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Abstract

We use the results of Hefez and Hernandez [7] to give a different proof for the
classification of simple singularities of mappings (C, 0) −→ (C2, 0) with respect to A
equivalence done by Bruce and Gaffney [2] and give the classification of unimodal
singularities. The result are extended to a classification over the real numbers R.

Key Words: parametrized plane curves, unimodal singularities.

2010 Mathematics Subject Classification: Primary 14H20. Secondary
14B05

1 Introduction

Let K be a field of characteristic 0 contained in C the field of complex numbers. We
are interested in classifying the A−finitely determined map germs (K, 0) −→ (K2, 0)
for K = R or C with respect to A−equivalence or equivalently the finitely determined
K−algebra automorphisms K[[x, y]] −→ K[[t]] with respect to the action of the group
A = AutK(K[[t]])×AutK(K[[x, y]]) acting on

A(1, 2) = {(x(t), y(t))|x(t), y(t) ∈< t > K[[t]], dimK [[t]]/K[[x(t), y(t)]] <∞}

as follows:

A×A(1, 2) −→ A(1, 2)

((Φ,Ψ), f) 7→ Φ−1 ◦ f ◦Ψ

If we identify AutK(K[[t]]) = tK[[t]]∗, AutK(K[[x, y]]) = {(Ψ1,Ψ2)|Ψi ∈< x, y > K[[x, y]],

det(∂(Ψ1,Ψ2)
∂(x,y) (0)) 6= 0} then the action of it can be explicitely written as

Ψ ◦ (x(t), y(t)) ◦ Φ−1 = (Ψ1(x(Φ(t)), y(Φ(t))),Ψ2(x(Φ(t)), y(Φ(t)))) with Φ(Φ(t)) = t.

If f, g ∈ A(1, 2) are in the same orbit under the action of A we call f A− equivalent to g
and write f ∼A g.

Bruce and Gaffney used Arnold’s [1] classification of hypersurface singularities to obtain
(with Arnold’s notation) the A- simple germs (C, 0) −→ (C2, 0).
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A2k (t2, t2k+1)
E6k (t3, t3k+1 + t3p+2), k ≤ p < 2k

(t3, t3k+1)
E6k+2 (t3, t3k+2 + t3p+1)), k < p ≤ 2k

(t3, t3k+2)
W12 (t4, t5 + t7)

(t4, t5)
W18 (t4, t7 + t9)

(t4, t7 + t13)
(t4, t7)

W#
1,2k−5 (t4, t6 + t2k+1), k ≥ 3

We use the following theorem of Hefez and Hernandez [7] to obtain this result and refine
it for a classification over R. With the same idea we obtain the classification A unimodal
germs. To give a formulation of the theorem we recall the definition of the Zariski number.
Let R := K[[x(t), y(t)]] ⊆K[[t]] such that δR = dimKK[[t]]/R <∞. Let ΓR = {ordt(f)|f ∈
R}, and β = (β0, · · · , βs), β0 < β1 < · · · < βs the minimal generators of ΓR, especially let
n := β0 and m := β1. Note that cR = 2δR is the conductor of R, i.e. tcRK[[t]] ⊆ R. Let

ΩR =< dx(t)
dt , dy(t)

dt >R be the R−module of differentials. Let Γ(ΩR) = {ordt(w)|w ∈ ΩR}
be the semi-module of values and Λ = (Γ(ΩR) + 1) ∪ {0}. Then ΓR ⊆ ΛR. The Zariski
number is

λ :=

{
∞ : if ΓR = ΛR
a : where a=min {s|s ∈ ΛR − ΓR} − n

The pair (β, λ) is an A−invariant.

Theorem 1. [7] Let R = K[[x(t), y(t)]] ⊆ K[[t]] such that δR <∞.

1. ΛR = ΓR iff (x(t), y(t)) ∼A (tn, tm).

2. If λ < ∞ then there exist y(t) = tm + aλt
λ +

∑
i+n/∈Λ
i>λ

ait
i, ai ∈ K, aλ 6= 0 such

that (x(t), y(t)) ∼A (tn, y(t)). If K = C (resp. K = R) we can choose aλ = 1 (resp.
aλ = ±1).

3. (tn, tm+ bλt
λ+

∑
i+n/∈Λ
i>λ

bit
i) ∼A (tn, tm+ bλt

λ+
∑
i+n/∈Λ
i>λ

bit
i), bλ, bλ 6= 0, iff bλ−mi =

( bλ
bλ

)i−mb
λ−m
i . If K = C (resp. K = R) and bλ = bλ = 1 (resp. bλ = ±1, bλ = ±1)

then bi = ri−mbi (resp.bi = ±ri−mbi), r ∈ C, rλ−m = 1.

