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Abstract

This paper presents an efficient numerical algorithm based on rational non-orthogonal
basis functions derived from Euler polynomials for solving the Lane-Emden type equa-
tions as singular initial value problems on the semi-infinite interval [0,∞). These
equations have been used to model several phenomena in theoretical physics, mathe-
matical physics and astrophysics, such as the theory of stellar structure and radiative
cooling. The proposed method is based on converting an ordinary nonlinear differential
equation into a sequence of linear differential equations through the quasilinearization
method and then are solved using the collocation method. This method reduces the
solution of these problems to the solution of a system of algebraic equations to simplify
the computations. The purpose of this study is solving the Lane-Emden type equa-
tions using three classes of Euler functions and providing an accurate comparison of
these basis functions. Furthermore, the rational fractional Euler functions (RFE) have
been introduced for the first time. Numerical results show that the performance of the
three proposed basis functions is nearly equal and the method is reliable, efficient and
accuracy more than numerical and analytical methods.
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1 Introduction

Most problems of science and engineering are not solvable exactly and therefore should be
investigated with the help of semi-analytical or numerical approximation methods. In recent
years, considerable attention has been devoted to the solution of the singular initial value
problems for nonhomogeneous, nonlinear differential equations. Many powerful methods
have been presented to solve problems in unbounded intervals such as:







































Semi-analytical methods: Different Analytical methods such as Adomian

decomposition method [1], Homotopy perturbation method [2], Variational

iteration method [3], Exp-function method [4], and so on.

Numerical methods: These methods include Finite difference approximation

method [5], Finite element method (FEM) [5], Meshfree methods [6],

and Spectral methods [7].

Corresponding author: Kourosh Parand



40 Accurate numerical solution for a type of astrophysics equations

We attempt to introduce a Spectral method based on the rational Euler functions, frac-
tional order of rational Euler functions, and rational fractional Euler functions to solve the
problems on semi-infinite interval. The purpose of the present investigation is to obtain an
approximation numerical of the Lane-Emden type equations by using basic functions that
are originated from Euler polynomials.

Introduction of Lane-Emden equations

Many problems in the literature of mathematical physics and astrophysics can be modelled
by Lane-Emden type initial value problems, defined in the form [8]

y′′(x) +
2

x
y′(x) + f(x, y) = g(x), x > 0,

with the boundary conditions:

y(0) = A, y′(0) = B.

where A and B are constants and f(x, y) is a nonlinear function of x and y. These equations
were applied to describe various phenomena including the thermal history of a spherical
cloud of gas, thermionic currents, isothermal gas spheres and the theory of stellar structure
[8]. The main difficulty of the Lane-Emden type equations is the singular behavior that
occurs at x = 0. This problem has been studied by many researchers and has been solved
by the different techniques, that number of them is shown in Table 1.

In the present paper, we intend to extend the application of Euler polynomials to solve
Lane-Emden type equations. These problems using the quasilinearization method (QLM)
converts to the sequence of linear ordinary differential equations to obtain the solution. In
addition, the equation will be solved on a semi-infinite interval by taking rational Euler
functions (RE), the fractional order of rational Euler functions (FRE) [18] and rational
fractional Euler functions (RFE) as basis functions for the collocation method. The ob-
jective of this paper is comparison between Three Spectral approaches based on rational
non-orthogonal basis functions for the solution of singular initial value problems.
The organization of the current paper is as follows: in section 2, the proposed trial basis
functions and their properties on the semi-infinite interval are defined. In section 3, the
general procedure of method together with an algorithm is explained. In section 4, we re-
port our numerical findings and demonstrate the validity, accuracy and applicability of the
numerical methods by considering examples. Also, a conclusion is given in the last section.

