
IMAR 2016

Problema 1. Fie n un număr natural mai mare sau egal cu 3 şi fie a0 = n. Există o permutare
a1, a2, . . ., an−1 a primelor n− 1 numere naturale nenule, astfel ı̂ncât

∑k−1
j=0 aj să fie divizibil

cu ak, pentru toţi indicii k < n?

Problema 2. Fie n un număr natural nenul. Există un poligon planar şi un punct ı̂n planul
său, astfel ı̂ncât orice dreaptă care trece prin acest punct să intersecteze frontiera poligonului
ı̂n exact 2n puncte?

Problema 3. Fie n un număr ı̂ntreg mai mare sau egal cu 2, fie Qn graful format din vârfurile
şi muchiile unui n-cub şi fie T un subgraf conex, fără cicluri, care conţine toate vârfurile lui
Qn. Arătaţi că există o muchie ı̂n Qn, care, adăugată lui T , produce un ciclu de lungime mai
mare sau egală cu 2n, ale cărui vârfuri şi muchii sunt distincte două câte două.

Vârfurile n-cubului sunt cele 2n n-tuplete binare posibile; două vârfuri sunt legate printr-o muchie,

dacă şi numai dacă n-tupletele corespunzătoare diferă ı̂ntr-o singură poziţie.

Problema 4. Un număr natural nenul m se numeşte perfect, dacă suma divizorilor săi
naturali, inclusiv 1 şi m, este egală cu 2m. Determinaţi numerele naturale nenule n, pentru
care numărul nn + 1 este perfect.



IMAR 2016 — Solutions

Problem 1. Fix an integer n ≥ 3 and let a0 = n. Does there exist a permutation a1, a2,
. . ., an−1 of the first n− 1 positive integers such that

∑k−1
j=0 aj is divisible by ak for all indices

k < n?

Solution. The answer is in the affirmative. If n is odd, set a1 = 1 and a2 = 2, and if
n > 3 define the other ak recursively by akak−1 = a0 + a1 + · · · + ak−1, k = 3, . . . , n. It is
easily seen that ak+1 = ak−1 + 1, k = 3, . . . , n− 1, so a2k = k + 1 and a2k+1 = k + (n+ 1)/2,
k = 1, . . . , (n−1)/2. By construction, the integers ak satisfy the divisibility condition (even at
k = n). The a2k and a2k+1, k = 1, . . . , (n− 1)/2, form strictly increasing sequences of integers
greater than 1, and no a2i equals an a2j+1, i, j = 1, . . . , (n− 1)/2, so the ak, k = 1, . . . , n− 1,
form an injective sequence of positive integers. Since they all lie in the range 1, 2, . . ., n− 1,
they form indeed a permutation of the latter.

Similarly, if n is even, set a1 = 2 and define ak, k = 2, . . . , n − 2, by the same recursive
relation, to get a2k−1 = k + 1 and a2k = k + n/2, k = 1, . . . , n/2 − 1. Setting an−1 = 1 settles
the case as above and completes the proof.

Remark. For an odd n > 3, we may equally well start by setting a1 = 1 and a2 = (n+ 1)/2,
and define the remaining ak by the recursive relation in the solution, to obtain another sequence
of positive integers satisfying the divisibility condition. Explicitly, this time a2k = k+(n−1)/2,
k = 1, . . . , (n− 1)/2, and a2k+1 = k + 2, k = 1, . . . , (n− 3)/2. The trouble with this sequence
is that it is not injective: a2 = an−2 = (n+ 1)/2; in fact, (2, n− 2) is the only pair of indices
where injectivity fails. Since a1, a2, . . ., an−1 all lie in the range 1, 2, . . ., n − 1, they miss
some integer in this range: indeed, 2 is never hit. Forcing an−2 = 2 without changing the
other ak makes a1, a2, . . ., an−1 into a permutation of 1, 2, . . ., n− 1, but divisibility fails at
the last step: an−1 = n − 1 does not divide

∑n−2
k=0 ak = n(n − 1)/2 + 1. Forcing a2 = 2 and

keeping the recursive definition of the ak produces the permutation in the solution.
A similar phenomenon occurs if n is even, n ≥ 6; and if n ≥ 8, there are even two pairs of

indices where injectivity fails.

Problem 2. Given a positive integer n, does there exist a planar polygon and a point in its
plane such that every line through that point meets the boundary of the polygon at exactly
2n points?