We obtain the following corollary:

Corollary 1. The modality 1 of f = (x(t), y(t)) is greater or equal to the cardinality of the
set {i ∈ Z|i > λ, i+ n /∈ Λ}.

Definition 1. The integers i > λ with i+ n /∈ Λ are called the moduli of Λ.

1Recall, that the modality of f is the least number l such that a small neighbourhood of f in A(1, 2)
can be covered by a finite number of l−parameter families of orbits.
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2 Classification of Simple and Unimodal Germs

The classification is done fixing the A−invariant (β, λ).

Lemma 1. The invariant (β, λ) of the map germ (x(t), y(t)) ∈ A(1, 2) is semicontinuous
with respect to the lexicographical ordering 2.

Proof. We may assume x(t) = tn and y(t) = tm +
∑
i>m ait

i with β0 = n and β1 = m. Let
k0 = β0, k1 = β1 and kv = min{i|ai 6= 0, gcd(i, k0, · · · , kv−1) < gcd(k0, · · · , kv−1)} define
the sequence of characteristic exponents and
k = (k0, · · · , ks) then [9]

βi = ki +

i−1∑
j=1

(
gcd(k0, · · · , kj−1)

gcd(k0, · · · , ki−1)
− gcd(k0, · · · , kj)
gcd(k0, · · · , ki−1)

)kj

and

ki = βi +

i−1∑
j=1

(
gcd(β0, · · · , βj−1)

gcd(β0, · · · , βj)
− 1))βj .

It is equivalent to prove that (k, λ) is semicontinuous. Let (X(t, z), Y (t, z)) be a defor-
mation of (x(t), y(t)). If ordtX(t, z) < β0 or ordtY (t, z) < β0 we are done. Assume now
ordtX(t, z) ≥ β0, and ordtY (t, z) ≥ β0. Since X(t, 0) = tβ0 , we have X(t, z) = tβ0(1 +
h(t, z)) with h(t, 0) = 0. Then (X(t, z), Y (t, z)) ∼A (tβ0 , Y (t, z)) with (tβ0 , Y (t, 0)) ∼A
(tβ0 , y(t)). We may assume Y (t, 0) = y(t) and ordtY (t, z) ≥ β0, because A−equivalence
does not change the characteristic exponents. Let Y (t, z) =

∑
i≥β0

ai(z)t
i, we may assume

ai(z) = 0 if β0 | i. For a fixed z with |z| small, let k1(z), · · · , ks(z) be the sequence of
characteristic exponents of Y (t, z). Assume k1(z) = k1, · · · , kl(z) = kl for some l ≥ 0. If
l < r consider kl+1(z). We have kl+1 = min{i | ai 6= 0, gcd(i, k0, · · · , kl) < gcd(k0, · · · , kl)}
and kl+1(z) = min{i | ai(z) 6= 0, gcd(i, k0, · · · , kl) < gcd(k0, · · · , kl)}. Since ai(0) = ai and
z is small we have akl+1

(z) 6= 0. This implies kl+1(z) ≤ kl+1. If kl+1(z) = kl+1 we continue

like that and may assume that ki(z) = ki for all i. This implies that we have a deformation
with constant semi group and we have to prove that in this situation the Zariski number
does not increase in a deformation.

If λ = ∞, we are done. Assume that λ < ∞. We may assume that x(t) = tn,
y(t) = tm +

∑
i≥λ ait

i, aλ 6= 0 and X(t, z) = tn, Y (t, z) = tm +
∑
i≥k>m ai(t, z)t

i such
that ai(t, 0) = ai for i ≥ λ and ai(t, 0) = 0 for i < λ. If k ≥ λ we are done. Assume
that k < λ. If k + n /∈ Γ we are done since in this case k < λ is the Zariski number
of (X(t, z), Y (t, z)) for |z| small, z 6= 0. We will show that k + n ∈ Γ implies k ∈ Γ or
k + n − m in Γ. If Γ =< n,m > this is clear. If Γ =< n,m, β2, · · · > we obtain that
λ ≤ k2, the second characteristic exponent and β2 = k2 + ( n

gcd(n,m) − 1)m. In this case

λ + n ≤ k2 + n < k2 + m ≤ β2 and therefore k + n < β2. This implies k + n ∈< n,m >
and as in the first case k ∈ Γ or k + n − m ∈ Γ. For the case k ∈ Γ or k + n − m ∈ Γ
Zariski gave an explicite A−equivalence for the family (tn, Y (t, z)) to (tn, Y (t, z)) such that
Y (t, z) = tm +