2 Main ideas of the trial basis functions

The Lane-Emden type equations are nonlinear ordinary differential equations on the semi-
infinite interval. As discussed before, we can apply different Spectral basis that are used
to solve problems in the semi-infinite interval. Since the classical Euler polynomials are
defined on the interval [0,1], the rational Euler functions (RE) on semi-infinite interval have
been defined as follows [18]:

REn(x, L) = En(
x

x+ L
),
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Table 1: Lane-Emden type equations bibliography
Year Ref Comment

1986 Horedt [9] The exact calculation equations to 7 decimal places.
1996 Liu [10] Providing an approximate analytic solution of equation
2001 Wazwaz [1] ADM with the modified structure
2003 He [3] Ritz method
2007 Ramos [11] Piecewise-adaptive decomposition methods
2009 Singh et al [12] The modified homotopy analysis method
2011 Boyd [13] Chebyshev Spectral Methods
2012 Mutsa & Shateyi [14] A successive linearization method
2013 Parand et al [15] Using Bessel orthogonal functions collocation method
2015 Azarnavid et al [16] Picard-Reproducing kernel Hilbert space method
2017 Parand & Delkhosh [17] Generalized fractional order of the Chebyshev functions

and an analytical form of REn(x, L) for n = 0, 1, · · · is as follows:

REn(x, L) =
1

n+ 1

n+1
∑

k=1

(2− 2k+1)

(

n+ 1

k

)

Bk

(

x

x+ L

)n+1−k

.

Also, the fractional order of rational Euler functions (FRE) on semi-infinite interval have
been defined as follows [18]:

FREα
n (x, L) =

1

n+ 1

n+1
∑

k=1

(2− 2k+1)

(

n+ 1

k

)

Bk

(

xα

xα + L

)n+1−k

,

in order to solve the problems on the semi-infinite interval.
A new Spectral basis, namely rational fractional Euler functions, denoted by RFE, on the
semi-infinite interval is constructed. By applying the algebraic mapping x → ( x

x+L
)α to the

Euler function, a new Spectral basis RFE on the interval [0,∞) is defined as follows:

RFEα
n (x, L) = FEn(

x

x+ L
) = En

(

(
x

x+ L
)α
)

, (2.1)

an analytical form of RFEn(x, L) for n = 0, 1, · · · is presented as follows:

RFEα
n (x, L) =

1

n+ 1

n+1
∑

k=1

(2− 2k+1)

(

n+ 1

k

)

Bk

(

x

x+ L

)α(n+1−k)

,

where L is a constant parameter and sets the length scale of the mapping.
Now, Γ = {x|0 ≤ x ≤ ∞} is defined and

L2
w(Γ) = {µ : Γ −→ R| µ is measurable and ‖µ‖w < ∞}, where

‖µ‖2w =

∫

∞

0

|µ(x)|2w(x) dx, w(x) =
Lαxα−1

(x+ L)α+1
, (2.2)

is the norm induced by the inner product of the space L2(Γ),

〈ν, µ〉w =

∫

∞

0

ν(x)µ(x)w(x) dx. (2.3)
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Now, we assume RFBn = {RFEα
0 (x), RFEα

1 (x), · · · , RFEα
n (x)}, is finite dimensional sub-

space, therefore RFBn is a complete subspace of L2(Γ). The interpolating function of a
smooth function ν on a semi-infinite interval is denoted by ǫnν. It is an element of RFBn

and

ǫnν =

n
∑

k=0

akRFEα
k (x),

If ǫnν is the best projection of ν upon RFBn with respect to the inner product Eq. (2.3)
and the norm Eq. (2.2). Then, we have

〈ξnν − ν,RFEα
i (x)〉 = 0 ∀ RFEα

i (x) ∈ RFBn.

3 The solution technique

In this section, a reliable algorithm that consists of two distinct approaches to handle in
a realistic and efficient way the Lane-Emden type equations is introduced. In general the
Lane-Emden type equations are formulated as

y′′(x) + k
x
y′(x) + f(x, y) = h(x), k, x > 0, (3.1)

y(0) = A, y′(0) = B,

where k, A and B are real constants and f(x, y) and h(x) are some given functions.
By using the QLM , the solution general Lane-Emden type equations determines the (r+1)th
iterative approximation yr+1(x) as a solution of the linear differential equation:

y
′′

r+1 +
k

x
y′r + f(x, yr)− h(x)− (yr+1 − yr) fy(x, y) +

k

x

(

y′r+1 − y′r
)

= 0, (3.2)

with the boundary conditions:

yr+1(0) = A, y′r+1(0) = B. (3.3)

