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Abstract

In this work, 2-absorbing z-filters on a topological space X are defined and their
general properties are examined. Moreover, the convergence of 2-absorbing z-filters is
studied. A correspondence between 2-absorbing z-filters on X and 2-absorbing z-ideals
of the ring C(X) of all real-valued continuous functions on X is given.
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1 Introduction

Let X be a topological space. We denote the ring of all continuous real-valued functions
on X as C(X). The ring C(X) is a commutative ring with identity 1 : X → R, defined as
1(x) = 1 for all x ∈ X. Topological and algebraic properties of C(X) have got a considerable
attention in the last fifty years. For a detailed information on the ring C(X) the reader
may consult [4] and [8]. If X is a completely regular space, a wide range of properties of
C(X) can be characterized. Since for every topological space X, there exists a completely
regular space Y such that C(X) is isomorphic to C(Y ), as shown in [4, 3.9], the space X
can be assumed to be completely regular.

An important concept related to C(X) is z-filters. For an element f in C(X), the zero-
set Z(f) of f is defined as Z(f) = {x ∈ X : f(x) = 0}. The collection of all zero-sets in X
is denoted as Z(X). A nonempty subfamily F of Z(X) is called a z-filter on X provided
that (i) ∅ 6∈ F , (ii) if Z1, Z2 ∈ F , then Z1 ∩ Z2 ∈ F , (iii) if Z ∈ F , Z ′ ∈ Z(X) and
Z ⊆ Z ′ then Z ∈ F . The analoguous concept of z-filters is set theoretic filters. In a discrete
space every set is a zero set, so z-filters and filters are the same in discrete spaces. A prime
z-filter is a z-filter F with the following property: whenever the union of two zero-sets
belongs to F at least one of them belongs to F . By [4, 2E], a z-filter F is prime if and
only if whenever the union of two zero-sets is all of X, at least one of them belongs to F .
Equivalently, a z-filter is prime if and only if it contains a prime z-filter. Prime z-filters are
useful for studying prime ideal structure of the ring of continuous functions. Some of these
researches can be found in [5], [6], and [7].

In this paper, we define 2-absorbing z-filters as a generalization of prime z-filters. A z-
filter F is called a 2-absorbing z-filter if whenever Z1∪Z2∪Z3 ∈ F for Z1, Z2, Z3 ∈ Z(X),
one of the containments Z1 ∪ Z2 ∈ F , Z1 ∪ Z3 ∈ F or Z2 ∪ Z3 ∈ F holds.

Minimal prime z-filters are proved to be useful in the study of z-filters. A prime z-filter
P is minimal over a z-filter F if it is a minimal element of the set of all prime z-filters



148 On 2-absorbing z-filters

containing F . In Section 2, we examine some properties of minimal prime z-filters and
obtain a characterization of them, Theorem 3. Further, we prove that every z-filter F is
the intersection of all minimal prime z-filters containing F , Proposition 1.

In Section 3, we define 2-absorbing z-filters and investigate their general properties.
We show that a 2-absorbing z-filter has at most two minimal prime z-filters and acquire
a characterization of 2-absorbing z-filters, Theorem 4. Let X and Y be two completely
regular spaces and τ : X → Y a continuous map. For any zero set ZY (g) ∈ Z(Y ), denote
the zero set ZX(g ◦ τ) in Z(X) as τ←[ZY (g)]. Then, by [4, 4.12], for a z-filter F on X, the
set τ#F = {Z ∈ Z(Y ) : τ←[Z] ∈ F} is a z-filter on Y . We show that if F is a 2-absorbing
z-filter so is τ#F , Proposition 3. Moreover, we deal with the convergence of 2-absorbing
z-filters. Let X be a completely regular space. Following [4, 3.16], a point p ∈ X is said to
be a cluster point of a z-filter F if every neighbourhood of p meets every member of F .
A z-filter is said to converge to the limit p if every neighbourhood of p contains a member
of F . We prove that a 2-absorbing z-filter F converges to a point p if and only if all of
the minimal prime z-filters over F converge to p, and a point p is a cluster point of a
2-absorbing z-filter F iff p is a cluster point of one of the minimal prime z-filters over F ,
Theorem 3.

