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Abstract

In this paper, we define the Bayesian generalized game in choice form and its
Bayesian equilibrium in choice. Our model generalizes the Bayesian abstract economy,
introduced by the author, and the deterministic model, recently defined by Ferrara
and Stefanescu. We apply the equilibrium results to prove the existence of solutions
for the random quasi-variational inequalities.
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1 Introduction

We propose a new definition of a stochastic game, in the spirit of the competitive economy:
the Bayesian generalized game in choice form. This game is characterized by constraint
correspondences and a Bayesian choice profile under restrictions, expressing the choices of
agents, depending on the set of nature states in the world. Our model generalizes, in a
Bayesian setting, the ones introduced by Ferrara and Stefanescu in [7] and by the author
in [10]. This work is also a continuation of the recent deterministic results obtained by the
author.

The new stochastic model opens a new direction for obtaining results concerning possible
types of exchange economies and their Walrasian equilibrium. Other applications could refer
to random variational inequalities, equilibrium and optimization problems.

We exemplify these remarks by establishing random variational inequalities and fixed
point-type theorems, as applications of the equilibrium results. The notion of a random
variational inequality was introduced by Noor and Elsanousi [9]. We work with new as-
sumptions. These new hypotheses are due to the Bayesian generalized game in choice form.
Its particular form imposes original types of applications.

2 Definitions and notations

Let now (Ω, F , µ) be a complete, finite measure space, and Y be a topological space.
Denote by 2Y the set of all subsets of Y. The correspondence T : Ω→ 2Y is said to be lower
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measurable if for every open subset V of Y , the set {ω ∈ Ω : T (ω) ∩ V 6= ∅} is an element
of F . If T is closed valued and lower measurable, then it has a measurable graph.

Let (Ω,F , µ) be a measure space and Y be a Banach space. It is known (see [5], Theorem
2, p.45) that, if x : Ω→ Y is a µ-measurable function then x is Bochner integrable if only
if

∫
Ω

‖x(ω)‖dµ(ω) < ∞. It is denoted by L1(µ, Y ) the space of equivalence classes of Y -

valued Bochner integrable functions x : Ω → Y normed by ‖ x ‖=
∫
Ω

‖x(ω)‖dµ(ω). Also

it is known (see [5], p.50) that L1(µ, Y ) is a Banach space. We denote by ST the set of
all selections of the correspondence T : Ω → 2Y that belong to the space L1(µ, Y ), i.e.
ST = {x ∈ L1(µ, Y ) : x(ω) ∈ T (ω) µ-a.e.}. The integral of correspondence T : Ω→ 2Y ([1])

is the set {
∫
Ω

x(ω)dµ(ω) : x ∈ ST }. We will denote the above set by
∫
T (ω)dµ(ω) or simply∫

T . The correspondence T : Ω→ 2Y is said to be integrably bounded if there exists a map
h ∈ L1(µ,R), such that sup{‖ x ‖ : x ∈ T (ω)} ≤ h(ω) µ− a.e.

3 A new stochastic game model: the bayesian general-
ized game in choice form

Ferrara and Stefanescu defined in [7] the generalized game in choice form. This generalizes
the well-known models of Nash [8], Debreu [4] and Shafer and Sonnenschein [11]. The main
aim of this section is to define a stochastic version of the generalized game in choice form.
In order to do this, we follow the ideas and the settings of Yannelis, who generalized the
Debreu’s deterministic model in [14] and worked in a Bayesian framework. Here, we intro-
duce the model of the Bayesian generalized game in choice form, its Bayesian equilibrium
in choice, and we make connections with the definitions in [10].

We work in the following setting. Let (Ω, F , µ) be a complete finite measure space,
where Ω denotes the set of states of nature of the world and the σ−algebra F , denotes
the set of events. Let Y denote the strategy or commodity space, where Y is a separable
Banach space. Let I be the set of agents. For each i ∈ I, let Xi : Ω → 2Y and let
us denote LXi = {x̃i ∈ SXi : x̃i is Fi -measurable}. An element x̃i of LXi is called a
strategy for agent i. An element of LXi is denoted by x̃i and that of Xi(ω) by xi(ω). Let
LX =

∏
i∈I

LXi . For each i ∈ I, let LX−i =
∏
j 6=i

LXj . An element of LX−i is denoted by x̃−i.

Then, x̃ = (x̃−i, x̃i) ∈ LX .

Definition 1. A Bayesian generalized game in choice form is a family Γ = {(Ω,F , µ),
(Xi,Fi, Ai, Ci)i∈I}, where, for each i ∈ I :

(a) Xi : Ω→ 2Y is the action correspondence of agent i;
(b) Fi is a sub σ−algebra of F which denotes the private information of agent i ;
(c) for each ω ∈ Ω, Ai(ω,·) : LX−i → 2Y is the random constraint correspondence of

agent i, where for all (ω, x̃−i) ∈ Ω× LX−i , Ai(ω, x̃−i) ⊂ Xi(ω);

(d) A
′

i : LX−i → 2LXi is defined by A
′

i(x̃−i) = {ỹi ∈ LXi : ỹi(ω) ∈ Ai(ω, x̃−i) µ− a.e.},
for each x̃−i ∈ LX−i and Ci ⊆Gr(A′i).
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Definition 2. The family (Ci)i∈I of nonempty sets, such that Ci ⊂Gr(A′i), for each i ∈ I,
is called a Bayesian choice profile under restrictions.

If, for each i ∈ I, Ai(ω, x̃−i) = Y, for each ω ∈ Ω and x̃−i ∈ LX−i , then, we obtain a
random variant of a game in choice form defined in [7].