In the other approach, the rational Euler collocation (REC) method, the rational fractional
Euler collocation (RFEC) method, and the fractional order of rational Euler collocation
(FREC) method are employed for the approximate solutions of the Lane-Emden type equa-
tions.
Suppose that φn(x, L) is one of the functions of RE, FRE, or RFE. We employ the
φn(x, L) collocation method for solving the linear differential equations at each iteration in
Eq. (3.2) with the boundary conditions Eq. (3.3).
We suppose that y0(x) ≡ A. At the first step, the trial solution for the (r + 1)th iterative
has been constructed as follows:

un,r(x) =
n
∑

i=0

ai,r φi(x, L), (3.4)

where n is a positive integer and our goal is to find the coefficients ai,r.
In the next step, the boundary conditions in Eq. (3.3) are satisfied:

yn,r+1(x) = A+Bx+ x2 un,r(x). (3.5)
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By substituting Eq. (3.5) in Eq. (3.2), we form residual function at each iteration QLM as
follows:

Resr(x) = y
′′

n,r+1 +
k

x
y
′

n,r + f(x, yn,r)− h− (yn,r+1 − yn,r(x)) fy(x, y) +
k

x
(y′

n,r+1 − y
′

n,r). (3.6)

The main goal in the collocation method is to minimize the residual function for calculating
unknown coefficients . By putting the arbitrary collocation points {xj}

n
j=0 in Eq. (3.6),

we have a system of the n+ 1 linear equations at each iteration that can be solved by the
Newton’s method for unknown coefficients ai,r. The described method is summarized in
the following algorithm:

Begin

1. Input: n, L, max iteration, and α for FRE and RFE .
2. Selection an initial guess (We suppose that y0(x) ≡ A ).
For r = 0, 1, 2, · · · ,max iteration do
3. Calculation a linear combination of trial functions
4. Satisfy the boundary conditions by calculating function
5. Calculation residual function Resr(x)
6. Creating of the system of equations by putting the points {xj}

n
j=0 in Resr(x).

7. Solving the system of linear equations.
End For
End

In steps 1 and 2, the order of complexity is O(1). In step 3, according to Eq. (3.4), the
order of complexity is O(n). In step 4, the order of complexity is O(1). In step 5, according
to Eq. (3.6), the order of complexity is O(n2). The order of complexity in step 6 is O(n).
The order of complexity in step 7 is dependent on the method of choice for solving these
systems, we have applied the Newton’s method, so the order of complexity in this step is
O(n2). The order of complexity in the FOR loop in O(n). Thus, the order of complexity
in the above algorithm is at least O(n3).

4 Solution of nonlinear initial value problems:
Comparison of REC, FREC, and RFEC

In what follows several numerical examples are given to illustrate the performance and
reliability of the present methods of solution. The results are tabulated and compared with
the accurate results of other methods.
In this study, the roots of the generalized fractional order of the Chebyshev functions of

first kind on the interval [0, L] (i.e. xj = L((1−cos( (2j−1)π
2(n+1) )/2)

1
α , j = 1, 2, · · · , n+1) have

been used as collocation points and all of the computations have been done by software
Maple 18.

4.1 Example 1 (The standard Lane-Emden equation)

For k = 2, f(x, y) = ym(x), h(x) = 0, A = 1 and B = 0, Eq. (3.1) has been defined the
standard Lane-Emden equation that was used to model the thermal behavior of a spherical
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cloud of gas acting under the mutual attraction of its molecules and subject to the classical
laws of thermodynamics.

y′′(x) +
2

x
y′(x) + ym(x) = 0 x ≥ 0, (4.1)

y(0) = 1, y′(0) = 0,

where m is a real constant. In Eq. (4.1) for m = 0, 1, and 5 exist the exact solution, but in
other cases, there is not any exact analytical solution.
By using Eqs. (3.2) and (3.3), we have:

y
′′

r+1(x) +
2

x
y′r+1(x) +m yr+1(x)y

(m−1)
r (x)− (m− 1)y(m)

r (x) = 0, (4.2)

with the boundary conditions:

yr+1(0) = 1, y′r+1(0) = 0, r = 0, 1, 2, · · ·max iteration. (4.3)

The QLM iteration requires an initialization or ”initial guess” y0(x). We suppose that
y0(x) ≡ 1. According to the algorithm that was presented, we form residual function at
each iteration QLM as follows:

Resr(x) = y
′′

n,r+1(x) +
2

x
y′n,r+1(x) +m yn,r+1(x)y

(m−1)
n,r (x)− (m− 1)y(m)

n,r (x). (4.4)

In this equation, the FRE and RFE collocation methods with α = 1
2 are considered. The

results show that the method works with all three basis functions effectively to solve the
standard Lane-Emden equation. Accurate numerical results for integer and fractional values
of the nonlinear exponent m to 22 and 13 decimal places are reported, respectively. Tables
2 and 3 show the comparison of the first zeros of standard Lane-Emden equation, for the
REC, FREC and RFEC and numerical results given by Hordet [9], Boyd [13], Motsa &
Shateyi [14], and Seidov [19], for m = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 with N = 45, 10th
iteration, and α = 0.5. Tables 4 and 5 have presented the approximations of y(x) for the
standard Lane-Emden equation for m = 1.5, 2, 2.5, 3, 3.5, and 4 with n = 45, 10th iteration,
and α = 0.5 by using the proposed methods in this paper and Horedt [9].

Table 2: Comparison of the first zeros of standard Lane-Emden equation.
Method m = 2 m = 3 m = 4

L = 4.35 L = 5.35 L = 14.97
REC 4.35287459594612467697357 6.8968486193769603754544 14.971546348838095117
FREC 4.35287459594612467697354 6.8968486193769603754545 14.971546348838095096
RFEC 4.35287459594612467697357 6.8968486193769603754545 14.971546348838095125

Ref. [13] 4.352874595946125 6.896848619376960 14.971546348838095
Ref. [14] 4.352874595946125 6.896848619376960 14.971546348838095
Ref. [19] 4.352874595946124 6.896848619376960 14.971546348838093
Ref. [9] 4.35287460 6.89684862 14.9715463
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Table 3: Comparison of the first zeros of standard Lane-Emden equations.
Method m = 0.5 m = 1.5 m = 2.5 m = 3.5

L = 2.75 L = 3.65 L = 5.35 L = 9.53
REC 2.75269802904624 3.65375373627426 5.35527545901001 9.53580534424485
FREC 2.75269807561046 3.65375373626527 5.35527545900993 9.53580534424485
RFEC 2.75269801114752 3.65375373691605 5.35527545900690 9.53580534424487

Ref. [13] 2.752698054065 3.653753736219 5.355275459011 9.535805344245
Ref. [14] 2.752698054065 3.653753736219 5.355275459011 9.535805344245
Ref. [9] 2.75269805 3.65375374 5.35527546 9.53580534

Table 4: Obtained values of y(x) for standard Lane-Emden m = 2, 3, and 4.
m x REC FREC RFEC Hordet

0.10 0.9983349985461484173 0.9983349985461484173 0.9983349985461484181 0.9983350

0.50 0.9593527158033827008 0.9593527158033827008 0.9593527158033827009 0.9593527

1.00 0.8486541114082496769 0.8486541114082496769 0.8486541114082496769 0.8486541

2 3.00 0.2418240830523409167 0.2418240830523409167 0.2418240830523409167 0.2418241

4.30 6.8109432742058300e-3 6.81094327420583009e-3 6.81094327420583009e-3 6.810943e-3

4.35 3.6603017936128573e-4 3.66030179361285732e-4 3.66030179361285732e-4 3.660302e-4

0.10 0.9983358295691694936 0.9983358295691694935 0.9983358295691694935 0.9983358

0.50 0.9598390699448517235 0.9598390699448517233 0.9598390699448517233 0.9598391

1.00 0.8550575685886263114 0.8550575685886263113 0.8550575685886263113 0.8550576

3 5.00 0.1108198351396255988 0.1108198351396255988 0.1108198351396255988 0.1108198

6.80 4.16778936545346001e-3 4.16778936545346001e-3 4.16778936545346001e-3 4.167789e-3

6.896 3.60111454367096332e-5 3.60111454367096332e-5 3.60111454367096332e-5 3.601115e-5

0.10 0.9983366595395740477 0.9983366595395740127 0.9983366595395740127 0.9.983367

0.20 0.9933862135323675949 0.9933862135323689176 0.9983366595395742818 0.9.933862

0.50 0.9603109023422213094 0.9603109023422199490 0.9933862135323710561 0.9.603109

