IMAR 2016

Problema 1. Fie *n* un număr natural mai mare sau egal cu 3 și fie $a_0 = n$. Există o permutare $a_1, a_2, \ldots, a_{n-1}$ a primelor n-1 numere naturale nenule, astfel încât $\sum_{j=0}^{k-1} a_j$ să fie divizibil cu a_k , pentru toți indicii k < n?

Problema 2. Fie n un număr natural nenul. Există un poligon planar și un punct în planul său, astfel încât orice dreaptă care trece prin acest punct să intersecteze frontiera poligonului în exact 2n puncte?

Problema 3. Fie n un număr întreg mai mare sau egal cu 2, fie Q_n graful format din vârfurile și muchiile unui n-cub și fie T un subgraf conex, fără cicluri, care conține toate vârfurile lui Q_n . Arătați că există o muchie în Q_n , care, adăugată lui T, produce un ciclu de lungime mai mare sau egală cu 2n, ale cărui vârfuri și muchii sunt distincte două câte două.

Vârfurile n-cubului sunt cele 2^n n-tuplete binare posibile; două vârfuri sunt legate printr-o muchie, dacă și numai dacă n-tupletele corespunzătoare diferă într-o singură poziție.

Problema 4. Un număr natural nenul m se numește *perfect*, dacă suma divizorilor săi naturali, inclusiv 1 și m, este egală cu 2m. Determinați numerele naturale nenule n, pentru care numărul $n^n + 1$ este perfect.

IMAR 2016 — Solutions

Problem 1. Fix an integer $n \ge 3$ and let $a_0 = n$. Does there exist a permutation $a_1, a_2, \ldots, a_{n-1}$ of the first n-1 positive integers such that $\sum_{j=0}^{k-1} a_j$ is divisible by a_k for all indices k < n?

Solution. The answer is in the affirmative. If n is odd, set $a_1 = 1$ and $a_2 = 2$, and if n > 3 define the other a_k recursively by $a_k a_{k-1} = a_0 + a_1 + \cdots + a_{k-1}$, $k = 3, \ldots, n$. It is easily seen that $a_{k+1} = a_{k-1} + 1$, $k = 3, \ldots, n - 1$, so $a_{2k} = k + 1$ and $a_{2k+1} = k + (n+1)/2$, $k = 1, \ldots, (n-1)/2$. By construction, the integers a_k satisfy the divisibility condition (even at k = n). The a_{2k} and a_{2k+1} , $k = 1, \ldots, (n-1)/2$, form strictly increasing sequences of integers greater than 1, and no a_{2i} equals an a_{2j+1} , $i, j = 1, \ldots, (n-1)/2$, so the $a_k, k = 1, \ldots, n-1$, form an injective sequence of positive integers. Since they all lie in the range 1, 2, ..., n-1, they form indeed a permutation of the latter.

Similarly, if n is even, set $a_1 = 2$ and define a_k , k = 2, ..., n-2, by the same recursive relation, to get $a_{2k-1} = k+1$ and $a_{2k} = k+n/2$, k = 1, ..., n/2 - 1. Setting $a_{n-1} = 1$ settles the case as above and completes the proof.

Remark. For an odd n > 3, we may equally well start by setting $a_1 = 1$ and $a_2 = (n+1)/2$, and define the remaining a_k by the recursive relation in the solution, to obtain another sequence of positive integers satisfying the divisibility condition. Explicitly, this time $a_{2k} = k + (n-1)/2$, $k = 1, \ldots, (n-1)/2$, and $a_{2k+1} = k+2$, $k = 1, \ldots, (n-3)/2$. The trouble with this sequence is that it is not injective: $a_2 = a_{n-2} = (n+1)/2$; in fact, (2, n-2) is the only pair of indices where injectivity fails. Since $a_1, a_2, \ldots, a_{n-1}$ all lie in the range 1, 2, ..., n-1, they miss some integer in this range: indeed, 2 is never hit. Forcing $a_{n-2} = 2$ without changing the other a_k makes $a_1, a_2, \ldots, a_{n-1}$ into a permutation of 1, 2, ..., n-1, but divisibility fails at the last step: $a_{n-1} = n-1$ does not divide $\sum_{k=0}^{n-2} a_k = n(n-1)/2 + 1$. Forcing $a_2 = 2$ and keeping the recursive definition of the a_k produces the permutation in the solution.

A similar phenomenon occurs if n is even, $n \ge 6$; and if $n \ge 8$, there are even two pairs of indices where injectivity fails.

Problem 2. Given a positive integer n, does there exist a planar polygon and a point in its plane such that every line through that point meets the boundary of the polygon at exactly 2n points?

