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Abstract

We consider an evolution inclusion governed by the so-called ”sweeping process”.
The right-hand side contains a set-valued perturbation, upper semi-continuous with
nonempty compact and almost convex values. We generalize first an existence result
when the perturbation is with convex but not necessary bounded values, topological
properties of the attainable set are also established. Then, in a particular case arising
in planning procedures, the problem with almost convex perturbation is investigated
in order to establish the existence of time optimal solutions.
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1 Introduction

It’s well known that the attainable sets plays an important role in control theory; many
problems of optimization, dynamics, planning procedures in mathematical economy and
game theory can be stated and solved in terms of attainable sets. In the study of existence of
solutions for differential inclusions, the use of convexity assumptions is widely acknowledged;
in particular to establish that the set of all solutions is closed. This property is not true, in
general, when the convexity is dropped. The non-convex case has been studied by various
approaches. In [9], a generalization of convexity has been defined, namely, the almost
convexity of sets (see the definition below); the authors have shown the existence of solution
to upper semi-continuous differential inclusions, and that the attainable set (instead of the
solutions set) is closed. This almost convexity condition has been used successfully by [1]
and [2]. In [2], an evolution inclusion has been considered, the right-hand side contains
the classical Moreau’s sweeping process and a set-valued perturbation with almost convex
values. Let recall that the sweeping process is an evolution differential inclusion governed
by a maximal monotone operator defined as the subdifferential of the indicator function of
a convex set, and that includes, as a special case, a class of variational inequality. It has
the following form {

−ẋ(t) ∈ NC(t)(x(t)), a.e t ∈ [T0, T ];
x(t) ∈ C(t), ∀t ∈ [T0, T ], x(T0) = a.

where C(t) is a time dependent subset of Rd and NC(t)(x(t)) is the normal cone to C(t) at
x(t). Such problems has been introduced and thoroughly studied in the 70’s by Moreau in
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the setting where the sets C(t) are assumed to be convex (see [13]). Generalizations of the
sweeping process have been the object of many studies, see e.g. [5, 6, 8, 14, 16, 17] and the
references therein. The perturbed problem appears as follows

(I)

 −u̇(t) ∈ NC(t)(u(t)) +G(t, u(t)), a.e. t ∈ [T0, T ],
u(t) ∈ C(t) , ∀t ∈ [T0, T ],
u(T0) = u0 ∈ C(T0) ,

where the perturbation G : [T0, T ] × Rd ⇒ Rd is a nonempty closed valued set-valued
function, Lebesgue-measurable on [T0, T ] and upper semi-continuous on Rd.

In the present paper, we extend the results in [2] in many directions. We show that the
approach in [2] can be adapted to yield the existence of solution for (I) with a set-valued
perturbation unnecessarily bounded values. Moreover, we establish on the whole interval
R+ := [0,+∞[, the existence of solutions of the perturbed sweeping process

(IR+)

 −u̇(t) ∈ NC(t)(u(t)) +G(t, u(t)), a.e. t ∈ R+,
u(t) ∈ C(t) , ∀t ∈ R+,
u(0) = a ∈ C(0) ,

Making use of the result obtained, we present some topological properties of the attainable
sets.

On the other hand, when the sets C(t) := C are fixed and convex, one obtain the
following problem arising in the study of planning procedures in mathematical economy,
and studied by [11] and [12] :

(P)

 −u̇(t) ∈ NC(u(t)) +G(u(t)), a.e. t ∈ R+,
u(t) ∈ C , ∀t ∈ R+,
u(0) = a ∈ C ,

We investigate under the weaker assumption of almost convexity, the existence of solutions
to (P). This result lead us to obtain a solution of reaching any element of the attainable
sets in a minimum time which is known as the time optimality problem.

This paper is organized as follows. In section 2, several notations and preliminaries
of convex and non-smooth analysis are recalled, in section 3, we prove the existence of
(IR+) when G is upper semi-continuous on R+×Rd with unnecessary bounded values, and
establish a topological property on the attainable set, finally in section 4 we present an
existence result of (P) when G has compact almost convex values, and deduce a solution
of the time optimality problem.

2 Notation and Preliminaries

Through the paper, we will use the following notations and definitions.. CRd([T0, T ]) is the Banach space of all continuous mappings from [T0, T ] to Rd endowed
with the sup-norm.. L1
Rd([T0, T ]) is the space of all Lebesgue integrable Rd-valued mappings defined on [T0, T ].

. B is the closed unit ball of Rd.
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. If D is non empty closed subset of Rd, then δ∗(x′, D) = sup
y∈D

< x′, y > is the support

function of D at x′ ∈ Rd, d(., D) is the usual distance function associated with D, i.e.
d(x,D) = inf

u∈D
||x − u|| for x ∈ Rd, which is convex whenever D is convex. The projection

of x on D is the element of D denoted by ProjD(x) and satisfying

ProjD(x) = {y ∈ D : d(x,D) = ‖x− y‖}.