Solution. The answer is in the affirmative. To describe the configuration, fix a coordinate
frame and let a0, a1, . . ., a4n−1 be real numbers such that a0 > 0 > a2 > a4n−2 > a4 > a4n−4 >
· · · > a2n−2 > a2n+2 > a2n, and a2n+1 < a2n+3 < · · · < a4n−1 < 0 < a1 < a3 < · · · < a2n−1.
Setting A2k = 0 × a2k and A2k+1 = a2k+1 × 0, k = 0, . . . , 2n− 1, the polygon A0A1 . . . A4n−1
and the origin satisfy the condition in the statement: the x-axis (respectively, y-axis) contains
all vertices of odd (respectively, even) rank and no other points on the boundary; and every
line through the first and third (respectively, second and fourth) quadrants crosses the sides
A0A1 and A2n+k−1A2n+k (respectively, A4n−1A0 and AkAk+1), k = 1, . . . , 2n−1, and no other
side, since the remaining sides all lie in the other two quadrants.

Problem 3. Fix an integer n ≥ 2, let Qn be the graph consisting of all vertices and all edges
of an n-cube, and let T be a spanning tree in Qn. Show that Qn has an edge whose adjunction
to T produces a simple cycle of length at least 2n.



Solution. For every vertex v of Qn, let v′ be the antipodal (opposite) vertex, consider the
unique path in T from v to v′ and orient its first edge away from v. Since T has fewer edges
than vertices, some edge, say xy, has been assigned two orientations. The (combinatorial)
distance between two antipodes of Qn is n in Qn, so it is at least n in T , and the unique path
in T , x′ . . . yx . . . y′, from x′ to y′ has length at least 2n−1. Finally, since xy is an edge in Qn,
so is x′y′; adjunction of the latter to the unique path in T from x′ to y′ yields the required
cycle.

Remark. The result is best possible, since adding any further edge to any breadth-first
search tree in Qn yields a simple cycle of length 2n or less. The argument also shows that the
diameter of any spanning tree in Qn is at least 2n− 1.

Problem 4. A positive integer m is perfect if the sum of all its positive divisors, 1 and m
inclusive, is equal to 2m. Determine the positive integers n such that nn + 1 is a perfect
number.

Solution. There is only one such integer, namely, n = 3; it is readily checked that that
33 + 1 = 28 is perfect.

If n is odd, then nn + 1 is even, so it is of the form 2p−1(2p − 1), where p and 2p − 1 are
both prime (Euler’s theorem on the structure of perfect even integers). Rule out the trivial
case n = 1, to assume n > 1, and write nn + 1 = (n+ 1)(nn−1−nn−2 + · · ·−n+ 1). Since n is
odd, the first factor is even and the second is odd; and since n > 1, the latter is greater than 1
(simply rewrite it in the form 1 +n(n− 1)(1 +n2 + · · ·+nn−3)). It follows that n+ 1 = 2p−1,
so 2p − 1 = 2n+ 1, and nn + 1 = (n+ 1)(2n+ 1) = 2n2 + 3n+ 1 which forces n = 3.

We now rule out the other parity of n; recall that the existence of perfect odd numbers is
still an open question.

To begin, we show that n is divisible by 3. Suppose, if possible, this is not the case, so
N = nn + 1 ≡ 2 (mod 3), since n is even. It follows that N is not square, and d + N/d is
divisible by 3 for each divisor d of N , so σ(N) =

∑
d |N d =

∑
d |N, d<

√
N (d+N/d) is divisible

by 3, while 2N is certainly not. Consequently, n is divisible by 3, and since it is even, n is
divisible by 6.

Next, consider the positive even integer k = nn/6 to write N = k6+1 = (k2+1)(k4−k2+1).
Since k4 − k2 + 1 = (k2 − 2)(k2 + 1) + 3, and k2 + 1 is never divisible by 3, the integers k2 + 1
and k4 − k2 + 1 are coprime, so 2N = σ(N) = σ(k2 + 1)σ(k4 − k2 + 1). Since N is odd,
it follows that (exactly) one of σ(k2 + 1) and σ(k4 − k2 + 1) is odd, and since k2 + 1 and
k4 − k2 + 1 are both odd, one of them is square. However, k2 < k2 + 1 < (k + 1)2 and
(k2 − 1)2 < k4 − k2 + 1 < (k2)2, and we reach a contradiction. This ends the proof.
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