We denote Ci(x̃−i) the upper section through (x̃−i, x̃i) of the set Ci, i.e., Ci(x̃−i) =
{ỹi ∈ LXi : (x̃−i, ỹi) ∈ Ci} and Ci(x̃i) the lower section through (x̃−i, x̃i) of the set Ci, i.e.,
Ci(x̃i) = {ỹ−i ∈ LX−i : (ỹ−i, x̃i) ∈ Ci} .

Definition 3. a) A Bayesian equilibrium in choice of the generalized game in the choice
form Γ is any strategy profile x̃∗ ∈ LX , with the property:

∀i ∈ I, (x̃∗−i, Ai(x̃
∗
−i)) ∩ Ci 6= ∅ ⇒ x̃∗ ∈ Ci.

This means that x̃∗ is a Bayesian equilibrium in choice if x̃∗−i ∈ Ci(x̃∗−i), for each i ∈ I
for which Ai(x̃

∗
−i) ∩ Ci(x̃∗−i) 6= ∅.

b) A strong Bayesian equilibrium in choice for Γ is a strategy profile x̃∗ ∈ LX , such
that x̃∗ ∈

⋂
i∈I Ci.

A particular case of a Bayesian generalized game in choice form is the general Bayesian
abstract economy defined in [10].

A general Bayesian abstract economy [10] is a set G = {(Ω,F , µ), (Xi,Fi, Ai, Pi)i∈I},
where:

(a) Xi : Ω→ 2Y is the action correspondence of agent i;
(b) Fi is a sub σ−algebra of F which denotes the private information of agent i ;
(c) for each ω ∈ Ω, Ai(ω,·) : LX−i → 2Y is the random constraint correspondence of

agent i, where for all (ω, x̃−i) ∈ Ω× LX−i , Ai(ω, x̃−i) ⊂ Xi(ω);
(d) for each ω ∈ Ω, Pi(ω,·) : LX → 2Y is the random preference correspondences of

agent i, where for all (ω, x̃) ∈ Ω× LX , Pi(ω, x̃) ⊂ Xi(ω).
A strong Bayesian equilibrium for G is a strategy profile x̃∗ ∈ LX , such that, for all

i ∈ I: x̃∗i (ω) ∈ Ai(ω, x̃∗−i) µ− a.e. and Ai(ω, x̃
∗
−i) ∩ Pi(ω, x̃∗) = ∅ µ− a.e.

If, for each i ∈ I, Xi is a compact convex nonempty subset of Y and, for each ω ∈ Ω,
Xi(ω) = Xi, we obtain a version of the deterministic classical model of Yannelis-Prabhakar
in [12] for an abstract economy with any set of players.

We note that we form the Bayesian choice profile under restrictions by setting, for
each i ∈ I : Ci = {x̃ ∈ LX : Ai(ω, x̃−i) ∩ Pi(ω, x̃) = ∅ µ − a.e}∩Gr(A′i). Then, x̃∗

is a strong Bayesian equilibrium for the general Bayesian abstract economy {(Ω,F , µ),
(Xi,Fi, Ai, Pi)i∈I} if it is a strong equilibrium for the Bayesian generalized game in choice
form {(Ω,F , µ), (Xi,Fi, Ai, Ci)i∈I}.

4 Bayesian equilibrium theorems

This section is devoted to establishing theorems which state the existence of the Bayesian
equilibrium for both Bayesian generalized games in choice form and general Bayesian ab-
stract economies. The new approach for the Bayesian equilibrium in choice leads to new
hypotheses which ensure the existence of the Bayesian equilibrium for general Bayesian
abstract economies, which are very different from the classical ones. In Theorem 1, the
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constraint correspondences verify the assumptions of having measurable graphs and weakly
open lower sections.

Theorem 1. Let I be an index set. Let Γ = {(Ω,F , µ), (Xi,Fi, Ai, Ci)i∈I} be a Bayesian
generalized game in choice form. Suppose that for each i ∈ I :

A.1) (a) Xi : Ω → 2Y is a nonempty, convex, weakly compact-valued and integrably
bounded correspondence;

(b) Xi : Ω → 2Y is Fi−lower measurable, i.e., for every open subset V of Y , the
set {ω ∈ Ω : Xi(Ω) ∩ V 6= ∅} belongs to Fi;

A.2) (a) For each (ω, x̃−i) ∈ Ω × LX−i , Ai(ω, x̃−i) has a non-empty interior in the
relative norm topology of Xi(ω);

(b) Ai has a measurable graph, i.e. {(ω, x̃−i, y) ∈ Ω×LX−i × Y : y ∈ Ai(ω, x̃−i)} ∈
F⊗ßw(LX−i)⊗ß(Y ), where ßw(LX−i) is the Borel σ−algebra for the weak topology on LX−i
and ß(Y ) is the Borel σ−algebra for the norm topology on Y ;

A.3)(a) Ci is nonempty, where Ci ⊂Gr(A′i), and A
′

i : LX−i → 2LXi is defined by

A
′

i(x̃−i) = {ỹi ∈ LXi : ỹi(ω) ∈ Ai(ω, x̃−i) µ− a.e.}, for each x̃−i ∈ LX−i ;
(b) Ci(x̃−i) is nonempty and convex, for each x̃−i ∈ LX−i ;

(c) Ci(x̃i) is open in LX−i with respect to the product topology, for each x̃i ∈ LXi .
Then, there exists a strong Bayesian equilibrium in choice for Γ.