We denote the element of D with minimal norm by m(D) = ProjD(0), it is unique whenever
D is a closed convex subset of Rd. In the case of set valued maps, if F : Rd ⇒ Rd is a
measurable multifunction with nonempty closed convex images, then F admits a measurable
selection with minimal norm x→ m(F (x)) = ProjF (x)(0) (see [4])

. If A and B are closed subsets of Rd, the excess of A over B is

e(A,B) = sup{d(a,B) : a ∈ A}

and their Hausdorff distance is H(A,B) = max(e(A,B), e(A,B)).. For a subset C ⊂ Rd, co(C) denote the convex hull of C, and co(C) it’s closed convex hull,
which could be characterized by (see [4])

co(C) = {x ∈ Rd : ∀x′ ∈ Rd, < x′, x >≤ δ∗(x′, C)}

. D is called almost convex if for every β ∈ co(D) there exist ξ1 and ξ2 , 0 ≤ ξ1 ≤ 1 ≤ ξ2
such that, ξ1β ∈ D and ξ2β ∈ D. Note that if 0 ∈ co(D) then 0 ∈ D, also every convex set
is almost convex. Concretes examples of almost convex sets are D = ∂Z, with Z a convex
set not containing the origin, or D = {0} ∪ ∂Z, Z a convex set containing the origin.

Let us recall some definitions about subdifferential and normal cone of closed sets.. Let f : Rd → R ∪ {+∞} be a proper convex continuous function on Rd and x ∈ Rd with
f(x) < +∞, the subdifferential of f is the set

∂f(x) = {x∗ ∈ Rd : < x∗, y − x >≤ f(y)− f(x), ∀y ∈ Rd}

if f(x) is not finite we set ∂f(x) = ∅, ∂f(x) is closed convex set if f is convex.. Let C ⊂ Rd and x ∈ C, the normal cone to C at x is defined by

NC(x) = {y ∈ Rd : < y, c− x >≤ 0, for all c ∈ C}

and satisfies (see [10])

y ∈ NC(x)⇔ x ∈ C and < y, x >= δ∗(y, C).

y = ProjC(x)⇔ x− y ∈ NC(y).

∂d(x,C) = NC(x) ∩B.

. Let t ∈ R+, the attainable set of (IR+) at time t is defined by

Sa(t) = {u(t) : u(.) ∈ Υt(a)}

where Υt(a) is the set of the trajectories of the differential inclusion (IR+) on the interval
[0, t]. We signify by Sa =

⋃
t∈R+

Sa(t) the attainable set with unspecified end-time.
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3 Sweeping process with convex unbounded perturba-
tion

The main result of this section is an extension of previous results about the perturbed
sweeping process, in particular Theorem 3.1 in [2], even when the sets C are taken non-
convex, namely ”uniformly r-prox regular”, but here we give the result in the convex case
since we deal with this case in the application witch follows. Let G : R+ × Rd ⇒ Rd be
a multifunction with nonempty closed convex values, globally upper semi-continuous such
that
(H1) for some real α > 0,

‖m(G(t, y))‖ ≤ α, for all (t, y) ∈ R+ × Rd,

and let C : R+ ⇒ Rd be a multifunction with nonempty closed convex values such that
(H2) there exist a constant Λ > 0 satisfies

H(C(t1), C(t2)) ≤ Λ|t1 − t2|, for all t1, t2 ∈ R+.

The following theorem treats the existence result for the problem (IR+) when G has
convex and not necessary bounded values.

Theorem 1. Suppose that (H1) and (H2) are satisfied, then for every a ∈ C(0), there exists
an absolutely continuous mapping u : R+ → Rd solution of (IR+) satisfying

||u̇(t)|| ≤ Λ + 2α , a.e. t ∈ R+.

Proof. a) We need first to prove that the problem (I) admit a solution u : [T0, T ] → Rd.
Indeed, for every n ≥ 0, we consider a partition of [T0, T ] by the points

tnk = T0 + ken , en =
T − T0
n

, k = 0, 1, 2, ...., n.

Step1. Construction of approximate solution.
For each t ∈ [tn0 , t

n
1 [, we defined

un(t) =
tn1 − t
en

xn0 +
t− tn0
en

xn1 ,

where xn0 = u0 ∈ C(T0) and

xn1 = ProjC(tn1 )
(xn0 − enm(G(tn0 , u0)))

so that, un(tn0 ) = u0. Then we have the estimate

d(xn0 − enm(G(tn0 , un(tn0 ))), C(tn1 )) ≤ d(xn0 − enm(G(tn0 , un(tn0 ))), xn0 ) + d(xn0 , C(tn1 ))

≤ en||m(G(tn0 , un(tn0 )))||+H(C(tn0 ), C(tn1 ))

≤ enα+ Λ|tn0 − tn1 | = en(Λ + α).

