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Abstract

In this paper, we establish Brunn-Minkowski-type inequalities for the sums of vol-
ume quotient functions of star bodies, which in special case yield some of the recent
results.
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1 Introduction

Let K and L be star bodies in R”, then the classical dual Brunn-Minkowski inequality state
that (see [3]).

V(K+L)Y" < V()" + V(L)V",
with equality holds if and only if K and L are dilates. Here, + is radial Minkowski sum.

If K and L are star bodies in R™, then The sum K+L debotes the radial Minkowski sum,
defined by

p(K+L,-) = p(K,-) + p(L,-), (1.1)

for star bodies K and L. Here, p(K,u) denotes the radial function p(K,-) : S"~! — [0, ),
defined for u € S"71, by p(K,u) = max{\ > 0 : \u € K}. If p(K,-) is positive and
continuous, K will be called a star body. Let S™ denote the set of star bodies in R"™.

Recently, the volume quotient functions has been introduced, and inequalities for it were
established (see [7]):

Theorem A. I[f K, L € 8" andi<n—1<j<n, then
1 1 1
it it J-i 1.2
Qwi,j(KJrL) - Qwi,j(K) + QWM(L)’ ( )

with equality if and only if K and L are dilates, where + is the radial Minkowski sum.
Theorem B. If K, L € §" andi <1< j <n, then

n—1 n—1 n—1
Wi = Qe T 9% wy (1.3)

with equality if and only if K and L are dilates, where + is the radial Blaschke sum (see
Section 2.)
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Theorem C. If KL € 8" andi < —1 < j <n and, then

= e 7=t
QWM(K%L) Q’Wi,j(m QWW-(L) (1.4)
V(K+L) — V(K) V(L) ’ :

with equality if and only if K and L are dilates, where + is the harmonic Blaschke sum (see
Section 2).

Similarly, we give a new definition of dual quermassintegral quotient function.

Definition 1.1 Let K € 8™, then dual quermassintegral quotient function of star body K,
QWM(K) (i,j € R), defined by N
0 _ Wi(K)
Wi (K)o :
0 wi(K)
The aim of this paper is to establish the following Brunn-Minkowski-type inequalities for
sums of volume quotient functions of star bodies.

Theorem 1.1 If K,L and D are star bodies in R™ and D' is a dilated copy of D. If
1<j—1<n-1<j<n, then fore >0

1

(ij,j(K;eL) + QW,;J(D—T-ED’)) )

1
f—i

_1
j—i J
< (@, 00+ Qo) e (@ + Q) (15)
with equality if and only if K and L are dilates and
(QWM(K),QWM(D)) = “(QWM(L)’QWM(D’))’ where u is a constant.

Theorem 1.1 is special case of Theorems 4.1 established in Section 4.

Remark 1.1 Taking for j =n and e =1 in (1.5), (1.5) changes to, for i <n —1

1)
(Wi(KvLL) +Wi(DID ))

1/(n—i) 1/(n—1)

< (W) /04 WD) (W) + W) (16)

i

with equality if and only if K and L are dilates and (W;(K), W;(L)) = w(W;(D), W;(D")),
where p is a constant.

Theorem 1.2 If K,L and D are star bodies in R™ and D' is a dilated copy of D. If
n>j>1>j—n+1>i, then fore >0

n—1
J—

(QWi,j(KfrsL) + QW,z,_AD—T—sD'))

n—1 n—1

= (QWM(K) + QWM-(D)) e (me‘(L) T QWM(D’)) o (1.7)
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with equality if and only if K and L are dilates and
(QWM(K)’ QWW(D)) = M(QWM(L), QWM(D’))’ where p is a constant.

Theorem 1.2 is special case of Theorems 4.2 established in Section 4.

Remark 1.2 Taking for j =n and e = 1 in (1.7), (1.7) changes to, for i < n

— . — . (n—1)/(n—1)
(Wi(KJrL) + Wi(DJrD’))

(n—1)/(n—1) n (~ —~ )(nfl)/(ﬂ*i)

< (W) + WD) Wi(L) + Wi(D')

with equality if and only if K and L are dilates and (W;(K), W;(L)) = uw(W;(D), W;(D')),
where p is a constant.