Proof. Let i ∈ I. We prove first that LXi is a non-empty, convex, weakly compact subset in
L1(µ, Y ). Since (Ω, F , µ) is a complete finite measure space, Y is a separable Banach space
and Xi : Ω → 2Y has a measurable graph, according to Aumann’s measurable selection
theorem (see [14], page 64), it follows that there exists a Fi-measurable function fi : Ω→ Y,
such that fi(ω) ∈ Xi(ω) µ−a.e. Since Xi is integrably bounded, we have that fi ∈ L1(µ, Y ).
Hence, LXi is non-empty. Obviously, LXi is convex. Since Xi : Ω → 2Y is integrably
bounded and has convex weakly compact values, according to Diestel’s Theorem (Theorem
3.1 in [13]), it follows that LXi is a weakly compact subset of L1(µ, Y ). L1(µ, Y ), equipped
with the weak topology, is a locally convex topological vector space and

∏
i∈I

L1(µ, Y ) is

also a locally convex space. LX =
∏
i∈I

LXi is non-empty and convex. Tychonoff’s Theorem

implies that LX is compact with respect to the product topology.
Ai is nonempty valued and, for each x̃−i ∈ LX−i , Ai(·, x̃−i) has a measurable graph.

Hence, according to the Aumann measurable selection theorem (see [14], page 64), for each
fixed x̃ ∈ LX , there exists an Fi−measurable function yi : Ω → Y, such that yi(ω) ∈
Ai(ω, x̃−i) µ − a.e. Since, for each (ω, x̃−i) ∈ Ω × LX−i , Ai(ω, x̃−i) is contained in Xi(ω),
where Xi(·) is an integrably bounded correspondence, then yi ∈ LXi and we conclude that
yi ∈ A

′

i(x̃−i). Thus, A
′

i is non-empty valued.

Let Φi : LX−i → 2Xi , be defined by Φi(x̃−i) = Ci(x̃−i) ⊂ A
′

i(x̃−i), for each x̃−i ∈ LX−i .
According to Assumptions A3) (a) (b), (c), the correspondence Φi is nonempty and convex
valued, and (Φi(x̃i))

−1 is an open set in LX−i , for each x̃i ∈ LXi . We apply the Yannelis
and Prabhakar’s Theorem (Theorem 3.1 in [12]). Then, Φi has a continuous selection
fi : LX−i → LXi . Let f : LX → LX be defined by f(x̃) :=

∏
i∈I fi(x̃−i), for each x̃ ∈ LX .

The function f is continuous with respect to the product topology of LX , and, according
to the Brouwer-Schauder fixed point Theorem, there exists x̃∗ ∈ LX , such that f(x̃∗) = x̃∗.
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Hence, x̃∗ ∈
∏
i∈I Ti(x̃

∗
−i) and obviously, x̃∗i ∈ Ti(x̃

∗
−i), for each i ∈ I. Consequently,

x̃∗ ∈ Ci, for each i ∈ I.

Example 1. We can construct an example by directly defining:

Let (Ω,F ,µ) the measure space, where Ω = [0, 1], F = ß([0, 1]) is the sigma algebra of
the Borel measurable subsets in [0, 1] and µ is the Lebesgue measure.

Let Y = R and I = {1, 2, ..., n}.
For each i ∈ I, let us define the following:
Fi = F .
The correspondence Xi : [0, 1]→ 2R is defined by Xi(ω) = [0, 1], for each ω ∈ [0, 1].
It is a non-empty convex compact valued and integrably bounded correspondence. It is

also Fi−lower measurable.
Let LXi = {x̃i ∈ SXi(·) : x̃i is Fi -measurable } and LX =

∏
i∈I

LXi .

Then, the correspondence Ai : [0, 1]× LX → 2[0,1] is defined by
Ai(ω, x̃) = (0, 9

10 ), (ω, x̃) ∈ [0, 1]× LX .
Ai has a measurable graph.
For each (ω, x̃) ∈ [0, 1]× LX , Ai(ω, x̃) is convex and with non-empty interior in [0, 1].
For each i ∈ I, let us define Di =

∏
j 6=i

LXj × {x̃ : [0, 1] → [0, 1], x̃(ω) = kx̃ω
i, ω ∈ [0, 1],

kx̃ ∈ [0, 1]}. Di is weakly closed in LX .

Let also define Ci = {x̃ ∈ LX : x̃i ∈ Di, x̃i(ω) ∈ (0, 9
10 ) µ − a.e, x̃i(ω)+4

5 /∈ (0, 9
10 )

µ− a.e} ⊂GrA
′

i.

Ci(x̃−i) is nonempty and convex, for each x̃−i ∈ LX−i and Ci(x̃i) is open in LX−i with
respect to the product topology, for each x̃i ∈ LXi .

All the assumptions of Theorem 1 are fulfilled, then an equilibrium exists.
For example, x̃∗ ∈ LX , such that for each i ∈ I, x̃∗i (ω) = 3

4ω
i, ω ∈ [0, 1] is an equilibrium

for the abstract economy, that is, for each i ∈ I, x̃∗ ∈ Ci.

Now, we establish a result,- concerning the existence of the Bayesian equilibrium for
general Bayesian abstract economies. Theorem 2 generalizes the Yannelis and Prabhakar’s
deterministic theorem in [12].

