
IMAR 2013 — Solutions

Problem 1. Given a prime p ≥ 5, show that there exist at least two distinct primes q and r
in the range 2, 3, . . ., p− 2 such that qp−1 6≡ 1 (mod p2) and rp−1 6≡ 1 (mod p2).

Solution 1. In what follows, all congruences are to be understood modulo p2. An integer n
coprime to p will be called proper if np−1 ≡ 1, and improper otherwise. Our solution is based
on the following two simple facts:

(1) An improper integer greater than 1 has at least one improper prime divisor; and

(2) If k is an integer coprime to p and n is a proper integer, then kp− n is improper.

The first claim follows from the fact that the product of two proper integers is again proper.
For the second, notice that p does not divide knp−2 to deduce that

(kp− n)p−1 ≡ np−1 − (p− 1)kpnp−2 ≡ 1 + kpnp−2 6≡ 1,

so kp− n is indeed improper (since n is coprime to p, so is kp− n).
Since ±1 are both proper, letting k ∈ {1, 2} and n = ±1 in (2) shows that p±1 and 2p±1

are all improper, so each has an improper prime divisor by (1).
Since p ≥ 5, the prime factors of p ± 1 are all less than p − 1; and since 2 is the highest

common factor of p− 1 and p+ 1, the conclusion follows, provided that 2 is proper.
Otherwise, look for an improper odd prime in the required range. To this end, notice that

one of the numbers 2p ± 1 is divisible by 3, so its prime factors are all less than p − 1, for
p ≥ 5; clearly, they are all odd, and the conclusion follows.

Solution 2. If p = 5, the primes q = 2 and r = 3 satisfy the required conditions, so let p ≥ 7.
In the setting of the previous solution, distinguish the following two cases:

If p− 2 is improper, it has an improper prime divisor q by (1). On the other hand, since 1
is proper, setting k = n = 1 in (2) shows that p− 1 is improper, so it has an improper prime
divisor r by (1). Clearly, q and r both lie in the required range, and they are distinct since
p− 2 and p− 1 are coprime.

If p − 2 is proper, set k = 1 and n = p − 2 in (2) to deduce that 2 is improper. On the
other hand, since (p − 2)2 is proper, so is −4p + 4. Setting k = −3 and n = −4p + 4 in (2)
shows p−4 improper, so it has an improper prime divisor s by (1). Finally, since p−4 is odd,
so is s, and it should now be clear that the primes 2 and s satisfy the required conditions.

Problem 2. For every non-negative integer n, let sn be the sum of the digits in the decimal
expansion of 2n. Is the sequence (sn)n∈N eventually increasing?

Solution. The answer is in the negative. To prove this, begin by noticing that the sequence
is periodic modulo 9, of period 6, the first block of values it takes on being 1, 2, 4, 8, 7, 5.

Suppose, if possible, that the sequence is eventually increasing, say from some rank n0 on.
Fix a non-negative integer m such that 6m ≥ n0 to write

s6m+1 ≥ s6m + 1, s6m+2 ≥ s6m+1 + 2, s6m+3 ≥ s6m+2 + 4,

s6m+4 ≥ s6m+3 + 8, s6m+5 ≥ s6m+4 + 7, s6m+6 ≥ s6m+5 + 5,

and deduce thereby that s6m+6 ≥ s6m + 27, so

s6m+6n ≥ s6m + 27n, n ∈ N. (∗)



On the other hand, the number of non-vanishing digits in the decimal expansion of 26m+6n

does not exceed d(6m+ 6n) log10 2e < 2m+ 2n, so s6m+6n ≤ 18m+ 18n, contradicting (∗) for
n large enough. The conclusion follows.

Problem 3. The closure (interior and boundary) of a convex quadrangle is covered by four
closed discs centred at each vertex of the quadrangle each. Show that three of these discs
cover the closure of the triangle determined by their centres.

Solution. Suppose, if possible, that the conclusion does not hold. Then no three discs meet,
and each disc contains points of the closure of the triangle determined by the centres of the
other three discs, not covered by the latter.

Amongst the four discs, choose one, say ∆0, containing the point O where the diagonals
of the quadrangle cross one another. Let A0 be the centre of ∆0, label the other three centres
in circular order, A1, A2, A3, so that the opposite angles A0OA1 and A2OA3 be not obtuse,
and let ∆i denote the disc centred at Ai.

Before proceeding, we take time out to state a simple, but quite useful lemma whose proof
is postponed for the sake of clarity.

Lemma. Let ABCD be a convex quadrangle, let ∆ be a disc centred at A, and let E be
the point where the ray AC emanating from A crosses the boundary of ∆. If the orthog-
onal projection of B on the line AC falls on the closed ray EA emanating from E, then
dist (B, [ACD] \∆) ≥ BE, where [ACD] is the closure of the triangle ACD.

We now apply the lemma to show that O is also covered by ∆1. To this end, let B0 be
the point where the ray A0O emanating from A0 crosses the the boundary of ∆0. Since ∆0

contains O, the latter lies on the closed segment A0B0, and since the angle A0OA1 is not
obtuse, it follows that A1O ≤ A1B0. On the other hand, ∆1 contains points of the closure
[A0A2A3] of the triangle A0A2A3 not covered by ∆0, so the radius of ∆1 is greater than or
equal to dist (A1, [A0A2A3]\∆0), which in turn is greater than or equal to A1B0 by the lemma.
Consequently, O is indeed covered by ∆1.