4 5.00 0.2359227310424867981 0.2359227310424857399 0.2359227310424867992 0.2.359227

10.0 5.96727415894893291e-2 5.96727415894893320e-2 5.96727415894893288e-2 5.967274e-2

14.0 8.33052669542489561e-3 8.33052669542489575e-3 8.33052669542489562e-3 8.330527e-4

14.9 5.76418866213546803e-4 5.76418866213546761e-4 5.76418866213546867e-4 5.764189e-4

Table 5: Obtained values of y(x) for standard Lane-Emden m = 0.5, 1.5, 2.5, 3.5 by the
present methods for Example 1 (with n = 45, 10th iteration, and α = 0.5)

m x REC FREC RFEC Hordet [9]

0.10 0.998333750 0.998362576 0.998795459 0.9983338
0.50 0.958594277 0.958485222 0.958551872 0.9585943

0.5 2.00 0.402579409 0.402579396 0.402578963 0.4025795
2.70 2.6741151e-2 2.6741176e-2 2.6741534e-2 2.6741e-2
2.75 1.3502687e-3 1.3502921e-3 1.3502432e-3 1.3502e-3

0.10 0.998334582 0.998336066 0.997209141 0.9983346
0.50 0.959103856 0.959104042 0.959356797 0.9591039

1.5 3.00 0.158857608 0.158857607 0.158857608 0.1588576
3.60 1.1090994e-2 1.1090994e-2 1.1090994e-2 1.1090e-2
3.65 7.6392419e-4 7.6392419e-4 7.6392430e-4 7.6392e-4

0.10 0.99833541418937 0.99833541551590 0.99833046983239 0.9983354
0.50 0.95959775446377 0.95959775498864 0.95959509587174 0.9595978

2.5 4.00 0.13768073302111 0.13768073302075 0.13768073303326 0.1376807
5.00 2.901918664896e-2 2.901918664896e-2 2.901918664742e-2 2.901919e-2
5.30 4.259543533953e-3 4.259543533945e-3 4.259543533952e-3 4.259544e-3

0.10 0.99833624468580 0.99833624468580 0.99833624174357 0.9983362
0.50 0.96007675581495 0.96007675581502 0.96007675602508 0.9600768

3.5 5.00 0.17868426574896 0.17868426574896 0.17868426575023 0.1786843
9.00 1.180312152959e-2 1.180312152959e-2 1.180312152959e-2 1.180312e-2
9.50 7.472340753339e-4 7.472340753339e-4 7.472340753346e-4 7.472341e-4
9.53 1.207723444758e-4 1.207723444758e-4 1.207723444763e-4 1.207723e-4
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Table 6: Obtained values of y(x) for the isothermal gas spheres equation by the present
methods for Example 2 (with n = 40,α = 0.75, and 10th iteration)
x ADM REC FREC RFEC
0.1 −0.0016658339 −0.00166583386206 −0.00166583386210 −0.00166583386210
0.2 −0.0066533671 −0.00665336710042 −0.00665336710046 −0.00665336710046
0.5 −0.0411539568 −0.04115395729271 −0.04115395729275 −0.04115395729275
1.0 −0.1588273537 −0.15882767752444 −0.15882767752442 −0.15882767752443
1.5 −0.3380131103 −0.33801942476081 −0.33801942476082 −0.33801942476082
2.0 −0.5599626601 −0.55982300433553 −0.55982300433555 −0.55982300433556
2.5 −0.8100196713 −0.80634087059839 −0.80634087059840 −0.80634087059840

4.2 Example 2 (The isothermal gas spheres equation)

According to Eq. (3.1), if k = 2, f(x, y) = ey(x), h(x) = 0 , A = 0 and B = 0 the isothermal
gas spheres equation has been defined as follows:

y′′(x) + 2
x
y′(x) + ey(x) = 0 x ≥ 0, (4.5)

y(0) = 0, y′(0) = 0, (4.6)