Theorem 2. Let I be an index set. Let G = {(Ω,F , µ), (Xi,Fi, Ai, Pi)i∈I} be a general
Bayesian abstract economy. Suppose that the following conditions are satisfied, for each
i ∈ I:

A.1) (a) Xi : Ω → 2Y is a nonempty, convex, weakly compact-valued and integrably
bounded correspondence;

(b) Xi : Ω → 2Y is Fi−lower measurable, i.e., for every open subset V of Y , the
set {ω ∈ Ω : Xi(Ω) ∩ V 6= ∅} belongs to Fi;

A.2) (a) For each (ω, x̃−i) ∈ Ω × LX−i , Ai(ω, x̃−i) has a non-empty interior in the
relative norm topology of Xi(ω);
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(b) Ai has a measurable graph, i.e. {(ω, x̃−i, y) ∈ Ω×LX−i × Y : y ∈ Ai(ω, x̃−i)} ∈
F⊗ßw(LX−i)⊗ß(Y ), where ßw(LX−i) is the Borel σ−algebra for the weak topology on LX−i
and ß(Y ) is the Borel σ−algebra for the norm topology on Y ;

(c) for each ỹi ∈ LXi , the set {x̃−i ∈ LX−i : ỹi(ω) ∈ Ai(ω, x̃−i) µ− a.e.} is open in
LX−i with respect to the product topology of LX−i ;

A.3) (a) Pi : Ω × LX → 2Y has nonempty values, such that Pi(ω, x̃) ⊂ X(ω), for each
(ω, x̃) ∈ Ω× LX ;

(b) For each x̃−i ∈ LX−i , {x̃i ∈ LXi : Ai(ω, x̃−i) ∩ Pi(ω, x̃) = ∅ µ − a.e} ∩ {x̃i ∈
LXi : x̃i(ω) ∈ Ai(ω, x̃−i) µ− a.e.} is nonempty;

(c) For each x̃−i ∈ LX−i , {x̃i ∈ LXi : Ai(ω, x̃−i) ∩ Pi(ω, x̃) = ∅ µ− a.e} is convex;
(d) For each x̃i ∈ LXi , {x̃−i ∈ LX−i : Ai(ω, x̃−i)∩ Pi(ω, x̃) = ∅ µ− a.e} is open in

LX−i with respect to the product topology of LX−i .

Then, G has a Bayesian equilibrium.

Proof. Let i ∈ I. As in the previous proof, LXi is a non-empty, convex, weakly compact
subset in L1(µ, Y ). A

′

i is non-empty valued, as in the previous proof. A
′

i is convex valued,

since Ai is so. For each x̃i ∈ LXi , (A
′

i(x̃i))
−1 = {x̃−i ∈ LX−i : x̃i(ω) ∈ Ai(ω, x̃−i) µ−a.e.} is

open, according to assumption A2 (c). Let us define Ci = {x̃ ∈ LX : Ai(ω, x̃−i)∩Pi(ω, x̃) =
∅ µ− a.e}∩Gr(A′i).

Ci(x̃−i) = {x̃i ∈ A′i(x̃−i) : Ai(ω, x̃−i) ∩ Pi(ω, x̃) = ∅ µ − a.e} is nonempty and convex,
for each x̃−i ∈ LX−i , since Assumptions A3 (b) and (c) hold. According to assumptions
A2 (c), A3 (d), Ci(x̃i) is open in LX−i , for each x̃i ∈ LXi , where Ci(x̃i) = {x̃−i ∈ LX−i :

Ai(ω, x̃−i)∩Pi(ω, x̃) = ∅ µ−a.e}∩ (A
′

i(x̃i))
−1. We apply Theorem 1 and we find that there

exists x̃∗ ∈ Ci, for each i ∈ I. Consequently, for each i ∈ I, x̃∗i (ω) ∈ Ai(ω, x̃∗−i) µ− a.e. and
Ai(ω, x̃

∗
−i) ∩ Pi(ω, x̃∗) = ∅ µ− a.e.

In the second theorem, concerning the existence of the Bayesian equilibrium for Bayesian
generalized games in choice form, the constraint correspondences verify the assumption of
the measurable graph. In addition, we suppose the upper semicontinuouity of the corre-
spondences, formed with the upper sections of (Ci)i∈I .

We recall that if X, Y are topological spaces, then, the correspondence T : X → 2Y is
said to be upper semicontinuous if, for each x ∈ X and each open set V in Y with T (x) ⊂ V ,
there exists an open neighborhood U of x in X, such that T (x) ⊂ V, for each y ∈ U .

Theorem 3. Let I be a countable index set. Let Γ = {(Ω,F , µ), (Xi,Fi, Ai, Ci)i∈I} be a
Bayesian generalized game in choice form. Suppose that the following conditions are satis-
fied, for each i ∈ I:

A.1) (a) Xi : Ω→ 2Y is a nonempty, convex, weakly compact-valued and integrably
bounded correspondence;

(b) Xi : Ω → 2Y is Fi−lower measurable, i.e., for every open subset V of Y , the
set {ω ∈ Ω : Xi(Ω) ∩ V 6= ∅} belongs to Fi;

A.2) (a) For each (ω, x̃−i) ∈ Ω × LX−i , Ai(ω, x̃−i) has a non-empty interior in the
relative norm topology of Xi(ω);
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(b) Ai has a measurable graph, i.e. {(ω, x̃−i, y) ∈ Ω×LX−i × Y : y ∈ Ai(ω, x̃−i)} ∈
F⊗ßw(LX−i)⊗ß(Y ), where ßw(LX−i) is the Borel σ−algebra for the weak topology on LX−i
and ß(Y ) is the Borel σ−algebra for the norm topology on Y ;

A.3) (a) Ci is nonempty, where Ci ⊂Gr(A′i), and A
′

i : LX−i → 2LXi is defined by

A
′

i(x̃−i) = {ỹi ∈ LXi : ỹi(ω) ∈ Ai(ω, x̃−i) µ− a.e.}, for each x̃−i ∈ LX−i ;
(b) Ci(x̃−i) is nonempty, convex and weakly closed in LXi , for each x̃−i ∈ LX−i ;

(c) Φi : LX−i → 2LXi , defined by Φi(x̃−i) = Ci(x̃−i), for each x̃−i ∈ LX−i , is weakly
upper semicontinuous, in the sense that the set {x̃−i ∈ LX−i : Φi(x̃−i) ⊂ V } is weakly open
in LX−i , for every weakly open subset V of LXi .