Recall that no three discs meet to deduce that neither ∆2, nor ∆3 contains O. It follows,
for i = 2, 3, that the open segment AiO crosses the boundary of ∆i at some point Bi. The
open segments A2B3 and A3B2 cross each other, so r2 + r3 = A2B2 +A3B3 < A2B3 +A3B2,
where ri is the radius of the disc ∆i, i = 2, 3.

We are presently going to show that r2 ≥ A2B3 and r3 ≥ A3B2 and reach thereby the
contradiction we were heading for. Only the first inequality will be dealt with; the argument
applies mutatis mutandis to the other. Since the angle A2OA3 is not obtuse, the orthogonal
projection A′2 of A2 on the line A1A2 falls on the closed ray OA3 emanating from O. If A′2 fell
on the closed segment B3O, then the image of the line A2A

′
2 under a slight rotation about the

midpoint of the segment A2A
′
2 would separate the disc ∆3 and the closure [A0A1A2] of the

triangle A0A1A2, in contradiction with the second remark in the opening paragraph. Hence
A′2 lies on the open ray B3A3 emanating from B3, so dist (A2, [A0A1A3] \∆3) ≥ A2B3 by the
lemma. Finally, recall that ∆2 covers points in [A0A1A3] \∆3, to conclude that r2 ≥ A2B3.

Proof of the lemma. Since the quadrangle ABCD is convex, the whole configuration of
points lies on one side of the line AB, say H. Let F be the point where the ray AD emanating
from A crosses the boundary of ∆, let α denote the arc EF of the boundary of ∆ situated in
H, and let r be the ray emanating from E along the line AC, not containing A.

Notice that, if X is a point in [ACD] \∆, then the closed segment BX meets either α or
r (this fails to hold if the quadrangle ABCD is not convex at D), so it is sufficient to consider
only points X in α ∪ r.
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Now, as a point X traces α from E to F , the length of the segment BX varies increasingly
by the cosine law in the triangle ABX (this fails to hold if the quadrangle ABCD is not
convex at A or at B), so BX ≥ BE.

Finally, since the orthogonal projection of B on the line AC is not interior to r, the length
of the segment BX varies again increasingly, as X runs along r away from E, so BX ≥ BE
again. This ends the proof of the lemma and completes the solution.

Remarks. Since the distance to the empty set may take on any value, the conclusion of the
lemma still holds if ∆ covers [ACD].

Under the conditions in the lemma, it may very well happen that dist (B, [ACD]\∆) > BE,
in which case C is certainly interior to ∆. Such configurations are easily produced.

Finally, it is not hard to see that the conclusion of the lemma may fail to hold if the
quadrangle ABCD is not convex at one of the vertices A, B, D or the projection of B on the
line AC does not fall on the closed ray EA emanating from E.

Problem 4. Given a triangle ABC, a circle centred at some point O meets the segments
BC, CA, AB in the pairs of points X and X ′, Y and Y ′, Z and Z ′, respectively, labelled in
circular order: X, X ′, Y , Y ′, Z, Z ′. Let M be the Miquel point of the triangle XY Z (i.e.,
the point of concurrence of the circles AY Z, BZX, CXY ), and let M ′ be that of the triangle
X ′Y ′Z ′. Prove that the segments OM and OM ′ have equal lengths.

Solution. We begin by reviewing some basic facts on conics. For an ellipse Σ with centre
N , foci M and M ′, semiaxes a and b, it is known that the orthogonal projections P and P ′

of M and M ′ on any line t tangent to Σ lie on the major auxiliary circle of Σ, so that NP =
a = NP ′. Application to triangle MNP (respectively, M ′NP ′) of a rotation θ (respectively,
−θ) about M (respectively, M ′) and a homothety of ratio sec θ with centre M (respectively,
M ′) yields triangle MOX (resprectively, M ′OX ′), where MO = M ′O, NO = 1

2 ·MM ′ · tan θ,
OX = a sec θ = OX ′, and X, X ′ both lie on t. If t varies and θ is constant, the locus of X
and X ′ is then a circle Γ centred at O. By cartesian geometry it is readily checked that Γ
and Σ are bitangent, and the line ` supporting their common chord is also the radical axis of
the circles Γ and OMM ′, with this real geometrical significance even if the bitangency is not
real. Since ` and the circle OMM ′ are mutually inverse in Γ, the inverse points of M and M ′

in Γ both lie on `. Finally, the distance d between the parallel lines ` and MM ′ is given by
d ·MM ′ = 2b2 tan θ. Similar considerations hold for a hyperbola Σ.

Consider now an isopair M , M ′ (two isogonally conjugate in the triangle ABC, the foci of
a conic Σ touching its sides), and take points X, Y , Z (respectively, X ′, Y ′, Z ′) on lines BC,
CA, AB, respectively, so that the lines MX, MY , MZ (respectively, M ′X ′, M ′Y ′, M ′Z ′)
make the same directed angle θ (respectively, −θ) with the perpendiculars to BC, CA, AB,
respectively; then the isopedal triangles XY Z, X ′Y ′Z ′ of angles θ, −θ for the isopair M , M ′

have their Miquel points at M , M ′ and are inscribed in a common isopedal circle Γ bitangent
to Σ, centred at a point O on the perpendicular bisector of the segment MM ′.

Conversely, for any pair of triangles inscribed in a triangle ABC and in a circle Γ (as in
the statement of the problem), the Miquel points M , M ′ are an isopair and Γ is an isopedal
circle of M , M ′. (If M , M ′ are the Brocard points, Σ is the Brocard ellipse and Γ is a Tucker
circle.)
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