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1 Introduction

In the Euclidean space R3, a surface M2 is called a translation surface if it is given by
an immersion

X : U ⊂ R2 → R3 : (x, y) 7→
(
x, y, f(x) + g(y)

)
,

where f(x) and g(y) are smooth functions. One famous example of minimal surface in
3-dimensional Euclidean space is the Scherk’s minimal translation surface discovered by
Scherk in 1835. In fact, Scherk[10] showed that except that planes, the only minimal
translation surfaces are the surfaces given by

z =
1

c
log
∣∣∣ cos cy

cos cx

∣∣∣,
where c is a nonzero constant. This surface, unique up to similarities, is called Scherk’s
surface. The concept of translation surfaces was later generalized to hypersurfaces of Rn+1

by Dillen, Verstraelen and Zafindratafa [5]. A hypersurface M ⊂ Rn+1 is called a translation
hypersurface if it is given by an immersion

X : Rn → Rn+1 : (x1, · · · , xn) 7→
(
x1, · · · , xn, f1(x1) + · · ·+ fn(xn)

)
,

where fi is a smooth function of one real variable for i = 1, 2, · · · , n. They proved that

Theorem 1. Let M be a minimal translation hypersurface in Rn. Then M is either a
hyperplane or Mn =

∑
×Rn−2, where

∑
is a Scherk’s minimal translation surface in R3.

K. Seo [9] generalized some known results to translation hypersurfaces with constant
mean curvature or constant Gauss-Kronecker curvature in Euclidean space Rn by proving:

Theorem 2. Let M be a translation hypersurface with constant mean curvature H in Rn.
Then M is congruent to a cylinder

∑
×Rn−2, where

∑
is a constant mean curvature surface

in R3. In particular, if H = 0, then M is either a hyperplane or
∑
×Rn−2, where

∑
is a

Scherk’s minimal translation surface in R3.

Theorem 3. Let M be a translation hypersurface with constant Gauss-Kronecker curvature
GK in Rn. Then M is congruent to a cylinder, and hence GK = 0.
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Recently, Lima-Santos-Sousa[8] obtained the complete classification of translation hy-
persurfaces of Rn+1 with zero scalar curvature.

Theorem 4. Let Mn (n ≥ 3) be a translation hypersurface in Rn+1. Then Mn has zero
scalar curvature, if and only if, it is congruent to the graph of a vertical cylinder or a
generalized periodic Enneper hypersurface.

Furthermore, the authors [8] proved that any translation hypersurfaces in Rn+1 with
constant scalar curvature must have zero scalar curvature.

On the other hand, many geometers have approached the problem of characterizing hy-
persurfaces with constant mean curvature or with constant scalar curvature in real space
forms and obtained some classical results. Furthermore, when the scalar curvature is pro-
portional to the mean curvature, that is R = kH, where k is constant, Li [7] characterized
the rigidity of compact hypersurfaces with nonnegative sectional curvature. Concerning
this kind of hypersurfaces, there are some other results, such as [4, 12]. Next, Li et al.
[6] extended the result of [7] by considering linear Weingarten hypersurfaces immersed in
the unit sphere, that is, hypersurfaces whose mean curvature H and normalized scalar cur-
vature R satisfy R = aH + b, where a and b are constants. Thereafter, there are lots of
rigidity and the characterization results [11, 1, 3, 2] of linear Weingarten hypersurfaces in
real space forms, which generalized the classical constant scalar curvature hypersurfaces
and the hypersurfaces with R = kH.

Based on above results, it is necessary and interesting to give the complete classification
of translation weingarten hypersurfaces. Of course, the problem is difficult without any
other geometric condition. In this paper, we firstly consider the translation Weingarten
hypersurface in 4-dimensional Euclidean space R4 with R = kH. Precisely, we get the
following results.

Theorem 5. Let M be a translation weingarten hypersurface in R4 with R = kH. Then
M is congruent to one of the following surfaces:

1. A cylinder

X(x1, x2, x3) =
(
x1, x2, x3, a1x1 + a2x2 + f3(x3) + c

)
,

where a1, a2, c are constant;

2. A periodic Enneper hypersurface

X(x1, x2, x3) =
(
x1, x2, x3, a1 ln

∣∣∣cos(− x1

a1+a2
+ b3)

cos(x1

a1
+ b1)

∣∣∣+ a2 ln
∣∣∣cos(− x1

a1+a2
+ b3)

cos(x2

a2
+ b2)

∣∣∣+ c
)
,

where a1, a2, b1, b2, b3, c are constants.