Then, Γ has a strong Bayesian equilibrium in choice.

Proof. Let i ∈ I. LXi is a non-empty, convex, weakly compact subset in L1(µ, Y ). By
applying Theorem 3 in Dunford-Scwartz ([3], pag 434), we conclude that LXi is metrizable.
LX−i is also metrizable (since I is a countable set). In addition, LX−i is weakly compact.

A
′

i is non-empty valued, as we showed in the proof of Theorem 1. According to Assumptions
A3) (b) and (c), the correspondence Φi is nonempty, closed and convex valued, and weakly
upper semicontinuous. Let Φ : LX → 2X , be defined by Φ(x̃) =

∏
i∈I Φi(x̃−i), for each

x̃ ∈ LX . Φ is also nonempty, closed, convex valued, and weakly upper semicontinuous. LX
is nonempty, convex and weakly compact. We apply the Ky Fan fixed point Theorem [6].
Then, there exists x̃∗ ∈ LX , such that x̃∗ ∈ Φ(x̃∗). Obviously, x̃∗i ∈ Φi(x̃

∗
−i), for each i ∈ I.

Consequently, x̃∗ ∈ Ci, for each i ∈ I.

Now, we establish a Bayesian equilibrium existence theorem for general Bayesian ab-
stract economies with upper semi-continuous correspondences formed by using the con-
straints and the preference correspondences. We emphasize the new assumptions of our
theorem.

Theorem 4. Let I be a countable index set. Let G = {(Ω,F , µ), (Xi,Fi, Ai, Pi)i∈I} be a
general Bayesian abstract economy. Suppose that the following conditions are satisfied, for
each i ∈ I:

A.1) (a) Xi : Ω → 2Y is a nonempty, convex, weakly compact-valued and integrably
bounded correspondence;

(b) Xi : Ω → 2Y is Fi−lower measurable, i.e., for every open subset V of Y , the
set {ω ∈ Ω : Xi(Ω) ∩ V 6= ∅} belongs to Fi;

A.2) (a) For each (ω, x̃−i) ∈ Ω × LX−i , Ai(ω, x̃−i) has a non-empty interior in the
relative norm topology of Xi(ω);

(b) Ai has a measurable graph, i.e. {(ω, x̃−i, y) ∈ Ω×LX−i × Y : y ∈ Ai(ω, x̃−i)} ∈
F⊗ßw(LX−i)⊗ß(Y ), where ßw(LX−i) is the Borel σ−algebra for the weak topology on LX−i
and ß(Y ) is the Borel σ−algebra for the norm topology on Y ;

(c) for each ω ∈ Ω, Ai(ω,·) : LX−i → 2Y is upper semicontinuous, in the sense
that the set {x̃−i ∈ LX−i : Ai(ω, x̃−i)} ⊂ V } is weakly open in LX−i , for every norm open
subset V of Y ;

A.3) (a) For each x̃−i ∈ LX−i , {x̃i ∈ LXi : Ai(ω, x̃−i) ∩ Pi(ω, x̃) = ∅ µ − a.e} ∩ {x̃i ∈
LXi : x̃i(ω) ∈ Ai(ω, x̃−i) µ− a.e.} is nonempty;
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(b) For each x̃−i ∈ LX−i , {x̃i ∈ LXi : Ai(ω, x̃−i) ∩ Pi(ω, x̃) = ∅ µ− a.e} is convex and
weakly closed in LXi ;

(c) The correspondence Ti : LX−i → 2LXi , defined by Ti(x̃−i) = {x̃i ∈ LXi :
Ai(ω, x̃−i) ∩ Pi(ω, x̃) = ∅ µ − a.e}, is weakly upper semicontinuous, in the sense that the
set {x̃−i ∈ LX−i : Ti(x̃−i) ⊂ V } is weakly open in LX−i , for every weakly open subset V of
LXi .

Then, G has a Bayesian equilibrium.

Proof. As in the proof of Theorem 1, it results that for each i ∈ I, LXi is non-empty and
convex. LX =

∏
i∈I

LXi is also non-empty and convex. For each i ∈ I, define A
′

i : LX−i →

2LXi , by A
′

i(x̃−i) = {ỹi ∈ LXi : ỹi(ω) ∈ Ai(ω, x̃−i) µ− a.e.}, for each x̃−i ∈ LX−i . Thus, A
′

i

is non-empty valued, as we showed in the proof of Theorem 1. According to the projection
Theorem (see [14], page 64), for each x̃−i ∈ LX−i , Ai(·, x̃−i) has a measurable graph. In
addition, for each ω ∈ Ω, Ai(ω,·) : LX−i → 2Y is upper semicontinuous and Ai(ω, x̃−i) ⊂
Xi(ω), for each (ω, x̃−i) ∈ Ω×LX−i . By applying Theorem 3 in Dunford-Scwartz ([3], pag
434), we conclude that LXi is metrizable. LX−i is also metrizable (since I is a countable
set). In addition, LX−i is weakly compact. Then, according to the u. s. c. Lifting Theorem