Davis [8] and Van Gorder [20] have discussed about Eq. (4.5) that can be used to view
the isothermal gas spheres, where the temperature remains constant. This equation has
been solved by some researchers, for example Wazwaz [1] by using Adomian decomposition
method (ADM), and Parand et al. [15] by using Bessel orthogonal functions collocation
method. A semi-analytical solution have investigated by Wazwaz [1] and Singh et al. [12]
by using ADM and modified Homotopy analysis method (MHAM), respectively:

y(x) ≃ −
1

6
x2 +

1

5!
x4 −

8

21.6!
x6 +

122

81.8!
x8 −

61.67

459.10!
x10 + · · · . (4.7)

According to the algorithm that was presented, we form residual function at each iteration
QLM as follows:

Resr(x) = y
′′

n,r+1 +
2

x
y′n,r+1 + eyn,r+1

(

yn,r+1 − yn,r + 1
)

(4.8)

In this equation, the FRE and RFE collocation methods with α = 0.75, n = 40, 10th
iteration, and L = 2.5 are considered.
Table 6 shows the comparison of y(x) obtained by the proposed methods in this paper
and the obtained values by Wazwaz [1]. The resulting graph of the isothermal gas spheres
equation in comparison to the presented methods and the Log graph of the residual error
of the approximate solution of the isothermal gas spheres equation are shown in Fig. 1.

4.3 Example 3

According to Eq. (3.1), if f(x, y) = sinh(y(x)), A = 1 and B = 0 the equation has been
defined as follows:

y′′(x) +
2

x
y′(x) + sinh(y(x)) = 0 x ≥ 0, (4.9)

y(0) = 1, y′(0) = 0,
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(a) Graphs of residual error (b) Graph of solutions

Figure 1: Graphs of solution and the residual error for Example 2

Table 7: Obtained values of y(x) for the Lane-Emden equation by the present method for
Example 3 (with n = 50, α = 0.75, and 10th iteration )
x ADM REC FREC RFEC

0.1 0.9980428414 0.998042841444807 0.998042841444802 0.998042841444801
0.2 0.9921894348 0.992189434812197 0.992189434812192 0.992189434812192
0.5 0.9519611019 0.951961092744912 0.951961092744907 0.951961092744907
1.0 0.8182516669 0.818242928490512 0.818242928490518 0.818242928490518
1.5 0.6258916077 0.625438763484943 0.625438763484941 0.625438763484940
2.0 0.4136691039 0.406622887545649 0.406622887545648 0.406622887545648

Using Adomian decomposition method, Wazwaz [1] has calculated

y(x) ≃ 1−
(e2 + 1)x2

12e
+

1

480

(e4 − 1)x4

e2
−

1

30240

(2e6 + 3e2 − 3e4 − 2)x6

e3
+ · · · .

According to the algorithm that was presented, we form residual function at each iteration
QLM as follows:

Resr(x) = y
′′

n,r+1 +
2

x
y′n,r+1 + sinh(yn,r) +

(

yn,r+1 − yn,r
)

sinh(yn,r). (4.10)

In this equation, the FRE and RFE collocation methods with α = 0.75, n = 50, 10th
iteration, and L = 2 are used.
Table 7 shows the comparison of y(x) obtained by the proposed methods in this paper
and the obtained values by Wazwaz [1]. The resulting graph of the isothermal gas spheres
equation in comparison to the presented methods and the Log graph of the residual error
of the approximate solution of the equation are shown in Fig. 2.
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(a) Graphs of residual error (b) Graph of solutions

Figure 2: Graphs of solution and the residual error for Example 3

5 Conclusions

In this paper, a powerful and efficient technique is presented to solve the Lane-Emden type
equations that model many phenomena in mathematical physics and astrophysics. They are
nonlinear differential equations and have a singularity at the origin. A numerical method
is suggested based on a hybrid of quasilinearization method and collocation method. A
comparison was made between three collocation methods using the Euler functions. The
comparison indicates that the performance is almost equal to the three basic functions
and give very accurate results and performs better than other numerical methods that
have previously been applied to solve these problems. Moreover, for the first time, the
rational fractional Euler functions (RFE) have been introduced. We can conclude that the
combination of quasilinearization method and the collocation method based on rational
basis functions originated from Euler polynomials is an efficient and accurate method.
Accurate of the approximate results to 22 decimal places are reported for integer values of
the nonlinear exponent m in the standard Lane-Emden equation. The results presented in
this paper can easily be extended to other initial and boundary value problems which are
difficult to solve using other numerical methods.
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