Hence for t ∈ [tn0 , t
n
1 [, we have

u̇n(t) =
xn1 − xn0
en

.
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Using the characterization of the normal cone in term of the projection operator, we can
write

xn0 − enm(G(tn0 , u0))− xn1 ∈ −NC(tn1 )
(xn1 ),

so,

u̇n(t) =
xn1 − xn0
en

∈ −NC(tn1 )
(xn1 )−m(G(tn0 , un(tn0 ))),

with

||xn0 − enm(G(tn0 , u0))− xn1 || ≤ d(xn0 − enm(G(tn0 , u0), C(tn1 ))) ≤ (Λ + α)en,

then

||x
n
1 − xn0
en

|| ≤ (Λ + α) + ||m(G(tn0 , u0))|| ≤ Λ + 2α,

and

||u̇n(t)|| = ||x
n
1 − xn0
en

|| ≤ Λ + 2α.

For each t ∈ [tn1 , t
n
2 [, we defined

un(t) =
tn2 − t
en

xn1 +
t− tn1
en

xn2 ,

where
xn2 = ProjC(tn2 )

(xn1 − enm(G(tn1 , un(tn1 ))).

Then for t ∈ [tn1 , t
n
2 [, we have xn1 = un(tn1 ) and

u̇n(t) =
xn2 − xn1
en

∈ −NC(tn2 )
(xn2 )−m(G(tn1 , un(tn1 ))),

with the estimate

d(xn1 − enm(G(tn1 , un(tn1 ))), C(tn2 )) ≤ (Λ + α)en,

so that

‖u̇n(t)‖ = ||x
n
2 − xn1
en

|| ≤ Λ + 2α.

Suppose that, (un) is well defined on [tnk−1, t
n
k [ with

un(tnk ) = xnk and ||
xnk − xnk−1

en
|| ≤ Λ + 2α,

for each t ∈ [tnk , t
n
k+1[, we define

un(t) =
tnk+1 − t
en

xnk +
t− tnk
en

xnk+1 ,

where
xnk+1 = ProjC(tnk+1)

(xnk − enm(G(tnk , un(tnk )))).
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Then for t ∈ [tnk , t
n
k+1[,

u̇n(t) =
xnk+1 − xnk

en
∈ −NC(tnk+1)

(xnk+1)−m(G(tnk , un(tnk ))), (3.1)

with the estimate

‖u̇n(t)‖ = ‖
xnk+1 − xnk

en
‖ ≤ Λ + 2α. (3.2)

For each t ∈ [T0, T ] and each n ≥ 1, let δn(t) = tnk , θn(t) = tnk+1, if t ∈ [tnk , t
n
k+1[ and

δn(T ) = tnn−1, θn(T ) = T . So by (3.1) we get

u̇n(t) ∈ −NC(θn(t))(un(θn(t)))−m(G(δn(t), un(δn(t)))), a.e, t ∈ [T0, T ].

It is obvious that, for all n ≥ 1 and for all t ∈ [T0, T ] the following hold,

m(G(δn(t), un(δn(t)))) ∈ G(δn(t), un(δn(t))); (3.3)

un(δn(t)) ∈ C(δn(t)); (3.4)

un(θn(t)) ∈ C(θn(t)); (3.5)

lim
n→∞

δn(t) = lim
n→∞

θn(t) = t. (3.6)

Step 2. The convergence of the sequences.
For all n ≥ 1 and for a.e. t ∈ [T0, T ], we have

||un(θn(t))− un(t)|| = ||un(tnk+1)− un(t)||

= ||xnk+1 −
tnk+1 − t
en

xnk −
t− tnk
en

xnk+1||

= ||
enx

n
k+1 − tnk+1x

n
k + txnk − txnk+1 + tnkx

n
k+1

en
||

= ||
tnk+1x

n
k+1 − tnkxnk+1 − tnk+1x

n
k + txnk − txnk+1 + tnkx

n
k+1

en
||

= ||
tnk+1(xnk+1 − xnk ) + t(xnk − xnk+1)

en
||

= ||
xnk+1 − xnk

en
|||tnk+1 − t|,

that is,
||un(θn(t))− un(t)|| = ‖u̇n(t)‖(θn(t)− t) ≤ (Λ + 2α)(θn(t)− t), (3.7)

so, by (3.6)
lim
n→∞

||un(θn(t))− un(t)|| = 0.

As
||xnk − xn0 || ≤ ||xnk − xnk−1||+ ||xnk−1 − xnk−2||+ .....+ ||xn1 − xn0 ||

≤ en(Λ + 2α) + en(Λ + 2α) + ...+ en(Λ + 2α).