(Lemma 2.1 in [14]), it follows that A
′

i is weakly upper semicontinuous in the sense that

the set {x̃−i ∈ LX−i : A
′

i(x̃−i) ⊂ V } is weakly open in LX−i for every weakly open subset

V of LXi . A
′

i is closed and convex valued, since Ai is so. Let us define Φi : LX−i → 2Xi , be

defined by Φi(x̃−i) = Ti(x̃−i)∩A
′

i(x̃−i), for each x̃−i ∈ LX−i . According to Assumptions A
3 (a), (b) and (c), the correspondence Φi is nonempty, closed, convex valued, and weakly
upper semicontinuous. Let Φ : LX → 2X , be defined by Φ(x̃) =

∏
i∈I Φi(x̃−i), for each

x̃ ∈ LX . Φi is also nonempty, closed, convex valued, and weakly upper semicontinuous. LX
is nonempty, convex and weakly compact. We apply the Ky Fan fixed point Theorem [6].
Then, there exists x̃∗ ∈ LX , such that x̃∗ ∈ Φ(x̃∗). Obviously, x̃∗i ∈ Φi(x̃

∗
−i), for each i ∈ I.

Consequently, for each i ∈ I, x̃∗i (ω) ∈ Ai(ω, x̃∗−i) µ − a.e. and Ai(ω, x̃
∗
−i) ∩ Pi(ω, x̃∗) = ∅

µ− a.e.

5 New random quasi-variational inequalities

In this section, we apply the equilibrium results established in the previous section, in order
to prove the existence of solutions for systems of random quasi-variational inequalities,
under new settings and new hypotheses. We also report a new random fixed-point-type
theorem.

In this section, we consider a complete finite separable measure space (Ω, F , µ) and a
separable Banach space Y .

Theorem 5. Let I be an index set. Suppose that the following conditions are satisfied, for
each i ∈ I:

A.1) (a) Xi : Ω → 2Y is a nonempty, convex, weakly compact-valued and integrably
bounded correspondence;
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(b) Xi : Ω → 2Y is Fi−lower measurable, i.e., for every open subset V of Y , the
set {ω ∈ Ω : Xi(Ω) ∩ V 6= ∅} belongs to Fi;

A.2) (a) For each (ω, x̃−i) ∈ Ω × LX−i , Ai(ω, x̃−i) has a non-empty interior in the
relative norm topology of Xi(ω);

(b) Ai has a measurable graph, i.e. {(ω, x̃−i, y) ∈ Ω×LX−i × Y : y ∈ Ai(ω, x̃−i)} ∈
F⊗ßw(LX−i)⊗ß(Y ), where ßw(LX−i) is the Borel σ−algebra for the weak topology on LX−i
and ß(Y ) is the Borel σ−algebra for the norm topology on Y ;

A.3) ψi : Ω× LX × Y → R ∪ {−∞,+∞} is such that:
(a) For each x̃−i ∈ LX−i , {x̃i ∈ LXi : x̃i(ω) ∈ Ai(ω, x̃−i) µ−a.e. and ψi(ω, x̃, yi(ω)) ≤

0 µ− a.e., for each yi : Ω→ Y, such that yi(ω) ∈ Ai(ω, x̃−i) µ− a.e} is nonempty;
(b) For each x̃−i ∈ LX−i , {x̃i ∈ LXi : ψi(ω, x̃, yi(ω)) ≤ 0 µ−a.e., for each yi : Ω→ Y,

such that yi(ω) ∈ Ai(ω, x̃−i) µ− a.e} is convex;
(c) For each x̃i ∈ LXi , {x̃−i ∈ LX−i : ψi(ω, x̃, yi(ω)) ≤ 0 µ−a.e., for each yi : Ω→ Y,

such that yi(ω) ∈ Ai(ω, x̃−i) µ− a.e} is open in LX−i , with respect to the product topology.
Then, there exists x̃∗ ∈ LX , such that, for every i ∈ I and µ− a.e.:
x̃∗i (ω) ∈ Ai(ω, x̃∗−i) and supy∈Ai(ω,x̃∗−i)ψi(ω, x̃

∗, y) ≤ 0.

Proof. For each i ∈ I, let us define Pi : Ω× LX → 2Y by
Pi(ω, x̃) = {y ∈ Xi(ω) : ψi(ω, x̃, y) > 0}, for each (ω, x̃) ∈ Ω × LX . We shall show

that the general Bayesian abstract economy G = {(Ω,F , µ), (Xi,Fi, Ai, Pi)i∈I} satisfies all
hypotheses of Theorem 2. For each x̃−i ∈ LX−i , {x̃i ∈ LXi : Ai(ω, x̃−i) ∩ Pi(ω, x̃) = ∅
µ−a.e}∩{x̃i ∈ LXi : x̃i(ω) ∈ Ai(ω, x̃−i) µ−a.e.} = {x̃i ∈ LXi : x̃i(ω) ∈ Ai(ω, x̃−i) µ−a.e.
and ψi(ω, x̃, yi(ω)) ≤ 0 µ− a.e., for each yi : Ω→ Y, such that yi(ω) ∈ Ai(ω, x̃−i) µ− a.e}
is nonempty, according to A3 (a).

For each x̃−i ∈ LX−i , {x̃i ∈ LXi : Ai(ω, x̃−i) ∩ Pi(ω, x̃) = ∅ µ− a.e} =
{x̃i ∈ LXi : ψi(ω, x̃, yi(ω)) ≤ 0 µ−a.e., for each yi : Ω→ Y, such that yi(ω) ∈ Ai(ω, x̃−i)

µ − a.e} is convex, according to A3 (b). For each x̃i ∈ LXi , {x̃−i ∈ LX−i : Ai(ω, x̃−i) ∩
Pi(ω, x̃) = ∅ µ − a.e} = {x̃−i ∈ LX−i : ψi(ω, x̃, yi(ω)) ≤ 0 µ − a.e., for each yi : Ω → Y,
such that yi(ω) ∈ Ai(ω, x̃−i) µ− a.e} is open, according to A3 (c).

