > 2^{n-1}$, then \mathscr{F} will have to contain one full doubleton $\{S_0, S_0 \cup \{x\}\}$, and then, taking $A = S_0$ and $B = S_0 \cup \{x\}$, we will have $A \subset B$ and $|B \setminus A| = 1$, therefore the family \mathscr{F} will have property \mathscr{P} . On the other hand, a family \mathscr{F} with $|\mathscr{F}| = 2^{n-1}$, not having property \mathscr{P} , must contain exactly one member each from each of such doubletons, by the same pigeonhole argument; we will see this argument used at point ii). A model for a family \mathscr{F} having 2^{n-1} elements, but not having property \mathscr{P} , is the family \mathscr{F}_e of all even cardinality subsets of *X*. This ensures that for any $A, B \in \mathscr{F}_e$ with $A \subset B$ we have $|B \setminus A| \ge 2$. It remains to prove that $|\mathscr{F}_e| = 2^{n-1}$.

For those of you who know about binomial coefficients, the proof is classical. We have

$$(1+x)^{n} = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^{2} + \dots + \binom{n}{n-1}x^{n-1} + \binom{n}{n}x^{n}.$$

Taking x = 1 yields $(1+x)^n = (1+1)^n = 2^n$; on the other hand, taking x = -1 yields $(1+x)^n = (1-1)^n = 0$. This shows that

$$\binom{n}{0} + \binom{n}{2} + \dots = \binom{n}{1} + \binom{n}{3} + \dots = 2^{n-1},$$

and since $\binom{n}{k}$ counts the subsets of *X* having *k* elements, it means the LHS is the cardinality of \mathscr{F}_e , while the RHS is the cardinality of \mathscr{F}_o , the family of all odd cardinality subsets of *X*, which thus also works as a second model.

In the absence of such knowledge, a simple argument shows that the number of subsets of even cardinality of a set *X* with *n* elements is equal to the number of subsets of odd cardinality. For n = 1 this trivially checks. Now consider a set *X* with n > 1 elements and an arbitrary fixed element *x* of it. A one-to-one correspondence between the subsets of even cardinality of *X* and the 2^{n-1} subsets of $X \setminus \{x\}$ is now readily established; if such subset *S* of even cardinality does not contain *x*, it is mapped to itself, while if it contains *x*, it is mapped to $S \setminus \{x\}$. Thus the total number of subsets of even cardinality of *X* is 2^{n-1} , just the same as the total number of subsets of subsets of odd cardinality of *X*.

ii) Let $0 \le k < n$. If such a family \mathscr{F} contains all subsets of *X* having cardinality *k*, then no subset of *X* of cardinality k + 1 may belong to \mathscr{F} . This is so, because for any subset *B* with |B| = k + 1, taking an arbitrary $x \in B$ and $A = B \setminus \{x\}$, we will have $A \subset B$ and $|B \setminus A| = 1$. But |A| = k, so $A \in \mathscr{F}$, therefore $B \notin \mathscr{F}$, since \mathscr{F} does not have property \mathscr{P} .

Also, if such a family \mathscr{F} contains no subset of *X* having cardinality *k*, then all subsets of *X* having cardinality k + 1 must belong to \mathscr{F} . This is so, because for any subset *B* with |B| = k + 1, taking an arbitrary $x \in B$ and $A = B \setminus \{x\}$, we will have $A \subset B$ and $|B \setminus A| = 1$. But |A| = k, so $A \notin \mathscr{F}$, therefore $B \in \mathscr{F}$, since \mathscr{F} does not have property \mathscr{P} , so by the pigeonhole argument previously announced, exactly one member of the doubleton $\{A, B\}$ must belong to \mathscr{F} .

Now, either \emptyset belongs to \mathscr{F} , or it does not. In the former case, it follows by what has been said, that all subsets with 0,2,... elements need belong to \mathscr{F} , while those with 1,3,... elements must not, hence $\mathscr{F} = \mathscr{F}_e$. In the latter case, again by what has been said, all subsets with 1,3,... elements need belong to \mathscr{F} , while those with 0,2,... elements must not, hence $\mathscr{F} = \mathscr{F}_o$. Thus only the two families $\mathscr{F}_e, \mathscr{F}_o$ answer the condition.[1]

elements (ordered by inclusion) is $m = \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil}$. So

END

The issue of the threshold value *m*, renouncing the condition |*B* \ *A*| = 1, is settled by Sperner's theorem, stating that the size of the largest antichain of the poset of the parts of a set with *n*

for $|\mathscr{F}| > m$ there will exist $A, B \in \mathscr{F}$ with $A \subset B$. The model(s) is/are given by the set of parts having $\lfloor n/2 \rfloor$, respectively $\lceil n/2 \rceil$ elements. For even *n* having $\lfloor n/2 \rfloor = \lceil n/2 \rceil = n/2$, there is only one model; while for odd *n* there are two. One may explore other variations on this theme.