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Abstract

Let G be the circulant graph Cn(S) with S ⊆ {1, . . . ,
⌊
n
2

⌋
} and let I(G) be its edge

ideal in the ringK[x0, . . . , xn−1]. Under the hypothesis that n is prime we : 1) compute
the regularity index of R/I(G); 2) compute the Castelnuovo-Mumford regularity when
R/I(G) is Cohen-Macaulay; 3) prove that the circulant graphs with S = {1, . . . , s} are
sequentially S2 . We end characterizing the Cohen-Macaulay circulant graphs of Krull
dimension 2 and computing their Cohen-Macaulay type and Castelnuovo-Mumford
regularity.
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Introduction

Let S ⊆ {1, 2, . . . ,
⌊
n
2

⌋
}. The circulant graph G := Cn(S) is a graph with vertex set

Zn = {0, . . . , n−1} and edge set E(G) := {{i, j} | |j−i|n ∈ S} where |k|n = min{|k|, n−|k|}.
Let R = K[x0, . . . , xn−1] be the polynomial ring on n variables over a field K. The edge

ideal of G, denoted by I(G), is the ideal of R generated by all square-free monomials xixj
such that {i, j} ∈ E(G). Edge ideals of a graph have been introduced by Villarreal [11] in
1990, where he studied the Cohen–Macaulay property of such ideals. Many authors have
focused their attention on such ideals (see [8], [6]). A known fact about Cohen-Macaulay
edge ideals is that they are well-covered.

A graph G is said well-covered if all the maximal independent sets of G have the same
cardinality. Recently well-covered circulant graphs have been studied (see [1], [2], [9]). In
[14] and [4] the authors studied well-covered circulant graphs that are Cohen-Macaulay.

In this article we put in relation the values n, S of a circulant graph Cn(S) and algebraic
invariants of R/I(G). In particular we study the regularity index, the Castelnuovo-Mumford
regularity, the Cohen-Macaulayness and Serre’s condition of R/I(G).

In the first section we recall some concepts and notations and preliminary notions.
In the second section under the hypothesis that n is prime we observe that the regularity

index of R/I(G) is 1 obtaining as a by-product the Castelnuovo-Mumford regularity of the
ring when it is Cohen-Macaulay.

In the third section we prove that each k-skeleton of the simplicial complex of the
independent set of G = Cn(S) is connected when n is prime. As an application we prove
that the circulant graphs Cn({1, . . . , s}) (studied in [1], [2], [4], [9], [11],[14]) are sequentially
S2 (see [7]).

In the last section we characterize the Cohen-Macaulay circulant graphs of Krull dimen-
sion 2 and compute their Cohen-Macaulay type and Castelnuovo–Mumford regularity.
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1 Preliminaries

In this section we recall some concepts and notations on graphs and on simplicial complexes
that we will use in the article. Let G be a simple graph with vertex set V (G) and the edge
set E(G). A subset C of V (G) is called a clique of G if for all i and j belonging to C with
i 6= j one has {i, j} ∈ E(G). A subset A of V (G) is called an independent set of G if no
two vertices of A are adjacent.The complement graph Ḡ of G is the graph with vertex set
V (Ḡ) = V (G) and edge set E(Ḡ) = {{u, v} ∈ V (G)2 | {u, v} /∈ E(G)}.

Set V = {x1, . . . , xn}. A simplicial complex ∆ on the vertex set V is a collection of
subsets of V such that

(i) {xi} ∈ ∆ for all xi ∈ V ;

(ii) F ∈ ∆ and G ⊆ F imply G ∈ ∆.

An element F ∈ ∆ is called a face of ∆. A maximal face of ∆ with respect to inclusion is
called a facet of ∆.

If ∆ is a simplicial complex with facets F1, . . . , Fq, we call {F1, . . . , Fq} the facet set
of ∆ and we denote it by F(∆). The dimension of a face F ∈ ∆ is dimF = |F | − 1,
and the dimension of ∆ is the maximum of the dimensions of all facets in F(∆). If all
facets of ∆ have the same dimension, then ∆ is called pure. Let d− 1 the dimension of ∆
and let fi be the number of faces of ∆ of dimension i with the convention that f−1 = 1.
Then the f -vector of ∆ is the d-tuple f(∆) = (f−1, f0, . . . , fd−1). The h-vector of ∆ is
h(∆) = (h0, h1, . . . , hd) with

hk =

k∑
i=0

(−1)k−i
(
d− i
k − i

)
fi−1.