If I is an ideal in C(X), then the family Z[I] = {Z(f) : f ∈ I} is a z-filter on X, by
[4, 2.3]. Analogously, if F is a z-filter on X, then the set Z←[F ] = {f : Z(f) ∈ F} is an
ideal in C(X). An ideal I in C(X) is called a z-ideal if Z(f) ∈ Z[I] implies f ∈ I, that is, if
I = Z←[Z[I]]. In [2], 2-absorbing ideals of commutative rings with identity are defined. A
nonzero proper ideal I of a commutative ring with identity R is called a 2-absorbing ideal
whenever abc ∈ I for a, b, c ∈ R, either ab ∈ I, or ac ∈ I, or bc ∈ I. A more general concept
than 2-absorbing ideals is the concept of n-absorbing ideals for any n ≥ 1, see [1]. For
2-absorbing commutative semigroups and their applications to rings, we recommend [3]. In
Section 4, we prove that a z-ideal of C(X) is a 2-absorbing ideal if and only if it contains a
2-absorbing ideal, Proposition 4. Moreover, we obtain a one-to-one correspondence between
the set of 2-absorbing z-ideals and the set of 2-absorbing z-filters, Theorem 7.

2 Prime z-filters

In this section, we examine some properties of prime z-filters.

Definition 1. A subset S of Z(X) is called a union closed subset if ∅ ∈ S and whenever
two elements Z and Z ′ in S their union is also in S.

The following theorem guarantees that every z-filter is contained in a prime z-filter.

Theorem 1. Let F be a z-filter and S ⊆ Z(X) a union closed set such that F ∩ S = ∅.
Then the set

Ψ = {G ⊆ Z(X) : G is a z-filter, F ⊆ G and G ∩ S = ∅}

has at least one maximal element and such a maximal element is a prime z-filter.

Proof: Since F ∩ S = ∅, the set Ψ is nonempty. Let {Gi}i∈I be a chain in Ψ. The set
G =

⋃
i∈I Gi is a z-filter containing F and G ∩ S = ∅ and, so G is an upper bound for the
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chain {Gi}i∈I in Ψ. Then, by Zorn’s Lemma, the set Ψ has a maximal element. Let P be
such a maximal element of Ψ. Assume that Z1, Z2 6∈ P. The sets P1 = P ∪ {Z1 ∪ Z :
Z ∈P} and P2 = P ∪ {Z2 ∪ Z : Z ∈P} are z-filters containing F . By the maximality
of P, they should both meet S. Then there exist Z,Z ′ ∈P such that Z1 ∪Z,Z2 ∪Z ′ ∈ S.
Then we obtain (Z1 ∪ Z2) ∪ Z ∪ Z ′ ∈ S. Thus, we must have Z1 ∪ Z2 6∈P.

Theorem 2. Let F be a z-filter. Then the set

Φ = {G ⊆ Z(X) : G is a prime z-filter, F ⊆ G }

has at least one minimal member with respect to inclusion.

Proof: Applying Theorem 1 with S = {∅}, we obtain a prime z-filter containing F . Hence
Φ is nonempty. The set Φ is partially ordered by the relation

G 4 H if and only if H ⊆ G , where G ,H ∈ Φ.

Let {Gi}i∈I be a chain in Φ. The set G =
⋂

i∈I Gi is a prime z-filter containing F . By
Zorn’s Lemma, we conclude that Φ has a minimal element.

Definition 2. A prime z-filter P is minimal over a z-filter F if it is a minimal element
of the set of all prime z-filters containing F .

The following theorem gives a characterization of elements of minimal prime z-filter over
a z-filter.

Theorem 3. Let P be a prime z-filter containing F . The following are equivalent:

(i) P is minimal over F .

(ii) Z(X)\P is a union closed set that is maximal with resprect to missing F .

(iii) For each Z ∈P there exists a Z ′ ∈ Z(X)\P such that Z ∪ Z ′ ∈ F .

Proof: (i)⇒(ii): Clearly, Z(X)\P is a union closed set. Let S be a union closed set
containing Z(X)\P and F ∩ S = ∅. Let Q be a z-filter containing F that is maximal
with respect to being disjoint from S. Then, by Theorem 1, the z-filter Q is prime. Since
Q ∩ Z(X)\P = ∅, we get Q ⊆ P. Since P is minimal over F , we have Q = P. Thus
S = Z(X)\P.