Theorem 1.3 If K,L and D are star bodies in R™ and D’ is a dilated copy of D. If
i1<j—n—-1<-1<j<n,then fore >0

n+1
QW, (K ieL) n Qw, ,(piepy \
V(K+eL)w#t  V(DieD)mr

n+1 n+1

< QW”(K) +€Qw’i,j(bD? i—i . QW“(L) n Qwi,j(pl) =i (1.9)
T\ V(K)" V(D)W V(L)w  V(D')wr
with equality if and only if K and L are dilates and
n41 n41
VI Qw0 _ VID) T @)
nt1 - ntl .
VIE) Q) VD) R, )

Theorem 1.3 is special case of Theorems 4.3 established in Section 4.

Remark 1.3 Let D and D’ be single points, and taking for j = n and € = 1 in (1.9), we
have for ¢ < 1

WiKTL)FE _Wi(K)F W)+
VIKTL) VK V)

with equality if and only if K and L are dilates.

2 Notations and preliminaries

The setting for this paper is n-dimensional Euclidean space R™(n > 2). We reserve the
letter u for unit vectors, and the letter B for the unit ball centered at the origin. The
surface of B is S~ !. For Ki,...,K, € S® and A,..., A\, > 0, the volume of the radial
Minkowski linear combination A\ K;+ - - -+, K, is a homogeneous nth polynomial in the
;i (see e.g. [2])

VWK FNKD) =D Vi i hi A (2.1)
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where the sum is taken over all n-tuples (i1, ...,i,) whose entries are positive integers not
exceeding r. If we require the coefficients of the polynomial in (2.1) to be symmetric in their
argument, then they are uniquely determined. The coefficient ‘N/hln is nonnegative and
depends only on the bodies K;,,..., K;, . Here we denote f/hl to f/(Kil,. .., K; ) and
is called the dual mixed volume of K; ., K; . The radial Minkowski linear combination,

172°° n

M K1+ - MK, defined by (see [4])
ME e FN K = {m e F A g € Ko (2.2)

for Ky,...,K, € 8" and A\,..., A\, € R. If Ky,...,K,, € 8§, the dual mixed volume

V(Ki,...,K,) defined by (see [3])

~ 1

V(Ky,...,Kp) = - /SH?1 p(K1,u) - p(Kp,u)dS(u). (2.3)

ftKy ==K,y =K, K,_ ;41 = -+ = K, = L, the dual mixed volume is written
as Vi(K,L). If L = B, the dual mixed volume V;(K, L) is written as W;(K) and call it
quermassintegral of K, defined by (see [3])

— 1

Wilk) = [ ol ias(u), (2.4)

where i € R. When i = 0, Wl(K) becomes the usual volume V(K). If K,L € 8™, then
from (2.1), it follows immediately that

V(Ete L) - V(K) _ nVi(K,L). (2.5)

lim
e—0 g

If K and L are star bodies in R” and A\, > 0, then A - K+ - L, is the star body, call it
radial Blaschke linear combination, whose radial function is given by (see [4])

pN - KFp- L) = Ap(K, )" 4 pp(L, )" (2.6)
The harmonic Blaschke linear combinations, denoted by AK+uL, defined by (see [5])
VAK+uL) " p(AK FpL, )" = AV (K) 7 p(K, )"+ uV (D) " p(L, )", (2.7)

where K, L € 8" and A, > 0 (not both zero).

3 An improvement of Beckenbach-Dresher’s inequality

Lemma 3.1 [1] (Beckenbach-Dresher’s inequality) If p>1>r >0, f,g > 0, then

1 1

(o) =(erw) () o

with equality if and only if the functions f and g are positively proportional. Here E is a
bounded measurable subset in R™.
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Lemma 3.2 Ifp>r+1>1>r2>0, f,g,u,v > 0 and the functions u and v are positively
proportional, then

(R fevme)

(3.2)

(fE frdo  J upd¢> . (ngpdas e vpdqs)vir
f]E frdeg fIE vrde f]E grde f[E v de ’

with equality if and only if the functions f and g are positively proportional and (IE frde fy grd¢) =

Je frde’ [ gmde
JpuPde  [pvPdg . E E
(f wdg’ [, vrdqs) , where u is a constant.