Solution. The answer is in the affirmative. To describe the configuration, fix a coordinate frame and let $a_0, a_1, \ldots, a_{4n-1}$ be real numbers such that $a_0 > 0 > a_2 > a_{4n-2} > a_4 > a_{4n-4} > \cdots > a_{2n-2} > a_{2n+2} > a_{2n}$, and $a_{2n+1} < a_{2n+3} < \cdots < a_{4n-1} < 0 < a_1 < a_3 < \cdots < a_{2n-1}$. Setting $A_{2k} = 0 \times a_{2k}$ and $A_{2k+1} = a_{2k+1} \times 0$, $k = 0, \ldots, 2n-1$, the polygon $A_0A_1 \ldots A_{4n-1}$ and the origin satisfy the condition in the statement: the x-axis (respectively, y-axis) contains all vertices of odd (respectively, even) rank and no other points on the boundary; and every line through the first and third (respectively, second and fourth) quadrants crosses the sides A_0A_1 and $A_{2n+k-1}A_{2n+k}$ (respectively, $A_{4n-1}A_0$ and A_kA_{k+1}), $k = 1, \ldots, 2n-1$, and no other side, since the remaining sides all lie in the other two quadrants.

Problem 3. Fix an integer $n \ge 2$, let Q_n be the graph consisting of all vertices and all edges of an *n*-cube, and let *T* be a spanning tree in Q_n . Show that Q_n has an edge whose adjunction to *T* produces a simple cycle of length at least 2n.

Solution. For every vertex v of Q_n , let v' be the antipodal (opposite) vertex, consider the unique path in T from v to v' and orient its first edge away from v. Since T has fewer edges than vertices, some edge, say xy, has been assigned two orientations. The (combinatorial) distance between two antipodes of Q_n is n in Q_n , so it is at least n in T, and the unique path in $T, x' \dots yx \dots y'$, from x' to y' has length at least 2n - 1. Finally, since xy is an edge in Q_n , so is x'y'; adjunction of the latter to the unique path in T from x' to y' yields the required cycle.

Remark. The result is best possible, since adding any further edge to any breadth-first search tree in Q_n yields a simple cycle of length 2n or less. The argument also shows that the diameter of any spanning tree in Q_n is at least 2n - 1.

Problem 4. A positive integer m is *perfect* if the sum of all its positive divisors, 1 and m inclusive, is equal to 2m. Determine the positive integers n such that $n^n + 1$ is a perfect number.

Solution. There is only one such integer, namely, n = 3; it is readily checked that that $3^3 + 1 = 28$ is perfect.

If n is odd, then $n^n + 1$ is even, so it is of the form $2^{p-1}(2^p - 1)$, where p and $2^p - 1$ are both prime (Euler's theorem on the structure of perfect even integers). Rule out the trivial case n = 1, to assume n > 1, and write $n^n + 1 = (n+1)(n^{n-1} - n^{n-2} + \cdots - n + 1)$. Since n is odd, the first factor is even and the second is odd; and since n > 1, the latter is greater than 1 (simply rewrite it in the form $1 + n(n-1)(1 + n^2 + \cdots + n^{n-3})$). It follows that $n + 1 = 2^{p-1}$, so $2^p - 1 = 2n + 1$, and $n^n + 1 = (n + 1)(2n + 1) = 2n^2 + 3n + 1$ which forces n = 3.

We now rule out the other parity of n; recall that the existence of perfect odd numbers is still an open question.

To begin, we show that n is divisible by 3. Suppose, if possible, this is not the case, so $N = n^n + 1 \equiv 2 \pmod{3}$, since n is even. It follows that N is not square, and d + N/d is divisible by 3 for each divisor d of N, so $\sigma(N) = \sum_{d \mid N} d = \sum_{d \mid N, d < \sqrt{N}} (d + N/d)$ is divisible by 3, while 2N is certainly not. Consequently, n is divisible by 3, and since it is even, n is divisible by 6.

Next, consider the positive even integer $k = n^{n/6}$ to write $N = k^6 + 1 = (k^2 + 1)(k^4 - k^2 + 1)$. Since $k^4 - k^2 + 1 = (k^2 - 2)(k^2 + 1) + 3$, and $k^2 + 1$ is never divisible by 3, the integers $k^2 + 1$ and $k^4 - k^2 + 1$ are coprime, so $2N = \sigma(N) = \sigma(k^2 + 1)\sigma(k^4 - k^2 + 1)$. Since N is odd, it follows that (exactly) one of $\sigma(k^2 + 1)$ and $\sigma(k^4 - k^2 + 1)$ is odd, and since $k^2 + 1$ and $k^4 - k^2 + 1$ are both odd, one of them is square. However, $k^2 < k^2 + 1 < (k + 1)^2$ and $(k^2 - 1)^2 < k^4 - k^2 + 1 < (k^2)^2$, and we reach a contradiction. This ends the proof.