
Bull. Math. Soc. Sci. Math. Roumanie
Tome 60 (108) No. 4, 2017, 387–397

On subfield-compatible polynomials and a class of Vandermonde-like matrices
by

Florian Enescu(1) and John J. Hull(2)

Dedicated to Dorin Popescu in honour of his 70th birthday

Abstract

Let K and L be finite fields of characteristic p, where p is prime. This note in-
vestigates polynomial representations of functions that map K to L by providing a
canonical basis for the set of minimally represented such polynomials. This interpola-
tion problem leads to a class of Vandermonde-like matrices that are also fully described.
This problem has potential applications to the hardware design of arithmetic circuits.
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1 Introduction

Let p a prime number, Fp be the algebraic closure of Fp, and K,L finite subfields of Fp.
In this note, we will investigate the special form of the polynomials f in Fp[x] mapping K
into L, that is f(K) ⊆ L. Interpolation theory has been well studied over time ([4]), but
this particular aspect has received little to no attention. Our note will reveal that there is
considerable structure hidden in the objects defined by this interpolation set-up, building
upon Hull’s work in [1].

In electrical engineering, arithmetic circuits are often represented via interpolating poly-
nomials over a finite field, which in turn can be used for validating the hardware design of
the circuit. In practice, one limitation is the size of the circuit that leads to polynomials
with very large degrees. To mitigate this problem, it is often useful to break up a large
circuit in several small ones which can be analyzed more easily. This leads to devising tools
that can allow investigating the structure of functions that are defined over a large field
but restrict naturally to smaller subfields. Our work will describe the algebraic situation
behind this set-up.

The following example is explaining and motivating the problem we study.

Example 1.1. Let p = 2. Let K,L be subfields of F2, such that K has 8 elements and L
has 4 elements. What polynomials f in F2[x] satisfy f(K) ⊆ L?

Say α satisfies α6 = α4 + α3 + α + 1. Then F2(α) = F2[x]/〈x6 + x4 + x3 + x+ 1〉 is
contained in F2. Note that α is a primitive generator for F2(α) = F64. Take K = F2(α9)
and L = F2(α21) which are subfields with 8, respectively 4 elements. The function f(X) =
α9X + α36X4 + α28X2 maps K to L, according to [1], or as in Theorem 2.4 below. The
collection of polynomials f of degree strictly less than 64 such that f(K) ⊆ L is a L-vector
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space and describes all the polynomials functions with coefficients in F2 mapping K to L.
In this paper, we will present a canonical basis for this vector space, as a particular case to
the main theorem.

Throughout this paper, F represents the Frobenius endomorphism on Fp and on the
polynomial ring Fp[x]. For any function f , when we write fn for some n ∈ N we mean the
composition of f with itself n times.

Definition 1.2. Let K,L ⊂ Fp be finite fields. An element of f ∈ Fp[x] such that f(K) ⊆ L
is called K to L compatible. The set of all functions K → K will be denoted FK , a vector
space over K. Similarly, FLK will denote the set of all functions defined on K and mapping
K to L. This is a vector space over L.

It is well known that Lagrange interpolation can be used to get a more precise description
of the vector space FK , in that each function in FK has a polynomial representation in
K[x] when K is finite (see Theorem 1.71 in [2]).

Observation 1.3. Let K ⊆ K ′ be a field extension and f ∈ FK . We will say that g ∈ K ′[x]
represents f with respect to K if g(α) = f(α) for all α ∈ K. If g ∈ K ′[x] represents f with
respect to K and it is of smallest possible degree with this property, then we say that g
minimally represents f . When K ′ is finite, then, for any function f ∈ FK (or polynomial
in K[x]), there is polynomial g ∈ K[x] representing f with respect to K, by Lagrange
interpolation. If K has pn elements, g can be taken of degree less than pn.

Assume K has pn elements. Let g, h ∈ Fp[x] representing f ∈ K[x] with respect to K.
It is easy to see that g − h = (xp

n − x)f0(x) where f0 ∈ Fp[x]. This shows that if g, h have
degrees less than pn, then they are equal. So, the concept of minimal representation of a
polynomial f ∈ K[x] is well-defined, independent of the finite field extension K ⊆ K ′ and
therefore it is also well defined over Fp.