Then, for all k = 1,2,...,n

‖un(tnk )‖ = ‖xnk‖ ≤ ken(Λ + 2α) + ‖u0‖ ≤ (T − T0)(Λ + 2α) + ‖u0‖
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and,

||un(t)|| − ||un(θn(t))|| ≤ ||un(t)− un(θn(t))|| ≤ (Λ + 2α)(θn(t)− t) ≤ (Λ + 2α)(T − T0)

so, we get

||un(t)|| ≤ (Λ + 2α)(T − T0) + ||un(tnk )|| ≤ 2(Λ + 2α)(T − T0) + ‖u0‖,

we conclude that the sequence (un(t))n is relatively compact.
In the other hand, for all t1, t2 ∈ [T0, T ] such that t1 ≤ t2 we have

‖un(t2)− un(t1)‖ = ‖
∫ t2

t1

u̇n(s)ds‖ ≤ (Λ + 2α)(t2 − t1)

then the sequence (un(.)) is equi-continuous, by the Ascoli-Arzelà theorem (see [3], Theorem
0.3.1) we conclude that (un(.)) is relatively compact in CRd([T0, T ]), since ‖u̇n(t)‖ ≤ Λ+2α,
a.e. on [T0, T ], we conclude by the consequence of Ascoli-Arzelà theorem ( see [3], Theorem
0.3.4) that there exists a subsequence (again denote by) (un(.)) converging to an absolutely
continuous mapping u(.) and (u̇n(.)) converges σ(L1

Rd([T0, T ]), L∞Rd([T0, T ])) to u̇(.). Then

u(t) = lim
n→∞

un(t) = u0 + lim
n→∞

∫ t

T0

u̇n(s)ds = u0 +

∫ t

T0

u̇(s)ds.

Now, we put (m(G(δn(.), un(δn(.)))))n = (gn(.))n, for all n ≥ n0 and for all t ∈ [T0, T ],
then ‖gn(t)‖ ≤ α. So (gn(.)) is bounded in L∞Rd([T0, T ]), taking a subsequence if necessary
we may conclude that (gn(.)) converges σ(L∞Rd([T0, T ]), L1

Rd([T0, T ])) to some mapping g ∈
L∞Rd([T0, T ]). Consequently, for all v(.) ∈ L1

Rd([T0, T ]), we have

lim
n→∞

< gn(.), v(.) >=< g(.), v(.) > .

Let y(.) ∈ L∞Rd([T0, T ]) ⊂ L1
Rd([T0, T ]) then

lim
n→∞

< gn(.), y(.) >=< g(.), y(.) > .

This shows that (gn(.)) converges σ(L1
Rd([T0, T ]), L∞Rd([T0, T ])) to g(.), with ‖g(t)‖ ≤ α a.e.

Step 3. u̇(t) + g(t) ∈ −NC(t)(u(t))
First we show that u(t) ∈ C(t), ∀t ∈ [T0, T ]. Indeed, for every t ∈ [T0, T ], and for every
n ≥ 1 by (3.5)

d(un(t), C(t)) ≤ d(un(t), un(θn(t))) + d(un(θn(t)), C(t))

≤ ||un(t)− un(θn(t))||+H(C(θn(t)), C(t))

≤ ||un(t)− un(θn(t))||+ Λ|θn(t)− t|

Since lim
n→∞

||un(t) − un(θn(t))|| = 0 , lim
n→∞

|θn(t) − t| = 0 and C(t) is closed, by passing to

the limit in the preceding inequality, we get u(t) ∈ C(t).
In the other hand, we have

‖u̇n(t) + gn(t)‖ ≤ ‖u̇n(t)‖+ ‖gn(t)‖ ≤ Λ + 3α = γ
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that is
u̇n(t) + gn(t) ∈ γB,

since
u̇n(t) + gn(t) ∈ −NC(θn(t))(un(θn(t)))

by the properties of the convex normal cone, we get

u̇n(t) + gn(t) ∈ −γ∂d(un(θn(t)), C(θn(t))).

An application of the Mazur’s Theorem to (u̇n + gn, gn) provide a sequence (wn, vn) with

wn ∈ co { u̇m + gm : m ≥ n } and vn ∈ co { gm : m ≥ n }

such that (wn, vn) converges strongly in L1
Rd×Rd([T0, T ]) to (u̇ + g, g). We can extract

from (wn, vn) a subsequence which converges a.e. to (u̇ + g, g). Then, there is a Lebesgue
negligible set N ⊂ [T0, T ] such that for every t ∈ [T0, T ] \N

u̇(t) + g(t) ∈
⋂
n≥0

{wk(t) : k ≥ n} ⊂
⋂
n≥0

co{u̇k(t) + gk(t) : k ≥ n}. (3.8)

and,

g(t) ∈
⋂
n≥0

{vk(t) : k ≥ n} ⊂
⋂
n≥0

co{gk(t) : k ≥ n}. (3.9)

Fix any t ∈ [T0, T ] \N and µ ∈ Rd the relation (3.8) gives

< µ, u̇(t) + g(t) >≤ lim sup
n→∞

δ∗(µ,−γ∂d(un(θn(t)), C(θn(t))) ≤ δ∗(µ,−γ∂d(u(t), C(t)))

where the second inequality follows from Theorem 3.1 in [5]. Since ∂d(u(t), C(t)) is closed
convex set we obtain

u̇(t) + g(t) ∈ −γ∂d(u(t), C(t)) ⊂ −NC(t)(u(t)).