The sum

χ̃(∆) =

d−1∑
i=−1

(−1)ifi

is called the reduced Euler characteristic of ∆ and hd = (−1)d−1χ̃(∆). Given any simplicial
complex ∆ on V , we can associate a monomial ideal I∆ in the polynomial ring R as follows:

I∆ = ({xj1xj2 · · ·xjr : {xj1 , xj2 , . . . , xjr} /∈ ∆}).

R/I∆ is called Stanley-Reisner ring and its Krull dimension is d. If G is a graph we call the
independent complex of G by

∆(G) = {A ⊂ V (G) : A is an independent set of G}.

The clique complex of a graph G is the simplicial complex whose faces are the cliques of G.
Let F be the minimal free resolution of the quotient ring R/I(G). Then

F : 0→ Fp → · · · → Fp−1 → · · · → F0 → R/I(G)→ 0

with Fi = ⊕
j
R(−j)βij . The numbers βij are called the Betti numbers of F. The Castelnuovo–

Mumford regularity of R/I(G), denoted by regR/I(G), is defined by

regR/I(G) = max{j − i : βij 6= 0}.



Giancarlo Rinaldo 97

A graph G is said Cohen-Macaulay if the ring R/I(G), or equivalentelly R/I∆(G) is Cohen-
Macaulay (over the field K) (see [3], [10], [17]). The Cohen-Macaulay type of R/I(G) is
equal to the last total Betti number in the minimal free resolution F.

We end this section with the following

Remark 1. Let T = {1, 2, . . . ,
⌊
n
2

⌋
} and G be a circulant graph on S ⊆ T with s = |S|,

then:

1. Ḡ is a circulant graph on S̄ = T \ S;

2. The clique complex of Ḡ is the independent complex of G, ∆(G);

3.

|E(G)| =
{

ns− n
2 if n is even and n

2 ∈ S
ns otherwise.

2 Regularity and connectedness of the independent com-
plex of circulant graphs of prime order

We recall some basic facts about the regularity index (see also [15]). Let R be standard
graded ring and I be a homogeneous ideal. The Hilbert function HR/I : N → N is defined
by

HR/I(k) := dimK(R/I)k

and the Hilbert-Poincaré series of R/I is given by

HPR/I(t) :=
∑
k∈N

HR/I(k)tk.

By Hilbert-Serre theorem, the Hilbert-Poincaré series of R/I is a rational function, that is

HPR/I(t) =
h(t)

(1− t)n
.

There exists a unique polynomial such that HR/I(k) = PR/I(k) for all k � 0. The minimum
integer k0 ∈ N such that HR/I(k) = PR/I(k) ∀ k ≥ k0 is called regularity index and we
denote it by ri(R/I).

Remark 2. Let R/I∆ be a Stanley-Reisner ring. Then

ri(R/I∆) =

{
0 if hd = 0
1 if hd 6= 0

Proof. By the hypothesis the Hilbert series can be represented by the reduced rational
function

h(t)

(1− t)d

where d is the Krull dimension of R/I∆ and h(t) =
∑d
i=0 hit

i where hi are the entries of
the h-vector of ∆. We observe that ri(R/I) = max(0,deg h(t) − d + 1). If ri(R/I∆) > 0
then deg h(t) > d− 1. But since deg h(t) ≤ d we have deg h(t) = d. Therefore hd 6= 0 and
ri(R/I∆) = 1. The other case follows by the same argument.
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Lemma 1. Let G be a circulant graph on S with n prime. Then the entries of the f -vector
of ∆(G) are

fi = nf ′i

with 0 ≤ i ≤ d− 1 and f ′i = fi,0/(i+ 1) ∈ N where fi,0 is the number of faces of dimension
i containing the vertex 0.

Proof. Call Fi ⊂ ∆ the set of faces of dimension i, that is

Fi = {F1, . . . , Ffi}.

Let fi,j , number of faces in Fi containing a given vertex j = 0, . . . , n−1. Since G is circulant

fi,j = fi,0 for all j ∈ {0, . . . , n− 1}.

Let A ∈ Ffi×n2 = (ajk) be the incidence matrix with ajk = 1 if the vertex k − 1 belongs to
the facet Fj and 0 otherwise. We observe that each row has exactly i+ 1 1-entries. Hence
summing the entries of the matrix we have (i + 1)fi. Moreover each column has exactly
fi,j non zero entries. That is

nfi,0 = (i+ 1)fi.

Since n is prime the assertion follows.