Besides, we will consider the translation Weingarten hypersurfaces with GK = kH and
give a complete classification in n-dimensional Euclidean space in Rn. Precisely, we obtain:

Theorem 6. Let M be a translation hypersurface in Rn with GK = kH. Then M is
congruent to a cylinder, and hence GK = 0.
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2 Preliminaries

Let Mn be a translation hypersurface immersed in Rn+1 given by

X : Rn → Rn+1 :
(
x1, · · · , xn

)
7→
(
x1, · · · , xn, f1(x1) + · · ·+ fn(xn)

)
,

and each fi is a smooth function for i = 1, · · · , n. One can easily see that the unit normal
vector N is given by

N =
(−f ′1, · · · ,−f ′n, 1)

W
,

where

W =
√

1 + f
′2
1 + · · ·+ f ′2n .

It is easy to check that the coefficient gij = g( ∂
∂xi

, ∂
∂xj

) of the metric tensor and the inverse

matrix (gij) of (gij) is given by

gij = δij + f ′if
′
j , gij = δij −

f ′if
′
j

W 2
.

The matrix of the second fundamental form h is

hii =
f ′′i
W
, hij = 0 (i 6= j),

where f ′′i = d2f
dx2

i
. Then the matrix A = (aji ) of the shape operator is given by

aji =
∑
k

hikg
kj =

f ′′i
W
−
f ′′i f

′
if
′
j

W 3
.

Since nH =
∑

i a
i
i, then the mean curvature H is given by

H =
1

nW 3

∑
i

(
1 +

∑
j 6=i

f
′2
j

)
f ′′i . (2.1)

It is easy to check that the Gauss-Kronecker curvature GK is

GK =
dethij
det gij

=
f ′′1 f

′′
2 · · · f ′′n
Wn+2

. (2.2)

We denote λ1, · · · , λn the principle curvatures of hypersurface Mn and Sr be r-th el-
ementary symmetric polynomials given by Sr =

∑
λi1 · · ·λir , where r = 1, · · · , n and

1 ≤ i1 < · · · < ir ≤ n. In particular, S1 = nH, Sn = GK and S2 relates to the scalar
curvature R in the following form:

n(n− 1)R = 2S2. (2.3)

Next we recall a result in [8] for later use.

Proposition 1. Let Mn be a translation hypersurface immersed in Rn+1 parameterized by

X : Rn → Rn+1 :
(
x1, · · · , xn

)
7→
(
x1, · · · , xn, f1(x1) + · · ·+ fn(xn)

)
,

where fi is a smooth function of one real variable for i = 1, · · · , n. Then

S2 =
1

W 4

∑
1≤i<j≤n

f ′′i f
′′
j (1 +

∑
1≤k≤n;k 6=i,j

f
′2
k ). (2.4)
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3 Proof of the theorems

Proof of Theorem 5. Let M3 be a translation hypersurface in R4. It follows from
(2.1) and (2.4) that

H =

∑
i a

i
i

3
=

(1 + f
′2
2 + f

′2
3 )f ′′1 + (1 + f

′2
1 + f

′2
3 )f ′′2 + (1 + f

′2
1 + f

′2
2 )f ′′3

3W 3
, (3.1)

and

S2 =
f ′′1 f

′′
2 (1 + f

′2
3 ) + f ′′1 f

′′
3 (1 + f

′2
2 ) + f ′′2 f

′′
3 (1 + f

′2
1 )

W 4
. (3.2)

It follows from (2.3) that the condition R = kH is equivalent to S2 = 3kH. So from (3.1)
and (3.2), we have

f ′′1 f
′′
2 (1 + f

′2
3 ) + f ′′1 f

′′
3 (1 + f

′2
2 ) + f ′′2 f

′′
3 (1 + f

′2
1 )

= kW
[
(1 + f

′2
2 + f

′2
3 )f ′′1 + (1 + f

′2
1 + f

′2
3 )f ′′2 + (1 + f

′2
1 + f

′2
2 )f ′′3

]
. (3.3)