Further, the relation (3.9) and the upper semi-continuity of G give

< µ, g(t) >≤ lim sup
n→∞

δ∗(µ,G(δn(t), un(δn(t))) ≤ δ∗(µ,G(t, u(t))),

So g(t) ∈ G(t, u(t)), because G has closed convex values, and the proof of the point (a) is
complete.

b) Since R+ =
⋃
k∈N

[k, k+1]. For all k ∈ N, applying the step (a) on [k, k+1], so there exists

an absolutely continuous mapping uk : [k, k + 1]→ Rd solution of the problem −u̇k(t) ∈ NC(t)(uk(t)) +G(t, uk(t)) a.e. t ∈ [k, k + 1],
uk(t) ∈ C(t) , ∀t ∈ [k, k + 1],
uk(k) ∈ C(k) ,

Considering the mapping u : R+ → Rd defined by u(t) = uk(t) for t ∈ [k, k + 1] and
k ∈ N, then it is easy to conclude that u is an absolutely continuous solution of the problem
(IR+). This completes the proof of the theorem.
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Remark 1. This result is still valid in the case of nonconvex uniformly r-prox regular sets
C(t) since our assumptions guarantee the existence of the (unique) projection necessary for
the construction of approximates solutions. The infinite dimension setting in a separable
Hilbert space is also obtained by adding the ball-compactness condition (see [8]).

The next Corollary characterize the attainable set, which will be used later in solving
the minimum-time problem.

Corollary 1. Suppose that (H1) and (H2) are satisfied, then for every a ∈ C(0), and for
all t ∈ R+,

1. the set of the trajectories of the differential inclusion (IR+) on the interval [0, t], Υt(a)
is nonempty compact;

2. the multifunction t 7→ Sa(t) is upper semi-continuous with nonempty compact values.

Proof. 1) By the Theorem 2.1, we have Υt(a) 6= ∅. Let (un)n be a sequence of trajectories
in Υt(a), then, for each n ∈ N, (un)n is an absolutely continuous solution of (I) with

||u̇n(t̃)|| ≤ Λ + 2α a.e. t̃ ∈ [0, t].

and

||un(t̃)|| ≤ ||a||+
∫ t

0

||u̇n(s)||ds ≤ ||a||+
∫ t

0

(Λ + 2α)ds ≤ ||a||+ (Λ + 2α)t.

Then the sequence (un(t̃))n is relatively compact. In addition, it is equi-continuous.
By the Ascoli-Arzelà theorem we conclude that (un(.))n is relatively compact in CRd([0, t]),
since ||u̇n(t̃)|| ≤ Λ + 2α, a.e. t̃ ∈ [0, t], we conclude by Theorem 0.3.4 in [3] that there exists
a subsequence of (un(.))n (denoted again (un(.))n) converges uniformly to an absolutely
continuous mapping u(.) from [0, t] to Rd, and (u̇n(.))n converges σ(L1

Rd([0, t]), L∞Rd([0, t]))
to u̇(.) with ||u̇(t̃)|| ≤ Λ + 2α, a.e. t̃ ∈ [0, t] and

u(t̃) = lim
n→∞

un(t̃) = a+ lim
n→∞

∫ t̃

0

u̇n(s)ds = a+

∫ t̃

0

u̇(s)ds.

For each n ∈ N, let gn : [0, t] → Rd be the measurable selection of G with minimal norm,
by the hypothesis (H2), we get for every t̃ ∈ [0, t] ‖gn(t̃)‖ ≤ α, so (gn)n is bounded
in L∞Rd([0, t]), taking a subsequence if necessary, we may conclude that (gn)n converges
σ(L∞Rd([0, t]), L1

Rd([0, t])) to some mapping g ∈ L∞Rd([0, t]). Consequently (gn(.))n converges
σ(L1

Rd([0, t]), L∞Rd([0, t])) to g(.). Let us prove now that u is a solution of (I). Since (un) is
a sequence of solutions of (I) and gn(t̃) ∈ G(t̃, un(t̃)) for each n ∈ N, we can write

−u̇n(t̃)− gn(t̃) ∈ NC(t̃)(un(t̃))

and we have
‖u̇n(t̃) + gn(t̃)‖ ≤ Λ + 3α = γ.

So we get
u̇n(t̃) + gn(t̃) ∈ −γ∂d(un(t̃), C(t̃)).
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An application to Mazur’s Theorem to (u̇n + gn, gn) provide a sequence (rn, sn) with

rn ∈ co { u̇m + gm : m ≥ n } and sn ∈ co { gm : m ≥ n }

(rn, sn) converges strongly in L1
Rd×Rd([0, t]) to (u̇ + g, g), we can extract from (rn, sn) a

subsequence which converges a.e. to (u̇ + g, g). Then, there is a Lebesgue negligible set
N ⊂ [0, t] such that for every t̃ ∈ [0, t] \N

u̇(t̃) + g(t̃) ∈
⋂
n≥0

{rm(t̃) : m ≥ n} ⊂
⋂
n≥0

co{u̇m(t̃) + gm(t̃) : m ≥ n}. (3.10)

g(t̃) ∈
⋂
n≥0

{sm(t̃) : m ≥ n} ⊂
⋂
n≥0

co{gm(t̃) : m ≥ n}. (3.11)

Fix any µ ∈ Rd the relation (3.10) gives

< µ, u̇(t̃) + g(t̃) >≤ lim sup
n→∞

δ∗(µ,−γ∂d(un(t̃)), C(t̃)) ≤ δ∗(µ,−γ ∂d(u(t̃), C(t̃)))

Since ∂d(u(t̃), C(t̃)) is closed convex set we obtain

u̇(t̃) + g(t̃) ∈ −γ ∂d(u(t̃), C(t̃)) ⊂ −NC(t̃)(u(t̃)).