(ii)⇒(iii): If Z = X the statement trivially holds. Let Z ∈P\{X}. Set

S = {Z ∪ Z ′ : Z ′ ∈ Z(X)\P} ∪ Z(X)\P.

Then S is a union closed set and properly contains Z(X)\P. Then F ∩ S 6= ∅. Hence
there exists a Z ′ ∈ Z(X)\P such that Z ∪ Z ′ ∈P.

(iii)⇒(i): Assume that F ⊆ Q ⊆ P where Q is a prime z-filter. If there exists
Z ∈ P\Q, then there is a Z ′ ∈ Z(X)\P such that Z ∪ Z ′ ∈ F ⊆ Q. Since Z 6∈ Q, we
have the contradiction Z ′ ∈P.
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Proposition 1. Let F be a z-filter. Then F is the intersection of all minimal prime
z-filters containing F .

Proof: Clearly F is contained in the intersection of all minimal prime z-filters over F . For
the reverse inclusion, assume that there exists an element Z contained in the intersection of
all minimal prime z-filters over F but not contained in F . The set S = {Z ′ ∈ Z(X) : Z ′ ⊆
Z} is a union closed set disjoint from F . Then, by Theorem 1, there exists a prime z-filter
P containing F and disjoint from S. However, since Z ∈ P, we have the contradiction
Z ∈P ∩ S.

3 2-absorbing z-filters

Inspiring from prime z-filters we can define 2-absorbing z-filters as follows:

Definition 3. A z-filter F is called as a 2-absorbing z-filter if whenever Z1 ∪Z2 ∪Z3 ∈ F
for Z1, Z2, Z3 ∈ Z(X), one of the containments Z1∪Z2 ∈ F , Z1∪Z3 ∈ F or Z2∪Z3 ∈ F
holds.

We note that the set of 2-absorbing z-filters properly contains the set of prime z-filters.

Example 1. Let F = {Z ∈ Z(R) : {0, 1} ⊆ Z}. It is easy to show that F is a 2-absorbing
z-filter. However, it is not a prime z-filter since Z(sinx) ∪ Z(sin(x− 1)) ∈ F and neither
Z(sinx) nor Z(sin(x− 1)) is in F .

Theorem 4. Let F be a 2-absorbing z-filter. Then there are at most two minimal prime
z-filters over F .

Proof: Suppose that P1,P2,P3 be distinct minimal prime z-filters over F . Then there
exist Z1 ∈P1\P2 and Z2 ∈P2\P1. Since P1 and P2 are minimal, by Theorem 3, there
exist elements Z ∈ Z(X)\P1 and Z ′ ∈ Z(X)\P2 such that Z1 ∪Z,Z2 ∪Z ′ ∈ F . We have

(Z1 ∩ Z2) ∪ (Z1 ∩ Z ′) ∪ (Z ∩ Z2) ∪ (Z ∩ Z ′) = (Z1 ∪ Z) ∩ (Z2 ∪ Z ′) ∈ F .

Then we obtain Z1 ∩ Z ′ ∈P1 and Z2 ∩ Z ∈P2, and hence Z ′ ∈P1 and Z ∈P2. As

(Z ∩ Z ′) ∪ Z1 ∪ Z2 = (Z ∪ Z1 ∪ Z2) ∩ (Z ′ ∪ Z1 ∪ Z2) ∈ F

and F is a 2-absorbing z-filter, we get Z1∪Z2 ∈ F . Now, since P1,P2,P3 are all distinct
z-filters, there exist elements Y1 ∈ P1\(P2 ∪P3) and Y2 ∈ P2\(P1 ∪P3). Then, by
the above argument we have Y1 ∪ Y2 ∈ F . As F ⊆ P1 ∩P2 ∩P3, we get one of the
contradicting arguments Y1 ∈P3 or Y2 ∈P3. Hence, there are at most two minimal prime
z-filters over F .

Corollary 1. Let F be a 2-absorbing z-filter. Then F is a prime z-filter or F = P1∩P2

where P1 and P2 are the only minimal prime z-filters over F .
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Now, we are to give a characterization of 2-absorbing z-filters. First, we need the
following lemma.