In order to give the proof of Theorem 5, we will consider two cases as following:
Case A. f ′′1 f

′′
2 f
′′
3 6= 0. In this case, divided by f ′′1 f

′′
2 f
′′
3 on both sides of (3.3), we have

1 + f
′2
1

f ′′1
+

1 + f
′2
2

f ′′2
+

1 + f
′2
3

f ′′3
= kW

(1 + f
′2
1 + f

′2
2

f ′′1 f
′′
2

+
1 + f

′2
1 + f

′2
3

f ′′1 f
′′
3

+
1 + f

′2
2 + f

′2
3

f ′′2 f
′′
3

)
.

(3.4)

Case A.1. k = 0. In this case, (3.4) implies that there exist constants a1, a2, a3 such that

1 + f
′2
1

f ′′1
= a1,

1 + f
′2
2

f ′′2
= a2,

1 + f
′2
3

f ′′3
= a3, (3.5)

and a1 + a2 + a3 = 0. Solving the system (3.5), we have

f1 = −a1 ln | cos(
x1
a1

+ b1)|+ c1,

f2 = −a2 ln | cos(
x2
a2

+ b2)|+ c2, (3.6)

f3 = −a3 ln | cos(
x3
a3

+ b3)|+ c3 = (a1 + a2) ln | cos(
x1

−(a1 + a2)
+ b3)|+ c3,

where b1, b2, b3 and c1, c2, c3 are constants. Thus we get case (2) in Theorem 5.
Case A.2. k 6= 0. Differentiate the equation (3.4) with respect to x1, we have

(
1 + f

′2
1

f ′′1
)′ = k

f ′1f
′′
1

W

[1 + f
′2
1 + f

′2
2

f ′′1 f
′′
2

+
1 + f

′2
1 + f

′2
3

f ′′1 f
′′
3

+
1 + f

′2
2 + f

′2
3

f ′′2 f
′′
3

]
+ kW

[
(
1 + f

′2
1 + f

′2
2

f ′′1 f
′′
2

)x1
+ (

1 + f
′2
1 + f

′2
3

f ′′1 f
′′
3

)x1

]
. (3.7)



D. Yang 111

By (3.4), equation (3.7) becomes

(
1 + f

′2
1

f ′′1
)′ =

f ′1f
′′
1

W 2

[1 + f
′2
1

f ′′1
+

1 + f
′2
2

f ′′2
+

1 + f
′2
3

f ′′3

]
+ kW

[
(
1 + f

′2
1 + f

′2
2

f ′′1 f
′′
2

)x1
+ (

1 + f
′2
1 + f

′2
3

f ′′1 f
′′
3

)x1

]
.

(3.8)

Differentiating the equation (3.8) with respect to x2, we have

0 = −2f ′1f
′′
1 f
′
2f
′′
2

W 4

[1 + f
′2
1

f ′′1
+

1 + f
′2
2

f ′′2
+

1 + f
′2
3

f ′′3

]
+
f ′1f
′′
1

W 2

(1 + f
′2
2

f ′′2

)′
+

kf ′2f
′′
2

W

[
(
1 + f

′2
1 + f

′2
2

f ′′1 f
′′
2

)x1
+ (

1 + f
′2
1 + f

′2
3

f ′′1 f
′′
3

)x1

]
+ kW

(1 + f
′2
1 + f

′2
2

f ′′1 f
′′
2

)x1x2
.

(3.9)

By (3.8), equation (3.9) becomes

0 = −2f ′1f
′′
1 f
′
2f
′′
2

W 4

[1 + f
′2
1

f ′′1
+

1 + f
′2
2

f ′′2
+

1 + f
′2
3

f ′′3

]
+
f ′1f
′′
1

W 2

(1 + f
′2
2

f ′′2

)′
+

f ′2f
′′
2

W 2
(
1 + f

′2
1

f ′′1
)′ − f ′1f

′′
1 f
′
2f
′′
2

W 4

[1 + f
′2
1

f ′′1
+

1 + f
′2
2

f ′′2
+

1 + f
′2
3

f ′′3

]
+ kW

(1 + f
′2
1 + f

′2
2

f ′′1 f
′′
2

)x1x2 , (3.10)

that is

3f ′1f
′′
1 f
′
2f
′′
2

W 5

[1 + f
′2
1

f ′′1
+

1 + f
′2
2

f ′′2
+

1 + f
′2
3

f ′′3

]
(3.11)

=
f ′2f
′′
2

W 3
(
1 + f

′2
1

f ′′1
)′ +

f ′1f
′′
1

W 3

(1 + f
′2
2

f ′′2

)′
+ k
(1 + f

′2
1 + f

′2
2

f ′′1 f
′′
2

)x1x2
.