Moreover by the upper semi-continuity of G we have

< µ, g(t̃) >≤ lim sup
n→∞

δ∗(µ,G(t̃, un(t̃)) ≤ δ∗(µ,G(t̃, u(t̃))),

which implies that g(t̃) ∈ G(t̃, u(t̃)), then we get −u̇(t̃) ∈ NC(t̃)(u(t̃)) + G(t̃, u(t̃)), and we
conclude that Υt(a) is compact.
2) From the compactness of Υt(a) we have that of Sa(t). Showing now the upper semi-
continuity of the multifunction Sa(.) on R+. Consider the graph of Sa(.) defined by

Gph(Sa) = {(t, z) ∈ R+ × Rd : z ∈ Sa(t)}

Let (tn, zn) be a sequence of Gph(Sa) converges to (t, z), so, for all n ≥ 0 there exists an
absolutely continuous mapping un(.) ∈ Υt(a) satisfies un(tn) = zn, since Υt(a) is a compact,
we can extract from (un(.)) a subsequence that we do not relabel converges uniformly
to an absolutely continuous mapping u(.) ∈ Υt(a), which gives that u(t) = z ∈ Sa(t).
Consequently Gph(Sa) is closed. Then Sa(.) is upper semi-continuous.

4 Sweeping process with almost convex valued pertur-
bation

Now we are going to announce the main theorem of the paper, which is an existence result
for the first order perturbed sweeping process, when the perturbation G has an almost
convex values, but before that we need the following preliminary result.
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Theorem 2. Let C ⊂ Rd be a nonempty closed convex subset, G : Rd ⇒ Rd be an upper
semi-continuous multifunction with nonempty compact values. Let u0 ∈ C, and x : R+ →
Rd be an absolutely continuous solution of

(Pco)

 −u̇(t) ∈ NC(u(t)) + co
(
G(u(t))

)
, a.e. t ∈ R+,

u(t) ∈ C, ∀t ∈ R+,
u(0) = a ∈ C.

Assume that there exist integrable functions ξ1(.) and ξ2(.) defined on R+, satisfying 0 ≤
ξ1(t) ≤ 1 ≤ ξ2(t), and

(H3) ξ1(t)m
(
co
(
G(x(t))

))
∈ G(x(t)) and ξ2(t)m

(
co
(
G(x(t)

))
∈ G(x(t)), a.e t ∈ R+.

Then, the problem (P) admits an absolutely continuous solution.

Proof. We will show first that for all t ∈ [T0, T ], there exists t = t(τ), a nondecreasing
absolutely continuous map from the interval [T0, T ] into itself, such that the map x̃(τ) =
x(t(τ)) is a solution of the problem (P) on the interval [T0, T ]. Moreover, x̃(T0) = x(T0)
and x̃(T ) = x(T ).

a) By using the same procedure as in the proof of Theorem 3.3. in [2] and Theorem 2.
in [9] we conclude that for all [a, b] ⊂ [T0, T ] there exist two measurable subsets of [a, b],
having characteristic functions Ψ1 and Ψ2 such that Ψ1 + Ψ2 = Ψ[T0,T ], and an absolutely
continuous function s : [a, b]→ [a, b] , such that

ṡ(τ) = Ψ1(τ)
1

ξ1(τ)
+ Ψ2(τ)

1

ξ2(τ)
and s(b)− s(a) = b− a

b) Consider the closed set K = {τ ∈ [T0, T ] : m
(
co(G(x(τ)))

)
= 0}.

If K = ∅, in this case ξ1(τ) > 0 on a set of positive measure, and a) can be applied to the
interval [T0, T ]. Set s(τ) =

∫ τ
T0
ṡ(ω)dω, s is increasing and we have s(T0) = T0 and s(T ) =

T, that is, s defined from [T0, T ] into itself. Let t : [T0, T ] −→ [T0, T ] be its inverse, then
t(T0) = T0, t(T ) = T and

ṫ(τ) =
1

ṡ(t(τ))
= ξ1

(
t(τ)

)
Ψ1

(
t(τ)

)
+ ξ2

(
t(τ)

)
Ψ2

(
t(τ)

)
.