∑
i>k bi(t, z)t

i and bi(t, 0) = ai for i ≥ λ, bi(t, 0) = 0 for i < λ. Now we

2This means that in a deformation (X(t, z), Y (t, z)) the corresponding invariant (βz , λz) is lexicograph-
ically smaller or equal to (β, λ).
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can continue as above . The process will stop either if k = λ (a deformation with constant
Zariski number) or k < λ and k + n /∈ Γ (k is the Zariski number of (tn, Y (t, z)) for |z|
small, z 6= 0).

Lemma 2. The following list of semigroups Γ of plane curve singularities has only semi-
modules Λ with no moduli.

β λ Λ Normalform
1 ∞ Γ (t, 0)

(2, 2k + 1) ∞ Γ (t2, t2k+1)
(3, 3k + 1) 3p+ 2 < Γ, 3p+ 5 >Γ (t3, t3k+1 ± t3p+2)

k ≤ p < 2k ”− ” over R if 2 |p and 2 - k
∞ Γ (t3, t3k+2)

(3, 3k + 2) 3p+ 1 < Γ, 3p+ 4 >Γ (t3, t3k+2 ± t3p+1)
k < p ≤ 2k ”− ” over R if 2 -p and 2 - k
∞ Γ (t3, t3k+2)

(4, 5) 7 < Γ, 11 >Γ (t4, t5 + t7)
∞ Γ (t4, t5)

(4, 6, 2k + 7) 2k + 1 < Γ, 2k + 5 >Γ (t4, t6 + t2k+1)
k ≥ 3

(4, 7) 9 < Γ, 13 >Γ (t4, t7 + t9)
13 < Γ, 17 >Γ (t4, t7 + t13)
∞ Γ (t4, t7)

Proof. The proof can be done checking case by case. We compute Λ for each case and check
that i > λ implies i+ n /∈ Λ.

Lemma 3. 1. If Γ =< 4, 9 >N and λ = 10 then Λ =< Γ, 14, 19 >Γ or Λ =< Γ, 14 >Γ

has one modulus 11 (i.e. 11 + 4 = 15 /∈ Λ) resp. 15.
(t4, t9 + t10 +

∑
i>10 ait

i) ∼A (t4, t9 + t10 + at11) for suitable a ∈ K, resp.
(t4, t9 + t10 +

∑
i>10 ait

i) ∼A (t4, t9 + t10 + 19
18 t

11 + at15) for suitable a ∈ K.

2. If Γ =< 5, 6 >N and λ = 8 then Λ =< Γ, 13 >Γ has one modulus 9.
(t5, t6 + t8 +

∑
i>8 ait

i) ∼A (t5, t6 + t8 + at9) for suitable a ∈ K.

(t5, t6 + t7 +
∑
i>7 bit

i) ∼A (t5, t6 +
∑
i>7 bit

i) for suitable bi ∈ K.

3. If Γ =< 4, 13 >N and λ = 14 then Λ =< Γ, 18, 27 >Γ has two moduli 15, 19
(t4, t13 + t14 +

∑
i>14 ait

i) ∼A (t4, t13 + t14 + at15 + bt19) for suitable a, b ∈ K.

4. If Γ =< 5, 9 >N and λ = 11 then Λ =< Γ, 16 >Γ has two moduli 12, 17
(t5, t9 + t11 +

∑
i>11 ait

i) ∼A (t5, t9 + t11 + at12 + bt17) for suitable a, b ∈ K.

5. If Γ =< 6, 7 >N and λ = 9 then Λ =< Γ, 15, 23 >Γ has two moduli 10, 11
(t6, t7 + t8 +

∑
i>8 ait

i) ∼A (t6, t7 +
∑
i>9 ait

i) for suitable ai ∈ K and
(t6, t7 + t9 +

∑
i>9 ait

i) ∼A (t6, t7 + t9 + at10 + bt11) for suitable a, b ∈ K.
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Proof. We compute Λ for every case and the integer i such that i+n /∈ Λ. We implemented
a Singular procedure for this purpose, see the next example.

Example 1. The Singular library classify-aeq.lib contains a procedure normalForm. The
procedure computes a list, the normal form over Q the semi group Γ, the semi module Λ,
the Zariski number λ and the moduli.