Thus, the general Bayesian abstract economy G satisfies all hypotheses of Theorem 2 and
there exists an equilibrium for G, which is a solution for the random variational inequality.

As a consequence of Theorem 5, we prove the following Tan and Yuan-type [15] random
quasi-variational inequality. We recall that, if X, Y are topological spaces, then the corre-
spondence T : X → 2Y is said to be lower semicontinuous if, for each x ∈ X and each open
set V in Y with T (x) ∩ V 6= ∅, there exists an open neighborhood U of x in X, such that
T (y) ∩ V 6= ∅, for each y ∈ U .

Corollary 1. Let I be an index set. Suppose that the following conditions are satisfied, for
each i ∈ I:

A.1) (a) Xi : Ω → 2Y is a nonempty, convex, weakly compact-valued and integrably
bounded correspondence;
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(b) Xi : Ω → 2Y is Fi−lower measurable, i.e., for every open subset V of Y , the set
{ω ∈ Ω : Xi(Ω) ∩ V 6= ∅} belongs to Fi;

A.2) (a) For each (ω, x̃−i) ∈ Ω × LX−i , Ai(ω, x̃−i) has a non-empty interior in the
relative norm topology of Xi(ω);

(b) Ai has a measurable graph, i.e. {(ω, x̃−i, y) ∈ Ω×LX−i × Y : y ∈ Ai(ω, x̃−i)} ∈
F⊗ßw(LX−i)⊗ß(Y ), where ßw(LX−i) is the Borel σ−algebra for the weak topology on LX−i
and ß(Y ) is the Borel σ−algebra for the norm topology on Y ;

A.3) Gi : Ω× Y → 2Y
′

is such that:
(a) for each ω ∈ Ω, y → Gi(ω, y) : Y → 2Y

′
is monotone (that is Re〈u−v, y−x〉 ≥ 0,

for all u ∈ Gi(ω, y), v ∈ Gi(ω, x) and x, y ∈ Y ), with non-empty values;
(b) for each ω ∈ Ω, y → Gi(ω, y) : L ∩ Y → 2Y

′
is lower semicontinuous from the

relative topology of Y into the weak∗−topology σ(Y ′, Y ) of Y ′, for each one-dimensional
flat L ⊂ Y ;

(c) For each x̃−i ∈ LX−i , {x̃i ∈ LXi : x̃i(ω) ∈ Ai(ω, x̃−i) µ− a.e. and
supu∈Gi(ω,yi(ω))Re 〈u, x̃i(ω)− yi(ω)〉 ≤ 0, for each yi : Ω→ Y, such that
yi(ω) ∈ Ai(ω, x̃−i) µ− a.e} is nonempty;

(d) For each x̃−i ∈ LX−i , {x̃i ∈ LXi : supu∈Gi(ω,yi(ω))Re〈u, x̃i(ω)− yi(ω)〉 ≤ 0 µ− a.e.,
for each yi : Ω→ Y, such that yi(ω) ∈ Ai(ω, x̃−i) µ− a.e} is convex;

(e) For each x̃i ∈ LXi , {x̃−i ∈ LX−i : supu∈Gi(ω,yi(ω))Re〈u, x̃i(ω) − yi(ω)〉 ≤ 0 µ −
a.e., for each yi : Ω→ Y, such that yi(ω) ∈ Ai(ω, x̃−i) µ− a.e} is open.

Then, there exists x̃∗ ∈ LX , such that, for every i ∈ I and µ−a.e.: x̃∗i (ω) ∈clAi(ω, x̃
∗
−i)

and supu∈Gi(ω,x̃∗(ω))Re〈u, x̃∗i (ω)− y〉 ≤ 0, for all y ∈ Ai(ω, x̃∗−i).

Proof. Let us define ψi : Ω× LX × Y → R ∪ {−∞,+∞} by
ψi(ω, x̃, y) = supu∈Gi(ω,y)Re〈u, x̃i(ω)− y〉, for each (ω, x̃, y) ∈ Ω× LX × Y.

All hypotheses of Theorem 5 are satisfied. According to Theorem 5, there exists x̃∗ ∈
LX , such that x̃∗i (ω) ∈ Ai(ω, x̃∗−i), µ− a.e., for every i ∈ I and

(1) supy∈Ai(ω,x̃∗−i) supu∈Gi(ω,y)[Re〈u, x̃∗i (ω) − y〉] ≤ 0, µ − a.e., for every i ∈ I. We

claim that supy∈Ai(ω,x̃∗−i) supu∈Gi(ω,x̃∗(ω))[Re〈u, x̃∗i (ω) − y〉] ≤ 0, µ − a.e., for every i ∈ I.
Indeed, let us consider i ∈ I and the fixed point ω ∈ Ω. Let y ∈ Ai(ω, x̃∗−i), λ ∈ [0, 1] and
ziλ(ω) := λy+(1−λ)x̃∗i (ω). According to assumption A2 (a), ziλ(ω) ∈ Ai(ω, x̃∗−i). According
to (1), supu∈Gi(ω,ziλ(ω))[Re〈u, x̃∗i (ω)− zλ(ω)〉] ≤ 0, for each λ ∈ [0, 1].