Let x̃ : [T0, T ] −→ Rd the mapping defined by x̃(τ) = x (t(τ)), we have

−dx̃(τ)

dτ
= −ẋ

(
t(τ)

)(
ξ1
(
t(τ)

)
Ψ1

(
t(τ)

)
+ ξ2

(
t(τ)

)
Ψ2

(
t(τ)

))
,

using the steps of the proof of the Theorem 2.1, we get

−dx̃(τ)

dτ
∈
(
ξ1
(
t(τ)

)
Ψ1

(
t(τ)

)
+ ξ2

(
t(τ)

)
Ψ2

(
t(τ)

)) (
NC
(
x
(
t(τ)

))
) +m

(
co
(
G(x

(
t(τ)

)))))
,

by the properties of the normal cone and hypothesis (H3), we obtain

−dx̃(τ)

dτ
∈ NC

(
x
(
t(τ)

))
+G

(
x
(
t(τ)

))
= NC

(
x̃(τ)

)
+G

(
x̃(τ)

)
.
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Now assume that K 6= ∅ . Let l = sup{τ, τ ∈ K}, since K is closed we get l ∈ K.
The complement of K is open relative to [T0, T ], it consists of at most countably many
overlapping open interval ]ai, bi[ with the possible exception of the form [aii , bii [ with aii =
T0 and one of the form ]aif , bif ] with aif = l. For each i apply a) to the interval ]ai, bi[,
there existence two subsets of ]ai, bi[ with characteristic functions Ψi,1(.) andΨi,2(.) such
that Ψi,1(.) + Ψi,2(.) = Ψ]ai,bi[(.). Setting

ṡ(τ) =
1

ξ1(τ)
Ψi,1(τ) +

1

ξ2(τ)
Ψi,2(τ),

we get ∫ bi

ai

ṡ(ω)dω = bi − ai.

For τ ∈ [T0, l], set

ṡ(τ) =
1

ξ2(τ)
ΨK(τ) +

∑
i

(
1

ξ1(τ)
Ψi,1(τ) +

1

ξ2(τ)
Ψi,2(τ)

)

where the sum is over all intervals contained in [T0, l], we have
∫ l
T0
ṡ(ω)dω = p ≤ l − T0,

since ξ2(τ) ≥ 1; and
∫ bi
ai
ṡ(ω)dω = bi − ai. Setting s(τ) = T0 +

∫ τ
T0
ṡ(ω)dω, we obtain that

s(.) is an invertible map from [T0, l] to [T0, p].
Now, let define t : [T0, p] −→ [T0, l] to be the inverse of s(.), then extend t(.) to an

absolutely continuous map t̃(.) on [T0, l] by setting ˙̃t(τ) = 0 for τ ∈]p, l]. We claim that the
mapping x̃(τ) = x

(
t̃(τ)

)
is a solution of the problem (P ) on the interval [k, l] and satisfies

x̃(l) = x(l). Observe that, for τ ∈ [T0, p[, t̃(τ) = t(τ) is invertible and

ṫ(τ) = ξ2
(
t(τ)

)
ΨK

(
t(τ)

)
+
∑
i

(
ξ1
(
t(τ)

)
Ψi,1

(
t(τ)

)
+ ξ2

(
t(τ)

)
Ψi,2

(
t(τ)

))
.

then we get

−dx̃(τ)

dτ
= −ẋ

(
t(τ)

)(
ξ2
(
t(τ)

)
ΨK

(
t(τ)

)
+
∑
i

(
ξ1
(
t(τ)

)
Ψi,1

(
t(τ)

)
+ ξ2

(
t(τ)

)
Ψi,2

(
t(τ)

)))
∈
(
NC
(
x(t(τ))

)
+m

(
co
(
G
(
x(t(τ))

))))
×
(
ξ2(t(τ))ΨK(t(τ)) +

∑
i

(
ξ1(t(τ))Ψi,1(t(τ)) + ξ2(t(τ))Ψi,2(t(τ))

))
∈ NC

(
x
(
t(τ)

))
+G

(
x
(
t(τ)

))
= NC

(
x̃(τ)) +G

(
x̃(τ)

)
.

In particular, from t(p) = l and ˙̃t(τ) = 0 for all τ ∈]p, l], we obtain t̃(τ) = t̃(p) = t(p), for
all τ ∈]p, l], so, x̃(l) = x(l), x̃ is constant on ]p, l] and we have

−dx̃(τ)

dτ
= 0 ∈ co

(
G(x(l))

)
= co

(
G(x̃(τ))

)
, ∀τ ∈]p, l] (4.1)
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As 0 ∈ NC(x̃(τ)), using (4.1) and (H3) we conclude that for τ ∈]p, l]

−dx̃(τ)

dτ
= 0 ∈ NC(x̃(τ)) +G(x̃(τ))

This proves our claim. With the same arguments we find a solution to the problem (P) on
[l, T ] because ξ1(τ) > 0. Consequently, on each [k, k + 1], k ∈ N, there exist a sequence of
absolutely continuous mapping x̃k solution of (P) on [k, k + 1]. Set x̃(.) the mapping from
R+ to Rd satisfies x̃(τ) = x̃k(τ) for all τ ∈ [k, k+ 1], under this definition x̃ is an absolutely
continuous solution of (P). This completes the proof of our theorem.

Now we are able to give our main result in this section.