Differentiating the equation (3.11) with respect to x3, we have

5f ′1f
′′
1 f
′
2f
′′
2 f
′
3f
′′
3

W 2

[1 + f
′2
1

f ′′1
+

1 + f
′2
2

f ′′2
+

1 + f
′2
3

f ′′3

]
(3.12)

= f ′2f
′′
2 f
′
3f
′′
3 (

1 + f
′2
1

f ′′1
)′ + f ′1f

′′
1 f
′
3f
′′
3

(1 + f
′2
2

f ′′2

)′
+ f ′1f

′′
1 f
′
2f
′′
2

(1 + f
′2
3

f ′′3

)′
.

Divided by f ′1f
′′
1 f
′
2f
′′
2 f
′
3f
′′
3 on both sides of (3.12), we have

5

W 2

[1 + f
′2
1

f ′′1
+

1 + f
′2
2

f ′′2
+

1 + f
′2
3

f ′′3

]
(3.13)

=
1

f ′1f
′′
1

(1 + f
′2
1

f ′′1

)′
+

1

f ′2f
′′
2

(1 + f
′2
2

f ′′2

)′
+

1

f ′3f
′′
3

(1 + f
′2
3

f ′′3

)′
.
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Next we denote

F =
1 + f

′2
1

f ′′1
, G =

1 + f
′2
1

f ′′2
, M =

1 + f
′2
3

f ′′3
. (3.14)

Then (3.13) becomes

5

W 2

[
F +G+M

]
=

F ′

f ′1f
′′
1

+
G′

f ′2f
′′
2

+
M ′

f ′3f
′′
3

. (3.15)

Differentiating the equation (3.15) with respect to x1, we have

−10f ′1f
′′
1

W 4

[
F +G+M

]
+

5

W 2
F ′ =

( F ′

f ′1f
′′
1

)′
. (3.16)

Divided by 5f ′1f
′′
1 on both sides of equation (3.16), we have

− 2

W 4

[
F +G+M

]
+

1

W 2

F ′

f ′1f
′′
1

=
1

5f ′1f
′′
1

( F ′

f ′1f
′′
1

)′
. (3.17)

Differentiating the equation (3.17) with respect to x2, we have

4f ′2f
′′
2

W 6

[
F +G+M

]
− 1

W 4
G′ − f ′2f

′′
2

W 4

F ′

f ′1f
′′
1

= 0. (3.18)

Divided by f ′2f
′′
2 on both sides of equation (3.18), we have

4

W 2

[
F +G+M

]
− G′

f ′2f
′′
2

− F ′

f ′1f
′′
1

= 0. (3.19)

Differentiating the equation (3.19) with respect to x3 and divided by f ′3f
′′
3 , we have

M ′

f ′3f
′′
3

=
2

W 2
(F +G+M). (3.20)

Since equation (3.15) is symmetric with F,G and M , so we have

F ′

f ′1f
′′
1

=
G′

f ′2f
′′
2

=
2

W 2
(F +G+M). (3.21)

Therefore

F ′

f ′1f
′′
1

+
G′

f ′2f
′′
2

+
M ′

2f ′3f
′′
3

=
6

W 2
(F +G+M), (3.22)

which together with (3.15) gives F +G+M = 0 and so F,G,M are constants. Similar to
case A.1, we also get case (2) in Theorem 5.