Proof: By Lemma 3.1, for 0 < r <1 < p, we have

(Lt ooy & (4 f”d«b) (e ﬁ (33)
Je(f +9)rde Je [rdo Je 97 d¢ ’ '
with equality if and only if the functions f and g are positively proportional, and
(f]E(u + v)pd¢> = _ (IE upqu) = . <f]E vpdgb> P )
Jp(u+v)rde Jzurde Jgvrde ’ '

From (3.3), (3.4), and by using Minkowski inequality, we obtain for p > r + 1

f(f+gpd¢+f]E v)Pdg
Je(f +9)rde  [g(u+v)rde

<[ (o)™ o ()] ()™ (feeey )

fE fpdq5> = (fE gpd(b) P rr { (fE u”dqﬁ) P (fE Upd¢> p%r ]pr} P
= { { (fE frag) T\ oo T\ Gwas) T\
< (Lo , i) +(fE 4o | o) *
fIE frde fIE "de fuz grdo f]E v de

From the equality conditions of (3.3) and Minkowski inequality, it follows the equality

in (3.2) holds if and only if f and g are positively proportional and (fﬂ ;I:ZZ, ‘fm gi3¢> =
Pd E 9 b
<§]E urji, § Urdi) , where p is a constant.
E E
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4 Inequalities for sums of volume quotient functions

Theorem 4.1 If K,L,D € 8™ and D' is a dilated copy of D. If0 <r <1<r+1<p,
then fore >0

1 1

(Qanp,n,,r(K;sm + Qanp,nﬂ(D;aD')) < (QWWP,WUQ + Qanp,MD))

1
p—r
+€ (QWn—p,n—T(L) + QWn—p,n—T(D/)) ) (41)
~ Lo - - QW) CWp (D)
with equality if and only if K and L are dilates and o =g-—- .
Wi —pyn—r (L) Wi —pn—r(D’)

Proof: From (1.1) and (2.4), we have

Wy (KieL) = % /S P TeL, wpdS(u) = % /S (Pl ) + ep(Lou)PdS (). (4.2)

Similarly

W (KTel) = % /S (Pl ) + ep(L ) dS (), (4.3)

Hence, from (4.2) and (4.3) and using Lemma 3.2, we have for 0 <r <1<r+4+1<p

—_— 1

= (WHP(K:H-:L) . Wnp(D%sD')> 7

(QWTHPJHT'(K;EL) + QW"*P’"*"'(D;ED,)> Wn—r(K‘T‘EL) Wn—r(D;&‘D/)

Lou)dS(w) | o1 (p(D,w) +2p(D',w)"dS(u) ) =
L,u))dS() | [go1(p(D,u) +p(D',w)) dS(u)

<fsm p(K upPdS(w) | Jon . P(D,u)pdS(u))plr

<

e (ISM p(L,uPdS(u) [ p(D' u)PdS(u) ) p;
s P(Lyu)rdS() " [o . (p(D", w)rdS(u)

_ @z-p(m N @_pw)) . @n_p(m N E@_pw')) o

Woer(K)  Woer(D) Woer(L) W r(D')

_1
= (an,p,n,r(m + Qmmfrum) te (anfpm@) + Qmpmwﬁ) (44)

From the equality conditions of Lemma 3.2, the equality in (4.4) holds if and only if K

and L are dilates and (anip,nir([{),QW%IM?T(D) =p Qanp,nfr(L)’QWTLW,"?T(D’)) ,
where p is a constant.
Letn—p=iandn—r=j,inviewof 0 <7 <1<r+1<p, then

0<r<i1<r+4l<p=i<j—-1<n-1<j<n. (4.5)
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Taking for n —p =14 and n —r = j in (4.1) and notice (4.5), (4.1) changes to the inequality
in Theorem 1.1 stated in the introduction.