Theorem 1. Let G be a circulant graph on S with n prime. Then

ri(R/I(G)) = 1.

Proof. By Remark 2 it is sufficient to show that hd is different from 0. Since

|hd| = |
d∑
i=0

(−1)ifi−1| 6= 0,

it is sufficient to show that the reduced Euler formula is different from 0, that is

d∑
i=1

(−1)ifi−1 6= 1.

By Lemma 1 we obtain
d∑
i=1

(−1)ifi−1 = n

d∑
i=1

(−1)if ′i−1

since n is prime and the assertion follows.

Remark 3. In the proof of Theorem 1 we are giving a partial positive answer to the Con-
jecture 5.38 of [9] that states that for all circulant graphs χ̃(∆) 6= 0. In the article [12] we
found other families of circulant graphs satisfying the previous property. In the same article
we found a counterexample that disprove the conjecture in general.

Corollary 1. Let G be a circulant graph on S with n prime that is Cohen-Macaulay. Then
regR/I(G) = depthR/I(G).

Proof. By Corollary 4.8 of [5] since ri(R/I) = 1 the assertion follows.
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3 Sequentially S2 circulant graphs of prime order and
connectedness

In this section we study good properties of the independent complex ∆(G) of a circulant
graph G that have prime order. We start by the following

Definition 1. Let ∆ be a simplicial complex then we define the pure simplicial complexes
∆[k] whose facets are

F(∆[k]) = {F ∈ ∆ : dim(F ) = k}, 0 ≤ k ≤ dim(∆).

One interesting property of Cohen-Macaulay ring R/I∆ is that the each simplicial com-
plex ∆[k] is connected. Hence the following Lemma is of interest.

Lemma 2. Let G be a circulant graph on S with n prime. Then the k-skeleton of the
simplicial complex ∆, ∆[k] is connected for every k ≥ 1.

Proof. To prove the claim we find a Hamiltonian cycle connecting all the vertices in V =
{0, . . . , n−1} of the 1-skeleton of ∆[k]. Then it follows that since the 1-skeleton is connected
then ∆[k] is connected, too.

We assume without loss of generality that F0 = {v0, v1, . . . , vk} ∈ ∆[k] such that v0 = 0,
v1 = s ∈ S. We define the set

Fj = {v0,j , v1,j , . . . , vk,j}

with vi,j = vi + jsmodn. It is easy to observe that since F0 is in ∆[k] and G is circulant,
Fj is in ∆[k], too.

Moreover if we focus on the first two vertices of Fj we obtain that

v1,j = v0,j−1 for all j = 1, . . . , n− 1,

and v0,n−1 = v1,0. Since

v0,j = jsmodn

the set {v0, . . . , vn−1}, by the primality of n, is equal to V . Hence the cycle with vertices

v0,0, v0,1, . . . , v0,n−1

and edges

{v0,0, v0,1}, . . . , {v0,n−2, v0,n−1}, {v0,n−1, v0,0}

is a Hamiltonian cycle and the assertion follows.

Recall that a finitely generated graded module M over a Noetherian graded K-algebra
R is said to satisfy the Serre’s condition Sr if

depthMp ≥ min(r, dimMp),

for all p ∈ Spec(R).



100 Some algebraic invariants of edge ideal of circulant graphs

s s
s s

s s
J
J
J















J
J
J











J

J
J
J
JJ

��
��

��

H
HHH

HH

�
���

��

HH
HH

HH

��
��

��

H
HHH

HH

�
���

��

HH
HH

HH

Figure 1: G = C6({1}, ∆ and ∆[2].

Definition 2. Let M be a finitely generated Z-graded module over a standard graded K-
algebra R where K is a field. For a positive integer r we say that M is sequentially Sr if
there exists a finite filtration of graded R-modules

0 = M0 ⊂M1 ⊂ · · · ⊂Mr = M

such that each Mi/Mi−1 satisfies th Sr condition and the Krull dimensions of the quotients
are increasing:

dim(M1/M0) < dim(M2/M1) < · · · < dim(Mt/Mt−1).

A nice characterization of sequentially S2 simplicial complexes is the following:

Theorem 2 ([7]). Let ∆ be a simplicial complex with vertex set V . Then ∆ is sequentially
S2 if and only if the following conditions hold:

1. ∆[i] is connected for all i ≥ 1;

2. link∆(x) is sequentially S2 for all x ∈ V .

Example 1. Let G be the circulant graph C6({1}). Then its simplicial complex ∆ is
connected, but ∆[2] is not (see Figure 1).