>LIB"classify_aeq.lib";

>ring r=0,t,ds;

>ideal I=t6,t7+t9;

>normalForm(I);

[1]:

_[1]=t6

_[2]=t7+t9

[2]:

0,6,7,12,13,14,18,19,20,21,24,25,26,27,28,30

[3]:

0,6,7,12,13,14,15,18

[4]:

9

[5]:

10,11

> I=t6,t7+t8;

>normalForm(I);

[1]:

_[1]=t6

_[2]=t7-15/14t9+184/147t10-391/2744t11

[2]:

0,6,7,12,13,14,18,19,20,21,24,25,26,27,28,30

[3]:

0,6,7,12,13,14,15,18

[4]:

9

[5]:

10,11

> I=t5,t6+t7+13/12t8+133/108t9;

>normalForm(I);

[1]:

_[1]=t5

_[2]=t6-5225/559872t14

[2]:

0,5,6,10,11,12,15,16,17,18,20

[3]:

0,5,6,10,11,12,15

[4]:

14

[5]:

0

In the last example we obtain as normal form over R (t5, t6 − t14) and no modulus but the
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modality is 1. In first two examples we obtain λ = 9 and 2 moduli 10, 11. This implies
especially that the modality is at least 2.

Lemma 4. The following list of semi groups Γ of plane curve singularities has only semi
modules Λ with one modulus or no moduli.

β λ Λ modulus Normalform
(4, 9) 10 < Γ, 14, 19 >Γ 11 (t4, t9 + t10 + at11)

10 < Γ, 14 >Γ 15 (t4, t9 + t10 + 19
18 t

11 + at15)
11 < Γ, 15 >Γ − (t4, t9 + t11)
15 < Γ, 19 >Γ − (t4, t9 + t15)
19 < Γ, 23 >Γ − (t4, t9 + t19)
∞ Γ − (t4, t9)

(4, 10, 2k + 11) 2k + 1 < Γ, 2k + 5 >Γ
3 2k + 3 (t4, t10 + t2k+1 + at2k+3)

(4, 11) 13 < Γ, 17 >Γ 14 (t4, t11 + t13 + at14)
14 < Γ, 18, 25 >Γ 17 (t4, t11 + t14 + at17)
14 < Γ, 18 >Γ 21 (t4, t11 + t14 + 25

22 t
17 + at21)

17 < Γ, 21 >Γ − (t4, t11 + t17)
21 < Γ, 25 >Γ − (t4, t11 + t21)
25 < Γ, 29 >Γ − (t4, t11 + t25)
∞ Γ − (t4, t11)

(5, 6) 8 < Γ, 13 >Γ 9 (t5, t6 ± t8 + at9)
9 < Γ, 14 >Γ − (t5, t6 + t9)
14 < Γ, 19 >Γ − (t5, t6 ± t14)
∞ Γ − (t5, t6)

(5, 7) 8 < Γ, 13 >Γ 11 (t5, t7 + t8 + at11)
11 < Γ, 16 >Γ 13 (t5, t7 + t11 + at13)
13 < Γ, 18 >Γ − (t5, t7 + t13)
18 < Γ, 23 >Γ − (t5, t7 + t18)
∞ Γ − (t5, t7)

(5, 8) 9 < Γ, 14 >Γ 12 (t5, t8 + t9 + at12)
12 < Γ, 17 >Γ 14 (t5, t8 ± t12 + at14)
14 < Γ, 19 >Γ 17 (t5, t8 ± t14 + at17)
17 < Γ, 22 >Γ − (t5, t8 + t17)
22 < Γ, 27 >Γ − (t5, t8 ± t22)
∞ Γ − (t5, t8)

3 Note that in the cases (4, 10, 21) resp. (4, 10, 23) we need additionally 21 resp. 29 to
generate Λ.

Proof. We compute Λ for every case and the integers i > λ such that i+ n /∈ Λ.

Theorem 2. The second table contains the simple singularities of perameterized plane
curves and the third table contains the unimodal singularities.

Proof. We have to prove that in a deformation of a map germ of the second table (resp. the
third table) are only finitely many (resp. one parameter families) of different types of map
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germs, that any map germ of the third table deforms into one with exactly one modulus
and any map germ with (β, λ) lexicographically greater then a map germ in first two tables
deforms in a family with two moduli. This is an immediate consequence of lemma 1 (the
semi continuity of (β, λ) ) and lemma 3 since the tables are ordered by increasing (β, λ).

Remark 1. The singularities with β = (4, 9) resp.(4, 11) in the third table correspond to

W24 resp. W30. The singularities with β = (4, 10, 2k+ 1) correspond to W#
2,2k−9 in Arnolds

classification [1].
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