More specifically, the following holds.

Proposition 1.4. Let K ⊆ K ′ be a finite field extension and g(x) ∈ K ′[x] a polynomial
representing f ∈ K[x]. The following statements are equivalent:

1. deg(g) ≤ pn − 1

2. g(x) is a polynomial of smallest degree representing f with respect to K.

Under these conditions, g is uniquely determined and belongs to K[x]. It will be denoted by
fr.

We will review below a few definitions and results from [1] that are useful in this work.
The following result is immediate.

Proposition 1.5. Let f ∈ Fp[x], not a multiple of xp
n−x. Then the minimal representation

of f with respect to K = Fpn is the nonzero polynomial fr ∈ Fp[x] such that deg (fr) < pn

and f(α) = fr(α) for all α ∈ Fpn . Furthermore, each coefficient of fr is a sum of coefficients
of f .

Let K,L be finite fields of equal characteristic p, where p is prime, and E their composite
field. We will identify K = Fpn , L = Fpm with the splitting fields of Xpn − X and,
respectively, Xpm −X over Fp, where n,m ∈ N. Therefore, E = Fp[n,m] is the splitting field

of Xp[n,m] −X over Fp, where [n,m] = lcm(n,m).
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Proposition 1.6 ([1]). If f ∈ Fp[x] is an Fpn to Fpm compatible polynomial that is mini-
mally represented with respect to Fpn , then f has coefficients in Fp[n,m] .

This motivates the following definition.

Definition 1.7. Let K,L be finite fields and E their composite field. Let PK denote the
collection of all polynomials in E[x] that are minimally represented with respect to K and
let PLK ⊂ PK be those minimally represented polynomials that have images in L when
evaluated at elements of K. Note that PK is naturally a vector space over E and PLK is an
L-subspace of PK .

Remark 1.8. There is an isomorphism of vector spaces between PLK and FLK . Simply
identify each minimally represented polynomial P with its corresponding function fP :
K → L.

In our work, the following concept is essential.

Definition 1.9 ([1]). (The Frobenius Permutation) Let β be a generator for the mul-
tiplicative group of Fpn . Define the function ϕ : {0, . . . , pn − 1} → {0, . . . , pn − 1} so that
for i ∈ {1, . . . , pn − 1}, F (βi) = βpi = βϕ(i) where ϕ(i) ∈ {1, . . . , pn − 1} and ϕ(0) = 0. We
will refer to ϕ as the Frobenius permutation of order n and we will at times write ϕn to
emphasize that the order of ϕ is n, see Proposition 1.10.

It is known that ϕ does not depend on the choice of the generator β for F×pn . In fact, the
permutation ϕ does depend only the characteristic p. This follows from the result below.

Proposition 1.10 ([1]). Let ϕ be as defined above. Then ϕ is a permutation of order n on
the set {0, . . . , pn − 1} (i.e. ϕn = id). Furthermore, for i ∈ {0, . . . , pn − 1}, ϕ(i) = q + r
where pi = pnq + r, 0 ≤ r < pn.

The rest of the paper is organized as follows. In Section 2, we will introduce the notion
of cycle basis and provide a canonical basis for the vector space PLK . In Section 3, we discuss
the concept of Vandermonde-Frobenius matrix that is naturally associated to a cycle basis,
and describe how to computed its determinant.

2 Cycle bases

Definition 2.1. Let E be a field containing Fpm . A cycle polynomial is a polynomial
f ∈ E[x] such that there exists a cycle σ of length r, a term axi in f with i in the support
of σ, and a positive integer m such that ap

rm

= a such that

f = axi + ap
m

xσ(i) + ap
2m

xσ
2(i) + · · ·+ ap

(r−1)m

xσ
r−1(i)

In the above case, we say that f is a cycle polynomial of magnitude m corresponding to σ
and that axi is a generating term for f . Moreover, the collection of all cycle polynomials of
magnitude m corresponding to σ will be denoted by Pσ,m. This is a subset of Fpm [x] ⊆ E[x].