Lemma 1. Intersection of two prime z-filters is a 2-absorbing z-filter.

Proof: Let P1 and P2 be two prime z-filters and F = P1∩P2. assume that Z1∪Z2∪Z3 ∈
F where Z1, Z2, Z3 ∈ Z(X). Since P1 is prime, either Z1 or Z2 ∪ Z3 is in P1. Similarly,
either Z1 or Z2 ∪Z3 is in P2. If Z1 ∈P1 and Z1 ∈P2, then Z1 ∪Z2 ∈P1 ∩P2 = F . If
Z1 ∈ P1 and Z2 ∪ Z3 ∈ P2, then since Z2 or Z3 is in P2, we have Z1 ∪ Z2 or Z1 ∪ Z3 is
in P1 ∩P2 = F . The exactly same argument is applied for the other cases.

Theorem 5. A z-filter F is 2-absorbing if and only if it contains a 2-absorbing z-filter.

Proof: The necessity part is clear.
For the sufficiency, let G be a 2-absorbing z-filter contained in F . Then G = P or

G = P1 ∩P2 where P,P1,P2 are minimal prime z-filters over G . In the former case,
P = G ⊆ F . Since F contains a prime z-filter, it is a prime, and hence a 2-absorbing
z-filter. Now assume that G = P1 ∩P2. Then P1 ∩P2 ⊆ F . We can write F = A ∩B
where A is the intersection of prime z-filters over F containing P1 and B is the intersection
of prime z-filters over F containing P2. As A and B are intersection of z-filters, they are
z-filters, too. Besides, since they contain prime z-filters P1 and P2, respectively, they are
prime z-filters. Thus, we conclude that, being the intersection of two prime z-filters, the
z-filter F is 2-absorbing.

Theorem 6. A z-filter F is 2-absorbing if and only if whenever Z1 ∪ Z2 ∪ Z3 = X with
Z1, Z2, Z3 ∈ Z(X), either Z1 ∪ Z2 ∈ F or Z1 ∪ Z3 ∈ F or Z2 ∪ Z3 ∈ F .

Proof: Since X ∈ F , the necessity part is clear. For the sufficiency part, let G be the set
of all Z1 ∪Z2 ∈ F with Z1, Z2 ∈ Z(X)\{X} and such that there exists a Z3 ∈ Z(X)\{X}
satisfying Z1 ∪Z2 ∪Z3 = X. Since G is contained in F , it does not contain the empty set.
Let Z1 ∪Z2, Y1 ∪Y2 ∈ G . Then there exists Z3, Y3 ∈ Z(X) such that Z1 ∪Z2 ∪Z3 = X and
Y1 ∪ Y2 ∪ Y3 = X. Then, we have

[(Z1 ∪ Z2) ∩ (Y1 ∪ Y2)] ∪ [((Z1 ∪ Z2) ∩ Y3) ∪ (Z3 ∩ (Y1 ∪ Y2)) ∪ (Z3 ∩ Y3)] = X.

Since
(Z1 ∪ Z2) ∩ (Y1 ∪ Y2) = (Z1 ∩ (Y1 ∪ Y2)) ∪ (Z2 ∩ (Y1 ∪ Y2)),

(Z1 ∪ Z2) ∩ (Y1 ∪ Y2) is an element of G . For Z ∈ Z(X) with Z1 ∪ Z2 ⊆ Z, we have
Z ∪ (Z1 ∪ Z2) ∪ Z3 = X. Hence Z ∈ G . Therefore, G is a z-filter. Let Z1 ∪ Z2 ∪ Z3 ∈ G .
assume first that one of the unions Z1 ∪ Z2, Z1 ∪ Z3 and Z2 ∪ Z3 is equal to X, then it is
trivially in ∈ G . Now, suppose none of them is equal to X. Since there exists Z ∈ Z(X)
satsifying Z1 ∪Z2 ∪Z3 ∪Z = X, by assumption, either Z1 ∪Z2 ∈ F or Z1 ∪Z3 ∪Z ∈ F or
Z2 ∪Z3 ∪Z ∈ F . Then, we have Z1 ∪Z2 ∈ G or Z1 ∪Z3 ∈ G or Z2 ∪Z3 ∈ G . Thus, G is a
2-absorbing z-filter. By Theorem 5, we conclude that F is a 2-absorbing z-filter.
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Let X and Y be two completely regular spaces and τ : X → Y a continuous mapping.
For any zero set ZY (g) ∈ Z(Y ), denote the zero set ZX(g◦τ) in Z(X) as τ←[ZY (g)]. Then,
by [4, 4.12], for a z-filter F on X, the set