Theorem 3. Let C be a nonempty closed convex subset of Rd and G : Rd ⇒ Rd be an
almost convex compact valued multifunction, upper semi-continuous on Rd. Then, for each
a ∈ C;

1. the problem (P) admit at least an absolutely continuous solution;

2. for t ∈ R+, the attainable set at t, Sa(t) coincides with Scoa (t), the attainable set at t
of the problem (Pco).

Proof. 1. In view of Theorem 2.1, and since co(G) : Rd ⇒ Rd is a multifunction with closed
and bounded values, upper semi-continuous, there exists an absolutely continuous solution
u(.) : R+ → Rd of (P) satisfying ||u̇(t)|| ≤ Λ + 2α, a.e. t ∈ R+.

Let us prove now that there exist two integrable functions ξ1(.) and ξ2(.) defined on R+

and satisfying 0 ≤ ξ1(t) ≤ 1 ≤ ξ2(t) such that for almost every t ∈ R+

ξ1(t)m
(
co
(
G(u(t))

))
∈ G(u(t)) and ξ2(t)m

(
co
(
G(u(t))

))
∈ G(u(t)).

We have, for all t ∈ R+, G(t) is almost convex, then there exist nonempty sets Γ1(t) and
Γ2(t) such that

Γ1(t) = {ξ1 ∈ [0, 1] : ξ1m
(
co
(
G(u(t))

))
∈ G(u(t))}

and
Γ2(t) = {ξ2 ∈ [1,+∞[ : ξ2m

(
co
(
G(u(t))

))
∈ G(u(t))}.

The multifunction Γ1 is measurable, since the graph

Gph(Γ1) = {(t, ξ1) ∈ R+ × [0, 1] : ξ1m
(
co(G(u(t)))) ∈ G(u(t)

)
}

= {(t, ξ1) ∈ R+ × [0, 1] : d
(
ξ1m(co(G(u(t)))), G(u(t))

)
= 0}

= ϕ−1({0}) ∩ (R+ × [0, 1]),

is measurable (ϕ : (t, ξ1) → d
(
ξ1m(co(G(u(t)))), G(u(t))

)
is measurable mapping). We

conclude that there exists ξ1(.) integrable selection of Γ1 satisfying 0 ≤ ξ1(t) ≤ 1 and
ξ1(t)m

(
co
(
G(u(t))

))
∈ G(u(t)) for all t ∈ R+. The exists of ξ2(.) integrable selection of Γ2,

satisfying ξ2(t) ≥ 1 and ξ2(t)m
(
co
(
G(u(t))

))
∈ G(u(t)) for all t ∈ R+ can be proved using
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the same reasoning as above with the fact that G(u(t)) is bounded. Applying Theorem 3.1,
we obtain the existence of mapping ũ(.) solution of the problem (P).

2. For all t ∈ R+, G(t) ⊂ co(G(t)), so Sa(t) ⊂ Scoa (t). It left to prove the converse
inclusion. Let u(t) ∈ Scoa (t), then u(.) is an absolutely solution of (P) on [0, t], so the proof
of Theorem 3.1 can be repeated on [0, t] and we find a solution ũ(.) : [0, t] → Rd of the
problem (P) such that ũ(t) = u(t) ∈ Sa(t). Hence we get the needed coincidence.

Inspired by [15], we present in the following corollary an interesting consequence con-
cerning time-optimality of the problem (P) where we apply the topological properties of
the attainable set.

Corollary 2. Let C be a nonempty closed convex subset of Rd, G : Rd ⇒ Rd be an almost
convex compact valued multifunction, upper semi-continuous on Rd and a ∈ C. For every
z ∈ Sa, there exists a solution of the problem (P) for which z is attainable at minimum
time.

Proof. Consider

M = {t ∈ [0,+∞[ : u(t) = z such that u(.) ∈ Υt(a)}.

By hypothesis M 6= ∅. We put τ = infM, then there exists a decreasing sequence (τn) in
R+ converges to τ, and a mapping un(.) solution of

−u̇(t) ∈ NC(u(t)) +G(u(t)), a.e. t ∈ [0, τn],

for all n ≥ 1, such that un(τn) = z, and un(0) = a, it is known that un(.) is solution of

−u̇(t) ∈ NC(u(t)) + co(G(u(t))), a.e. t ∈ [0, τn],

for all n ≥ 1. Let wn(t) = un(t) for t ∈ [0, τ ] and n ≥ 1, wn(.) ∈ Υτ (a), by Corollary 2.1 this
set is compact, then by extracting a subsequence if necessary we may conclude that (wn(.))
converges to w(.) ∈ Υτ (a). On the other hand, we have z = un(τn) ∈ Scoa (τn), by Corollary
2.1 again, the multifunction Scoa (.) is upper semi-continuous with nonempty compact values,
we obtain lim sup

n→∞
Scoa (τn) = Scoa (τ). Then, z ∈ Scoa (τ) = Sa(τ). Consequently w(.) is the

desired time optimal solution and τ is the value of the minimum time.
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