Proposition 2.2. Let r,m positive integers. Let σ a cycle of length r, and f ∈ Pσ,m.
Then any term of f is a generating term for f . Moreover Pσ,m is an Fpm-vector space and
dimFpm

(Pσ,m) = r.
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Proof. The first observation is that Pσ,m is a Fpm-vector space, since the Frobenius map,
and its iterations, are additive and ap

m

= a for all a ∈ Fpm .

Let a such that ap
rm

= a and

f = axi + ap
m

xσ(i) + a(p
m)2xσ

2(i) + · · ·+ a(p
m)r−1

xσ
r−1(i).

Clearly, ap
jm+rm

= ap
jm

for all j = 0, . . . , r− 1 and σ is a cycle of length r, so any term
of f is a generating term.

The coefficients of f are in Fprm . Let α a generator of the extension Fpm ⊆ Fprm . This
is an element of Fprm of degree r over Fpm .

Let Dσ,α be the set containing the following cycle polynomials:

δ0 = xi + xσ(i) + · · ·+ xσ
r−1(i)

δ1 = αxi + αp
m

xσ(i) + · · ·+ αp
(r−1)m

xσ
r−1(i)

δ2 = α2xi + α2pmxσ(i) + · · ·+ α2p(r−1)m

xσ
r−1(i)

...

δr−1 = αr−1xi + α(r−1)pmxσ(i) + · · ·+ α(r−1)p(r−1)m

xσ
r−1(i)

Let g = axi+ap
m

xτ(i) + · · ·+ap
(r−1)m

xτ
r−1(i) be any cycle polynomial corresponding to

σ, a ∈ E. Note that since Fpm ⊂ Fprm is an extension of fields, a = b0+b1α+ · · ·+br−1αr−1
with b0, . . . , br−1 in Fpm .

It follows then that:

axi + ap
m

xσ(i) + · · ·+ ap
(r−1)m

xσ
r−1(i) =

(b0 + · · ·+ br−1α
r−1)xi + (b0 + · · ·+ br−1α

r−1)p
m

xσ(i) + · · ·+

+(b0 + · · ·+ br−1α
r−1)p

(r−1)m

xσ
r−1(i) =

(b0 + · · ·+ br−1α
r−1)xi + (bp

m

0 + · · ·+ bp
m

r−1α
(r−1)pm)xσ(i) + · · ·+

+(bp
(r−1)m

0 + · · ·+ bl−1α
(r−1)p(r−1)m

)xσ
r−1(s) =

(b0x
i + · · ·+ b0x

σr−1(i)) + (b1αx
i + · · ·+ b1α

p(r−1)m

xσ
r−1(i)) + · · ·+

+(br−1α
r−1xi + · · ·+ bl−1α

(r−1)p(r−1)m

xσ
r−1(i)).

This shows that

g = b0δ0 + b1δ1 + · · ·+ br−1δr−1.

Therefore Dσ,α spans Pσ,m. The linear independence of the set Dσ,α over Fpm follows
immediately from the linear independence of {1, α, . . . , αr−1} over Fpm , hence Dσ,α is a
basis for Pσ,m and dim(Pσ,m) = r, the order of σ.
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Definition 2.3. Let r,m positive integers. Let σ be a cycle of length r, and i an element
in the support of σ. Let α be a generator of the extension Fpm ⊆ Fprm .

The basis {δ0(x), . . . , δr−1(x)} where

δ0 = xi + xσ(i) + · · ·+ xσ
r−1(i)

δ1 = αxi + αp
m

xσ(i) + · · ·+ αp
(r−1)m

xσ
r−1(i)

δ2 = α2xi + α2pmxσ(i) + · · ·+ α2p(r−1)m

xσ
r−1(i)

...

δr−1 = αr−1xi + α(r−1)pmxσ(i) + · · ·+ α(r−1)p(r−1)m

xσ
r−1(i)

is called the cycle basis for Pσ,m associated to α. We will denote it by Dσ,α.

The following characterization of subfield-compatible polynomials will be important
next.