τ#F = {Z ∈ Z(Y ) : τ←[Z] ∈ F}

is a z-filter on Y . Moreover, if F is prime, so is τ#F . We have a further result:

Proposition 2. With the above notation, if F is a 2-absorbing z-filter, then τ#F is a
2-absorbing z-filter.

Proof: Let Z1 ∪ Z2 ∪ Z3 ∈ τ#F where Z1 = ZY (g1), Z2 = ZY (g2), Z3 = ZY (g3) for some
g1, g2, g3 ∈ C(Y ). Then we have

ZX [g1 ◦ τ ] ∪ ZX [g2 ◦ τ ] ∪ ZX [g3 ◦ τ ] = ZX [(g1 ◦ τ)(g2 ◦ τ)(g3 ◦ τ)]

= ZX [(g1g2g3) ◦ τ ]

= τ←[ZY (g1g2g3)]

= τ←[ZY (g1) ∪ ZY (g2) ∪ ZY (g3)]

= τ←[Z1 ∪ Z2 ∪ Z3]

∈ F .

Since F is a 2-absorbing z-filter, for some i 6= j, we have

ZX [gi ◦ τ ] ∪ ZX [gj ◦ τ ] ∈ F .

This implies

τ←[ZY (gi) ∪ ZY (gj)] = τ←[ZY (gigj)] = ZX [gigj ◦ τ ] ∈ F .

Thus, we obtain
Zi ∪ Zj = ZY (gi) ∪ ZY (gj) ∈ τ#F .

Hence, we conclude that τ#F is a 2-absorbing z-filter.

Let X be a completely regular space. Following [4, 3.16], a point p ∈ X is said to be
a cluster point of a z-filter F if every neighbourhood of p meets every member of F . A
z-filter is said to converge to the limit p if every neighbourhood of p contains a member
of F . Note that every limit point is a cluster point. We are to investigate convergence of
2-absorbing z-filters.

Proposition 3. Let F be a 2-absorbing z-filter on a completely regular space X with
minimal prime z-filters P1 and P2. Let p ∈ X.

(i) F converges to p if and only if P1 and P2 both converge to p.

(ii) p is a cluster point of F if and only if p is a cluster point of P1 or P2.
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Proof: (i) Assume that F converges to p. Let G be a z-filter containing F . Every
neighborhood of p contains an element of F , and hence an element of G . Then G converges
to p. This fact apply to minimal prime z-filters of F , as well.

Conversely, assume that P1 and P2 both converge to p. Let N be a neighborhood
of p. Then there exist Z1 ∈ P1 and Z2 ∈ P1, both contained in N . Since Z1 ∪ Z2 ∈
P1 ∪P2 = F and Z1 ∪ Z2 ⊆ N , we conclude that F converges to p.

(ii) Suppose that p is not a cluster point of both P1 and P2. Then, there exist neigh-
borhoods N1 and N2 of p and elements Z1 ∈ P1 and Z2 ∈ P2 such that N1 ∩ Z1 = ∅
and N2 ∩ Z2 = ∅. We have Z1 ∪ Z2 ∈ F and N1 ∩N2 a neighborhood of p. Moreover, we
observe that (N1 ∩N2) ∩ (Z1 ∪ Z2) = ∅. Therefore p is not a cluster point of F .

Conversely, assume that p is a cluster point of some z-filter G containing F . Let N be
a neighborhood of p. For any z ∈ F , since Z ∈ G , we have N ∩ Z 6= ∅. Therefore p is a
cluster point if F .

Note that, a prime z-filter on a completely regular space has at most one cluster point,
[4, 3.17]. We conclude, by Proposition 3, that a 2-absorbing z-filter on a completely regular
space can have at most two cluster points.