Sequentially Cohen-Macaulay cycles have been characterized in [6], that are in our
notation are just C3({1}) and C5({1}). In [7] the authors proved that the only sequentially
S2 are the odd cycles. The following is related to these results.

Theorem 3. Let G be the circulant graph Cn({1, . . . , s}) with n prime. Then G is sequen-
tially S2.

Proof. By Lemma 2 the first condition of Theorem 2 is satisfied. To check the second
condition of Theorem 2 we prove that K[link∆(x0)], is sequentially Cohen Macaulay. We
observe that

K[link∆(x0)] ∼= (R/I(G))x0
∼= K[x±1

0 ][x1, . . . , xn−1]/I(G)′

where I(G)′ is obtained by the K-algebra homomorphism induced by the mapping x0 → 1.
Since the vertices adjacent to 0 are {1, . . . , s} ∪ {n− s, . . . , n− 1} we have that

I(G)′ = I(G′) + (x1, . . . , xs) + (xns , . . . , xn−1).
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with G′ be the subgraph of G induced by the vertices {s+ 1, . . . , n− (s+ 1)}. That is

(R/I(G))x0
∼= K[xs+1, . . . , xn−s−1]/I(G′).

We claim that I(G′) is chordal, hence it is sequentially Cohen-Macaulay by Theorem 3.2 of
[6]. To prove the claim we observe that the labelling on the vertices of G′

s+ 1, s+ 2, . . . , n− s− 1

induces a perfect elimination ordering, that is N+(i) = {j : {i, j} ∈ E(G′), i < j} is a
clique. Let j, k ∈ N+(i). That is {i, j} and {i, k} are two edges with i < j and i < k and
assume j < k. Then |j − i|n = j − i ≤ s and |k − i|n = k − i ≤ s. Moreover

0 < j − i < k − i ≤ s.

Hence it follows |k − j| = k − j < s. Therefore {j, k} ∈ E(G′) and N+(i) is a clique.

Example 2. If a ring is Cohen-Macaulay it is pure and sequentially Sn for all n. The
circulant graph of prime order with minimum number of vertices that is Cohen-Macaulay
and has Krull dimension greater than 2 is C13({1, 5}) (see [4]).

4 Cohen-Macaulay circulant graphs of dimension 2 and
their Castelnuovo-Mumford regularity

We start this section by the following

Theorem 4. Let G be the circulant graph Cn(S) with S ⊂ {1, . . . ,
⌊
n
2

⌋
}. The following

conditions are equivalent:

1. G is Cohen-Macaulay of dimension 2;

2. ∆(G) is connected of dimension 1;

3. gcd (n, S̄) = 1 and ∀a, b ∈ S̄ we have b− a /∈ S̄ and n− (b+ a) /∈ S̄.

Proof. (1)⇔ (2). Known fact. See also [9] Corollary 4.54.
(2) ⇒ (3). If ∆(G) is connected then there is a path in Ḡ ∼= ∆(G) connecting the

vertices 0 and 1 (see Remark 1) whose vertices are

0 = v0, v1, . . . , vr = 1

and edges

{0, s1}, {s1, s1 + s2}, . . . , {
r−1∑
i=1

si,

r∑
i=1

si ≡ 1 modn}

with si ∈ S̄. Hence there exists a relation∑
aisi ≡ 1 modn, with ai ∈ N, si ∈ S̄.
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By the Euclidean algorithm we have that gcd (n, S̄) = 1. Suppose there exist a, b ∈ S̄
with b − a ∈ S̄. This implies a 6= b. We observe that {0, a, b} is a clique in ∆(G), that is
dim ∆(G) ≥ 2. In fact since Ḡ is circulant {0, a} , {0, b} and {a, a+ (b− a) = b} are edges
in Ḡ. Now suppose that n− (b+ a) ∈ S̄. We observe that {0, a, a+ b} is a clique in ∆(G).
In fact since Ḡ is circulant {0, a} , {a, a+ b} and {a+ b, a+ b+ n− (a+ b) ≡ 0} are edges
in Ḡ. The implication (3)⇒ (2) follows by similar arguments.

Theorem 5. Let G be a Cohen-Macaulay circulant graph Cn(S) of dimension 2. Then
regR/I(G) = 2.