Theorem 2.4. ([1]) Let Fpn and Fpm be two finite fields. Let f ∈ Fp[x] be minimally

represented with respect to Fpn , f =

pn−1∑
i=0

aix
i. Then f (Fpn) ⊆ Fpm if and only if ap

m

i =

aϕk(i) for each i ∈ {0, . . . , pn − 1} where ϕ is the Frobenius permutation of order n and
m ≡ k(mod n).

We are now ready to completely describe the collection of all polynomials in E[x] that
are minimally represented with respect to K, and K to L compatible.

Theorem 2.5. Let K = Fpn , L = Fpm and their composite field E. Let k such that
m ≡ k (mod n) and φkn = σ1 · · ·σs a complete factorization, where σh is a cycle of order
rh, h = 1, . . . , s.

Then we have the following direct sum decomposition PLK = ⊕sh=1Pσh,m and PLK has
dimension pn over Fpm .

Proof. First let us note that, for all h = 1, . . . , s, Pσh,m is an L = Fpm -vector space by
Proposition 2.2.

Let σ = σh one of the cycles in the factorization of ϕkn. We observe that Pσ,m ⊂ PLK :
Let f ∈ Pσ,m. Therefore there exists a ∈ E and i an integer in the support of the cycle

σ such that
f = axi + ap

m

xσ(i) + ap
m2

xσ
2(i) + · · ·+ ap

mr−1

xσ
r−1(i).

Note that f is Fpn to Fpm compatible by Theorem 2.4, since ϕk acts as σh on the support
of σh. This proves the desired inclusion.

Now let f ∈ PLK . Let aix
i be a term in f and hence 0 ≤ i ≤ pn − 1. Theorem 2.4

shows that ap
m

i = aϕk(i). So, the cycle polynomial of magnitude pm generated by this term
is part of f . This shows that Ppmn = Pσ1,m + · · ·+ Pσs,m. The degrees of all nonzero terms
of the cycle polynomials in Pσi,pm are determined by the support of the disjoint cycle σi
of length ri, so it follows immediately that if f ∈ Pσi,m ∩

∑
i 6=j Pσj ,m, then f = 0. Then

Ppmn =
⊕s

i=1 Pσi,m and ∪si=1Dσi,αi forms a basis for Ppmn , where αi denotes a generator of
the extension Fpm ⊆ Fprim , for every i = 1, . . . , s. Since |Dσi | = ri where ri is the length of
σi, we have that dim(Ppmn ) =

∑s
i=1 ri = pn, as claimed.
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Definition 2.6. Maintaining the notations from proof of Theorem 2.5, we will call the
union ∪si=1Dσi,αi := {δ0(x), . . . , δpn−1(x)} a cycle basis for PLK . It depends on a choice of
generators for the extensions Fpm ⊆ Fprim , where i = 1, . . . , s.

3 Vandermonde-Like Matrices

Definition 3.1. For a field E and {α1, . . . , αm} ⊂ E, define the Vandermonde Matrix
V (α1, . . . , αm) as follows:

V (α1, . . . , αm) =


1 α1 α2

1 · · · αm−11

1 α2 α2
2 · · · αm−12

...
...

...
...

...
1 αm α2

m · · · αm−1m


The determinant of this matrix is

v(α1, . . . , αm) =
∏

1≤i<j≤m

(αj − αi).

Proposition 3.2. The coefficients of the interpolating polynomial passing through a set S
of given points (αi, f(αi)), i = 1, . . . ,m can be obtained by finding the solutions in E for the
following system: 

1 α1 α2
1 · · · αm−11

1 α2 α2
2 · · · αm−12

...
...

...
...

...
1 αm α2

m · · · αm−1m

 ·


c1
c2
...
cm

 =


f(α1)
f(α2)

...
f(αm)


The polynomial interpolating the function is then

∑m
i=1 cix

i−1, and this polynomial is
sometimes referred as the Lagrange polynomial of the set S.

