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Problem 1. Given a and b distinct positive integers, show
that the system of equations

x y + zw = a
xz + y w = b

has only finitely many solutions in integers x, y, z, w .
***

Solution. By adding and subtracting the equations we get
(x + w)(y + z) = a + b and (x − w)(y − z) = a − b, hence by
multiplying, 0 < |(x2 − w2)(y2 − z2)| = |a2 − b2|. Therefore
0 < |x2 −w2| ≤ |a2 −b2| and 0 < |y2 − z2| ≤ |a2 −b2|. But an
equation 0 < |A2 −B 2| ≤ |C | has only finitely many integer
solutions A,B for fixed C . ■

Remark. Notice that if we allow a = b, then we can take
y = z = 1, arbitrary x, and w = a −x.

Problem 2. Of the vertices of a cube, 7 of them have as-
signed the value 0, and the eighth the value 1. A move is
selecting an edge and increasing the numbers at its ends by
an integer value k > 0. Prove that after any finite number of
moves, the g.c.d. of the 8 numbers at vertices is equal to 1.
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Solution. Let us alternately color the vertices in black and
white. After any move, the difference between the sums of
the numbers at the black and the white vertices remains 1,
therefore the g.c.d. of the 8 numbers is equal to 1 (as it is
dividing the difference of the sums mentioned above). ■

Remark. The problem has a short and sweet solution,
but it is tricky, since a much stricter truth yields the answer.
Question: is it true that after any number of moves, there ex-
ist two vertices having co-prime numbers assigned to them?

Problem 3. Consider a convex quadrilateral ABC D with

AB =C B and ∠ABC +2∠C D A =π,

and let E be the midpoint of AC . Show that ∠C DE =∠BD A.
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Solution. Let point X be lying on line BE such that
∠C X E = ∠C DE (X is the (other than C ) meeting point of
the circumcircle of ∆C DE and the line BE).

Therefore the quadrilateral DEC X is cyclic, so ∠D X E =
∠DC E = π−∠C D A −∠C AD . But ∠C D A = 1

2 (π−∠ABC ) =
∠C AB , so ∠DC E =π−∠C AB −∠C AD =π−∠B AD , hence
the quadrilateral AB X D is cyclic.

It follows ∠BD A =∠B X A =∠C X E =∠C DE . ■

Alternative Solution. (D. Schwarz) We are asked to prove
that DE and DB are isogonal conjugate, and so, since DE is
median in ∆C D A, that DB is symmedian in that triangle.

Let γ be the circumcircle of ∆ABC , and Γ be the circum-
circle of ∆C D A, of center Ω. We have ∠CΩA = 2∠C D A =
π−∠ABC , henceΩ ∈ γ, and CΩ= AΩ, henceΩ ∈ BE ; there-
foreΩ= γ∩BE . Since BΩ is a diameter for circle γ, it follows
∠B AΩ=∠BCΩ= π/2, therefore B A and BC are tangent to
circle Γ.

A well-known Lemma states that a symmedian in a trian-
gle (∆C D A) connects the vertex (D) it originates at with the
intersection (B) of the tangents (B A and BC ) to the circum-
circle (Γ) of the triangle at the other two vertices (A and C );

for us that yields DB symmedian in ∆C D A. ■

Remark. In what concerns the Lemma, see for example
http://web.mit.edu/yufeiz/www/geolemmas.pdf, a
Yufei Zhao article concerning the construction of the sym-
medians (and others). The neatest proof uses methods of
projective geometry.

Another interesting mention of this result (and others)
is at http://www.cut-the-knot.org/triangle/ (the
symmedians page), Alexander Bogomolny’s Cut-The-Knot
site.

Problem 4. Given any n positive integers, and a sequence
of 2n integers (with terms among them), prove there exists
a subsequence made of consecutive terms, such that the
product of its terms is a perfect square.

Also show that we cannot replace 2n with any lower value
(therefore 2n is the threshold value for this property).

***

Solution. (D. Schwarz) Since the integers could be dis-
tinct primes, this is equivalent to proving the stricter prob-
lem of, given a finite alphabet A of n letters a1, a2, . . . , an ,
and a word w of length 2n on this alphabet, to show it con-
tains a nonempty contiguous subword x (w = uxv , where
u, v could be the empty word), in which each letter appears
at an even number of times.

Let us, further on, identify the letter ak with the element
ek ∈Zn

2 given by ek = (0, . . . ,0,1,0, . . . ,0), where the 1 is at the
kth position. Now the requirement is to find a subword such
that the sum of its elements is 0 = (0,0, . . . ,0).

We will apply a classical idea of Erdös. Let w = x1x2 . . . x2n

be the word, with xi ∈ {e1,e2, . . . ,en} for all i = 1,2, . . . ,2n . De-

fine σk =
k∑

i=1
xi for all k = 1,2, . . . ,2n . If any of σk = 0, we

are done, since x1 . . . xk can be taken as the subword; other-
wise there must exist 1 ≤ p < q ≤ 2n such that σp = σq , so

then 0 = σq −σp =
q−p∑
i=1

xp+i , and we can take the subword

xp+1 . . . xq .

Let us notice that the result is tight: there exist words of

length 2n −1 without this property. We can build them in-
ductively. Take w1 = a1, and build wn+1 = wn an+1wn for all
n ≥ 1. ■



2

Remark. The problem fits nicely into the larger, classical
topic of combinatorics on words, of squarefree and abelian
squarefree words, with quite a large literature on it.

Problem 5. Determine the least real number c, such
that for any integer n ≥ 1 and any positive real numbers
a1, a2, . . . , an , the following holds

n∑
k=1

k
1

a1
+ 1

a2
+·· ·+ 1

ak

< c
n∑

k=1
ak .

A.M.M.

Solution. (C. Popescu) We claim cmin = 2 .

Taking a j = 1

j
for j = 1,2, . . . ,n, we have

n∑
k=1

k
1

a1
+ 1

a2
+·· ·+ 1

ak

=
n∑

k=1

k

1+2+·· ·+k
= 2

n∑
k=1

1

k +1
,

while c
n∑

k=1
ak = c

n∑
k=1

1

k
, hence for the inequality to hold

we need (c −2)
n∑

k=1

1

k
>−2+ 2

n +1
>−2, therefore c ≥ 2

(since the sum
n∑

k=1

1

k
grows (with n) as large as wanted).

We will now prove that c = 2 is suitable.

We have, from the Cauchy-Schwartz inequality,

k2(k +1)2

4
=

(
k∑

j=1
j

)2

≤
(

k∑
j=1

j 2a j

)(
k∑

j=1

1

a j

)
, hence

k
1

a1
+ 1

a2
+·· ·+ 1

ak

≤ 4

k(k +1)2

k∑
j=1

j 2a j .

Therefore
n∑

k=1

k
1

a1
+ 1

a2
+·· ·+ 1

ak

≤
n∑

k=1

(
4

k(k +1)2

k∑
j=1

j 2a j

)
=

=
n∑

j=1

(
j 2a j

n∑
k= j

4

k(k +1)2

)
= 2

n∑
j=1

(
j 2a j

n∑
k= j

2k

k2(k +1)2

)
<

< 2
n∑

j=1

(
j 2a j

n∑
k= j

2k +1

k2(k +1)2

)
. But

n∑
k= j

2k +1

k2(k +1)2 =
n∑

k= j

(
1

k2 − 1

(k +1)2

)
= 1

j 2 − 1

(n +1)2 < 1

j 2 ,

hence
n∑

k=1

k
1

a1
+ 1

a2
+·· ·+ 1

ak

< 2
n∑

k=1
ak . ■
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