Case B. f ′′1 f
′′
2 f
′′
3 = 0. In this case, at least one of f ′′1 , f ′′2 and f ′′3 vanishes. Without loss

of generality, we assume f ′′1 = 0 and hence there exists constant c such that f ′1 = c, then
equation (3.3) becomes

f ′′2 f
′′
3 (1 + c2) = kW

[
(1 + c2 + f

′2
3 )f ′′2 + (1 + c2 + f

′2
2 )f ′′3

]
. (3.23)
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Case B.1. k = 0. From (3.23), we have f ′′2 f
′′
3 = 0. If f ′′2 = f ′′3 = 0, then the

hypersurface M is a hyperplane in R4 and we get case (1) in Theorem 5 with f3 = ax3 + b.
If one of f ′′2 and f ′′3 is zero, we get case (1) in Theorem 5.

Case B.2. k 6= 0. If f ′′2 = 0, from (3.23) we have f ′′3 = 0. Then there exist constants
ai, bi, ci(1 ≤ i ≤ 3) such that f1 = a1x1 + a

2
,f2 = b1x1 + b

2
,f3 = c1x1 + c

2
, and the

hypersurface M is a hyperplane in R4. We get the case (1) in Theorem 5.
If f ′′2 6= 0, from (3.23) we have f ′′3 6= 0. Divided by f ′′2 f

′′
3 on both sides of equation

(3.23), we have

(1 + c2) = kW
[1 + c2 + f

′2
3

f ′′3
+

1 + c2 + f
′2
2

f ′′2

]
. (3.24)

Differentiating the equation (3.24) with respect to x2, we have

k
f ′2f′′2
W 2

[1 + c2 + f
′2
3

f ′′3
+

1 + c2 + f
′2
2

f ′′2

]
= −k(

1 + c2 + f
′2
2

f ′′2
)′. (3.25)

Since k 6= 0, then by (3.24), equation (3.25) becomes

f ′2f′′2
W 3

[
1 + c2

]
= −k(

1 + c2 + f
′2
2

f ′′2
)′. (3.26)

Differentiating the equation (3.26) with respect to x3, we have

1

W 5
f ′2f
′′
2 f
′
3f
′′
3

[
1 + c2

]
= 0, (3.27)

which implies that f ′′2 f
′′
3 = 0 and this is a contradiction. This completes the proof of

Theorem 5.
Proof of Theorem 6. Let Mn be a Weingarten hypersurface with GK = kH in Rn+1.

It follows from (2.1) and (2.2) that

f ′′1 f
′′
2 · · · f ′′n

(1 +
∑n

i=1 f
′2
i )(n+2)/2

= k

∑n
i=1(1 +

∑n
j 6=i f

′2
j )f ′′i

n(1 +
∑n

i=1 f
′2
i )3/2

,

that is

f ′′1 f
′′
2 · · · f ′′n

(1 +
∑n

i=1 f
′2
i )(n−1)/2

=
k

n

n∑
i=1

(1 +

n∑
j 6=i

f
′2
j )f ′′i . (3.28)

Assume that f ′′1 f
′′
2 · · · f ′′n 6= 0, dividing (3.28) by f ′′1 f

′′
2 · · · f ′′n , we have

1

(1 +
∑n

i=1 f
′2
i )(n−1)/2

=
k

n

n∑
i=1

1 +
∑n

j 6=i f
′2
j∏n

j 6=i f
′′
j

. (3.29)

Differentiating the equation (3.29) with respect to x1, x2, · · · , xn successively. We have

(−1)nn

n∏
i=1

(n+ 2i− 3)(1 + f
′2
1 + · · ·+ f

′2
n )−

3n−1
2 f ′1f

′′
1 · · · f ′nf ′′n = 0. (3.30)
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This implies that f ′1f
′′
1 · · · f ′nf ′′n = 0, which contradicts to the assumption f ′′1 f

′′
2 · · · f ′′n 6= 0.

Since f ′′1 f
′′
2 · · · f ′′n = 0, there exists at least one f ′′i = 0, we assume that f ′′1 = 0 and

hence f1 = ax1 + b, where a and b are constants. It follows immediately that

X(x1, · · · , xn) = (x1, · · · , xn, f1(x1) + f2(x2) + · · ·+ fn(xn))

= (x1, · · · , xn, ax1 + b+ f2(x2) + · · ·+ fn(xn))

= x1(1, 0, · · · , 0, a) + (0, x2, · · · , xn, b+ f2(x2) + · · ·+ fn(xn)),

(3.31)

which implies that Mn is a cylinder. This completes the proof of Theorem 6.
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