Therefore, for each λ ∈ [0, 1], t{supu∈Gi(ω,ziλ(ω))[Re〈u, x̃∗i (ω)− y〉]} =

supu∈Gi(ω,ziλ(ω)) t[Re〈u, x̃∗i (ωi)−y)〉] = supu∈Gi(ω,ziλ(ω))[Re〈u, x̃∗i (ω)−ziλ(ω)〉] ≤ 0. It follows

that, for each λ ∈ [0, 1], (2) supu∈Gi(ω,ziλ(ω))[Re〈u, x̃∗i (ω)− y〉] ≤ 0.

Now, we show the conclusion, by using the lower semicontinuity of Gi(ω, ·) : L∩Y → 2Y
′
.

For each z0 ∈ Gi(ω, x̃
∗
i (ω)) and e > 0, let us consider U iz0 , the neighborhood of z0 in

the topology σ(Y ′, Y ), defined by U iz0 := {z ∈ Y ′ : |<e 〈z0 − z, x̃∗i (ω) − y〉| < e}. The

correspondence Gi(ω, ·) : L ∩ Y → 2Y
′

is lower semicontinuous, where L = {ziλ(ω) : λ ∈
[0, 1]} and U iz0 ∩Gi(ω, x̃

∗
i (ω)) 6= ∅. Then, there exists a non-empty neighborhood N(x̃∗i (ω))

of x̃∗i (ω) in L, such that U iz0 ∩ Gi(ω, z) 6= ∅, for each z ∈ N(x̃∗i (ω)). Hence, there exists
δ ∈ (0, 1], t ∈ (0, δ) and u ∈ Gi(ω, ziλ(ω)) ∩ U iz0 6= ∅, such that Re〈z0 − u, x̃∗i (ω) − y〉 < e.
Therefore, Re〈z0, x̃

∗
i (ω) − y〉 < Re〈ui, x̃∗i (ω) − y〉 + e. It follows that Re〈z0, x̃

∗
i (ω) − y〉 <

Re〈u, x̃∗i (ω) − y〉 + e < e. The last inequality comes from (2). Since e > 0 and z0 ∈
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Gi(ω, x̃
∗
i (ω)) have been chosen arbitrarily, Re〈z0, x̃

∗
i (ω)− y〉 < 0. Hence, for each i ∈ I, we

have that supu∈Gi(ω,x̃∗(ω))[Re〈z0, x̃
∗
i (ω)− y〉] ≤ 0, for every y ∈ Ai(ω, x̃∗−i).

As a corollary, we obtain the following random fixed point-type theorem. It is a gener-
alization of Browder fixed-point Theorem [2].

Corollary 2. Let I be an index set. Assumptions A.1) and A2) of Theorem 5 hold. Then,
there exists x̃∗ ∈ LX , such that, for every i ∈ I and µ− a.e., x̃∗i (ω) ∈ Ai(ω, x̃∗−i).

Theorem 6. Theorem 5 holds if I is a countable index set and Conditions A.3) (b), (c)
are replaced by:

A.3) (b’) For each x̃−i ∈ LX−i , {x̃i ∈ LXi : ψi(ω, x̃, yi(ω)) ≤ 0 µ − a.e, for each
yi : Ω→ Y, such that yi(ω) ∈ Ai(ω, x̃−i) µ− a.e} is convex and weakly closed;

(c’) The correspondence Ti : LX−i → 2LXi , defined by Ti(x̃−i) = {x̃i ∈ LXi :
ψi(ω, x̃, yi(ω)) ≤ 0 µ− a.e., for each yi : Ω→ Y, such that yi(ω) ∈ Ai(ω, x̃−i) µ− a.e} is
weakly upper semicontinuous.

Proof. The proof follows similar lines as the proof of Theorem 5. It is obtained by applying
Theorem 4.

In the case of the upper semicontinuity of the correspondences, we can obtain corollaries
which are similar to Corollaries 1 and 2.

Corollary 3. Let I be a countable index set. Assumptions A.1), A2) and A3) (a), (b) of
Corrolary 1 are fulfilled and, in addition:

A.4) (a) For each x̃−i ∈ LX−i , {x̃i ∈ LXi : x̃i(ω) ∈ Ai(ω, x̃−i) µ− a.e. and

supu∈Gi(ω,yi(ω))Re〈u, x̃i(ω) − yi(ω)〉 ≤ 0 µ − a.e., for each yi : Ω → Y, such that
yi(ω) ∈ Ai(ω, x̃−i) µ− a.e} is nonempty;

(b) For each x̃−i ∈ LX−i , {x̃i ∈ LXi : supu∈Gi(ω,yi(ω))Re〈u, x̃i(ω) − yi(ω)〉 ≤ 0 µ −
a.e., for each yi : Ω → Y, such that yi(ω) ∈ Ai(ω, x̃−i) µ − a.e} is convex and weakly
closed;

(c) The correspondence Ti : LX−i → 2LXi , defined by

Ti(x̃−i) = {x̃i ∈ LXi : supu∈Gi(ω,yi(ω))Re〈u, x̃i(ω) − yi(ω)〉 ≤ 0 µ − a.e, for each yi :
Ω → Y, such that yi(ω) ∈ Ai(ω, x̃−i) µ − a.e}, for each x̃−i ∈ LX−i is weakly upper
semicontinuous.

Then, the conclusion of Corollary 1 holds.

Corollary 4. Assume that I is a countable index set and Conditions A.1), A2) and A3)
(c) of Theorem 4 are fulfilled. Then, there exists x̃∗ ∈ LX , such that, for every i ∈ I and
µ− a.e., x̃∗i (ω) ∈ Ai(ω, x̃∗−i).
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