Proof. It is sufficient to prove that h2 6= 0 (see Remark 2 and the proof of Corollary 1). We
need to compute h2 = f1 − f0 + f−1. We observe that f1 is the number of edges of Ḡ. By
Remark 1 one of the two cases to study is(

n

2

)
− ns,

with h2 =
(
n
2

)
− n(s+ 1) + 1. The only roots n ∈ N of the quadratic equation(

n

2

)
− n(s+ 1) + 1 = 0

are 1 and 2 with s = 0. Absurd. The other case follows by the same argument.

Theorem 6. Let G be a Cohen-Macaulay circulant graph Cn(S) of dimension 2. Then its
Cohen-Macaulay type is

h2 =

{ (
n
2

)
− n(s+ 1

2 ) + 1 if n is even and n
2 ∈ S(

n
2

)
− n(s+ 1) + 1 otherwise.

Proof. By Auslander-Buchsbaum Theorem (Theorem 1.3.3, [3]) and since the depthR/I(G) =
2 we need to compute the Betti number in position βi,j when i = n− 2. By Theorem 5 and
the definition of Castelnuovo-Mumford regularity, the Betti numbers that are not trivially
0 are βn−2,j in the degrees j ∈ {n − 1, n}. We recall the Hochster’s formula (see [10],
Corollary 5.1.2)

βi,σ(R/I∆) = dimK H̃|σ|−i−1(∆|σ;K)

where H̃(·) is the simplicial homology and σ ∈ ∆ is interpreted as squarefree degree in the
minimal free resolution and it induces a restriction in ∆ defined by

∆|σ = {F ∈ ∆ : F ⊆ σ}.

We observe that in the squarefree degree σ having total degree n− 1

βi,σ = dimK H̃0(∆|σ;K) = 0.

In fact ∆ ∼= Ḡ is connected and the same happens removing one of the vertices of the
circulant graph Ḡ since circulant graphs are biconnected. Now, if we consider the squarefree
degree σ having total degree n, again, by Hochster formula, we obtain

βi,σ = dimK H̃1(∆|σ;K).
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Figure 2: G = C8({2, 3} and C8({1, 4}) ∼= ∆(G).

In this case ∆|σ ∼= ∆ ∼= Ḡ and the chain complex of ∆

C : 0→ C1
∂1→ C0

∂0→ C−1 → 0,

has the two homologies H̃0 = H̃−1 = 0. Therefore

dimK H̃1(Ḡ;K) = βi,σ = f1 − f0 + f−1

and the assertion follows by Remark 1.

Example 3. Let G = C8({2, 3}) that is S̄ = {1, 4} (see Figure 2). We observe that it
satisfies conditions (3) of Theorem 4. Its Cohen-Macaulay type by Theorem 6 is(

8

2

)
− 8(2 + 1) + 1 = 5.

Remark 4. We observe that the rings satisfying Theorem 6 are level. For a description of
level algebras see Chapter 5.4 and 5.7 of [3].

Corollary 2. Let G be the circulant graph Cn(S) with S ⊂ {1, . . . ,
⌊
n
2

⌋
} and s = |S|. The

following conditions are equivalent:

1. G is Gorenstein of dimension 2;

2. S = {1, . . . , î, . . . , n} and gcd(n, i) = 1 with n ≥ 4;

3. ∆(G) ∼= Ḡ is a n-gon with n ≥ 4.

Proof. (1)⇒ (2). G is Gorenstein if and only if G is Cohen-Macaulay of type 1. Hence by
Theorem 4 ∆(G) is connected that is gcd (n, S̄) = 1. Moreover by Theorem 6 h2 = 1 and
solving the two quadratic equations(

n

2

)
− n(s+

1

2
) + 1 = 1,

(
n

2

)
− n(s+ 1) + 1 = 1,

we obtain respectively
n = 2s+ 2 and n = 2s+ 3.

In both cases s =
⌊
n
2

⌋
− 1. Hence S̄ = i with gcd(i, n) = 1 and the assertion follows.
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(2)⇒ (3). Let S̄ = {i} with gcd(n, i) = 1. We easily observe that the vertices

0, i, . . . , (n− 1)imodn

and edges
{0, i}, {i, 2i}, . . . , {(n− 1)i, (n)i ≡ 0 modn}

define a Hamiltonian cycle that is Ḡ itself.
(3) ⇒ (1). Since ∆(G) is a simplicial 1-sphere is Gorenstein of Krull dimension 2 (see

Corollary 5.6.5 of [3]).

We observe that in Theorem 4.1 of [4] the Cohen-Macaulayness of the graphs described
in Corollary 2 has been studied by a different point of view.
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