Theorem 4.2 I[f KL € S" andlet0 <r<n—-1<r+n—1<p, then fore >0

n—1 n—1
p—r

(QWn,p,n,r(K%L) + an,p,n,,,(/ﬂspf)) < (QWn,p,n,r(K) + QW,L,M,T(DQ +

n—1
+€ (QWn—p,n—r(L) + an—p,n—r(D/)) ’ (46)

QW”*P»”*T‘(K) — anfp,nf'r(D)

with equality if and only if K and L are dilates and

Wo—pn—r(L) Wo—p.n—r(D')
Proof: From (2.4) and (2.6), we have
W (K-eL) = % /S T u)dS(u) = % /S (o) ep( L)) S ().
(47)
Similarly
W o(Kiel) = % /S (P ) ep(L ) S ), (4.8)

From (4.7) and (4.8) and in view of Lemma 3.2, the same as the proof of Theorem 4.1 and
with appropriate transformation, we may get the inequality in Theorem 4.2. Here, we omit
the details.

Letn—p=dandn—r=j,inviewof 0 <r<n—-1<r+n—1<p, then

n>j>1>j-n+1>i (4.9)

Taking for n —p =i and n —r = j in (4.6) and notice (4.9), (4.6) changes to the inequality
in Theorem 1.2 stated in the introduction.

Theorem 4.3 If K,L,D € 8" and D’ is a dilated copy of D. If0 <r <n+1<
r+n-+1<p, then fore >0

+1

nt1 nt1
(anpmr(K-i-aL) N anp,nr(D;Lan)> » - <QWHMT(K) N an,,,,,r(p)> v N

V(K deL)5 V(DYeD')w V(K) V(D)=
Q Q o
e [ Hepnrll) | TWnpn (P (4.10)
V(L)n+t V(D")n+1

with equality if and only if K and L are dilates and

n+1 n+1
VI Qw, 4 VD)7 Qy (p

ntl - ntl .
VIE)=Qp, .y VD) =@y, _ (b

Proof: From (2.4), (2.7) and in view of £ = V(K+L), we have

— . 1 R
Wop(K-FeL) = = / p(Kel, u)PdS(u)
Snfl
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= %/Sn,l(fv—mpm, W eV D)p(Low) ) TS (). (411)

Similarly

Wir(Ktel) = %/Sn_xév-l(K)p(K, W) 4 26V (L) (L)) T dS (), (4.12)

From (4.11) and (4.12) and in view of Lemma 3.2, the same as the proof of Theorem 4.1
and with appropriate transformation, we may get the inequality in Theorem 4.3. Here, we
omit the details.

Letn—p=iandn—r=j,inviewof 0 <r<n+1<r+n+1<p, then

i<j-n—-1<-1<j<n. (4.13)

Taking for n —p = i and n — r = j in (4.10) and notice (4.13), (4.10) changes to the
inequality in Theorem 1.3 stated in the introduction.

We finally remark that inequalities for quotient function were given in [8-9], volume sum
or difference functions were given in [10-12].
5 Applications
As applications of our results, we prove the Minkowski inequality for volume sum and
further obtained the classical dual Minkowski inequality.

Theorem 5.1 (Dual Minkowski inequality) If K,L € 8™, then

Vi(K, L)" < V(K)"'V(K)", (5.1)

with equality if and only if K and L are dilates.

Theorem 5.2 (Dual Minkowski inequality for volumes sum) If K, L,D € 8™ and D' is a
dilated copy of D, then

(Vi(r, 1)+ Ti(D, D))" < (V(K) + V(D))" (V(L) + V(D"), (5.2)
with equality if and only if K and L are dilates and (V(K),V (D)) = NV (L), V(D")).

Proof: From (2.5), we have

n(VA(K, L) + Va(D, D)) = lim [V(K+eL) + V(D%f’)] — (V(K) + V(D))

By using the case j =n and i = 0 of (1.5), we obtain

n(Vi(K,L)+Vi(D,D")) < lim

[(V(E) + V(D)™ +e(V(L) + V(D)™™ — (V(E) + V(D))

e—0 3

(5.3)

)
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with equality if and only if K and L are dilates and (V(K), V(D)) = A(V(L), V(D).
On the other hand, from (5.3) and in view of L'Hépital’s rule, we have

Vi(K, L)+Vi(D, D') < lim [(V(K)+V(D)"/" +e(V (L) + V(D) /") (V(L)+V (D) "

= (V(E) + V(D))"= V™V (L) + V(D)Y™,
with equality if and only if K and L are dilates and (V(K), V(D)) = A(V(L),V(D’)).

Remark 5.3 Let D and D’ be single points in (5.2), (5.2) changes to the classical dual
Minkowski inequality (5.1).
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