4 2-absorbing z-ideals

In this section, we give a correspondence between 2-absorbing z-filters on a topological
space X and 2-absorbing z-ideals of C(X). If I is an ideal in C(X), then the family
Z[I] = {Z(f) : f ∈ I} is a z-filter on X. Analogously, if F is a z-filter on X, then the
family Z←[F ] = {f : Z(f) ∈ F} is an ideal in C(X). An ideal I in C(X) is called a z-ideal
if Z(f) ∈ Z[I] implies f ∈ I, that is, if I = Z←[Z[I]]. If F is a z-filter then the ideal
Z←[F ] is a z-ideal. Hence, if J is an ideal in C(X), then I = Z←[Z[J ]] is the smallest
z-ideal containing J . Note that, every maximal ideal is z-ideal, and the intersection of
an arbitrary family of z-ideals is a z-ideal. Moreover, it is proved in [4, 14.7] that every
minimal prime ideal over an ideal I is a z-ideal.

The following proposition is the z-ideal counterpart of Theorem 5.

Proposition 4. A z-ideal I of C(X) is a 2-absorbing ideal if and only if it contains a
2-absorbing ideal.

Proof: The necessity part is clear.
Let I be a z-ideal of C(X) containing a 2-absorbing ideal J . Note that, since I is a

z-ideal, by [4, 2.8], it is a radical ideal. Then radJ ⊆ I. As J is a 2-absorbing ideal it has
at most two minimal prime ideals, that is radJ = P or radJ = P1 ∩ P2 where P, P1, P2

are minimal prime ideals of J . In the former case, since P ⊆ I, by [4, 2.9], we have I as a
prime, and hence a 2-absorbing ideal. Now, assume that radJ = P1∩P2. Since P1∩P2 ⊆ I
and I is a radical ideal, it can be written as I = A ∩ B where A is the intersection of
minimal prime ideals of I containing P1 and B is the intersection of minimal prime ideals
of I containing P2. Since every minimal prime ideal is a z-ideal, being the intersection of
any arbitrary nonempty family of z-ideals, both A and B are z-ideals. Besides, containing
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prime ideals P1 and P2 respectively, they are prime ideals. Therefore, we conclude that
I = A ∩B, being an intersection of two prime ideals, is a 2-absorbing ideal.

The following theorem gives a correspondence between 2-absorbing ideals of C(X) and
2-absorbing z-filters.

Theorem 7. Let I be a 2-absorbing ideal in C(X). Then Z[I] is a 2-absorbing z-filter.
Conversely, if F is a 2-absorbing z-filter, the ideal Z←[F ] is a 2-absorbing z-ideal. Thus,
there is a one-to-one correspondence between the set of 2-absorbing ideals of C(X) and the
set of 2-absorbing z-filters.

Proof: Let I be a 2-absorbing ideal in C(X) and J = Z←[Z[I]]. Then we have I ⊆
Z←[Z[I]] = J . As a z-ideal containing a 2-absrobing ideal, by Proposition 4, the ideal J is
a 2-absorbing ideal. Assume that Z(f)∪Z(g)∪Z(h) ∈ Z[I] where f, g, h ∈ C(X). Then we
have Z(fgh) ∈ Z[I] = Z[J ]. Since J is a z-ideal, we obtain fgh ∈ J . As J is a 2-absorbing
ideal, either fg ∈ J or fh ∈ J or gh ∈ J . Thus we get Z(f) ∪ Z(g) = Z(fg) ∈ Z[J ] = Z[I]
or Z(f) ∪ Z(h) = Z(fh) ∈ Z[J ] = Z[I] or Z(g) ∪ Z(h) = Z(gh) ∈ Z[J ] = Z[I]. Therefore
Z[I] is a 2-absorbing z-filter.

Conversely, let F be a 2-absorbing z-filter. Note that Z←[F ] is a z-ideal. Let fgh ∈
Z←[F ]. Then

Z(f) ∪ Z(g) ∪ Z(h) = Z(fgh) ∈ F .

Since F is a 2-absorbing z-filter, either Z(fg) = Z(f)∪Z(g) ∈ F or Z(fh) = Z(f)∪Z(h) ∈
F or Z(gh) = Z(g)∪Z(h) ∈ F . This implies fg ∈ Z←[F ] or fh ∈ Z←[F ] or gh ∈ Z←[F ].
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