Corollary 3.3. Let f be any function from K = Fpn to L = Fpm , and let {δ0(x), . . . , δpn−1(x)}
be a cycle basis for PLK . Let Fpn = {α1, . . . , αpn}. Then the minimally represented polyno-
mial giving f is as follows:

fr(x) = c1δ0(x) + c2δ2(x) + · · ·+ cpnδpn−1(x)

where the ci form the unique solution to the following system:
δ0(α1) δ2(α1) · · · δpn−1(α1)
δ0(α2) δ2(α2) · · · δpn−1(α2)

...
...

...
...

δ0(αpn) δ2(αpn) · · · δpn−1(αpn)

 ·


c1
c2
...
cpn

 =


f(α1)
f(α2)

...
f(αpn)


Proof. Clear.
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Definition 3.4. Define the matrix of evaluated basis elements (polynomials) in the propo-
sition above to be the Frobenius-Vandermonde Matrix of the cycle basis {δ0, . . . , δpn−1} and
let VF (δ0, . . . , δpn−1) denote this matrix. Its determinant will be denoted vF (δ0, . . . , δpn−1).
Just as the cycle basis, the Frobenius-Vandermonde matrix and determinant depend upon
a choice of generators for the extensions Fpm ⊆ Fprim , where i = 1, . . . , s.

Proposition 3.5. For n = m, VF = V , where V is the Vandermonde matrix over the
entire field Fpn .

Proof. When n = m, the Frobenius permutation is the identity. Since the cycles in ϕ0
n are

therefore all of length one, the cycle basis is given by D = {δ0(x) = 1, δ1(x) = x, δ2(x) =
x2, . . . , δpn−1(x) = xp

n−1}. Then VF is clearly:
δ0(α1) δ1(α1) · · · δpn−1(α1)
δ0(α2) δ1(α2) · · · δpn−1(α2)

...
...

...
...

δ0(αpn) δ1(αpn) · · · δpn−1(αpn)

 =


1 α1 · · · αp

n−1
1

1 α2 · · · αp
n−1

2
...

...
...

...

1 αpn · · · αp
n−1
pn


This is exactly V considered over all of the elements of Fpn .

Remark 3.6. If one approaches an interpolation problem for a function Fpn → Fpm in the
composite field Fpe , e = [n,m], using a Vandermonde matrix, the size of the matrix will be
pe × pe. In contrast, the size of the Frobenius-Vandermonde matrix for such a problem is
pn × pn. This is notably smaller in cases where n and m are relatively prime, and such a
difference could be important in situations where matrix size is a limiting factor.

The following examples illustrates the theory and will be revisited a few times in this
note.

Example 3.7. (Construct VF for F8 → F4) Let F64 = F2(α) = F2[x]/〈x6 + x4 + x3 + x+ 1〉.
Note that α is a primitive generator for F64 and α9 generates F8 over F2. In fact, F8 =
F2(α9) = {α9i : i = 1, . . . , 7} ∪ {0} and F4 = F2(α21). Moreover, α9 is an element of
degree 3 over F2, so it is a generator for F4 ⊂ F64. Since the appropriate permutation is
ϕ2
3 = (0)(1, 4, 2)(3, 5, 6)(7), the cycle basis for polynomial space is:

1. (0) ∼ δ0(X) = 1

2. (1, 4, 2) ∼ δ1(X) = X +X4 +X2

3. (1, 4, 2) ∼ δ2(X) = α9X + α9·4X4 + α9·16X2

4. (1, 4, 2) ∼ δ3(X) = α18X + α18·4X4 + α18·16X2

5. (3, 5, 6) ∼ δ4(X) = X3 +X5 +X6

6. (3, 5, 6) ∼ δ5(X) = α9X3 + α9·4X5 + α9·16X6

7. (3, 5, 6) ∼ δ6(X) = α18X3 + α18·4X5 + α18·16X6

8. (7) ∼ δ7(X) = X7
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Fill the matrix:

VF =



δ0(0) δ1(0) δ2(0) δ3(0) δ4(0) δ5(0) δ6(0) δ7(0)
δ0(α9) δ1(α9) δ2(α9) δ3(α9) δ4(α9) δ5(α9) δ6(α9) δ7(α9)
δ0(α18) δ1(α18) δ2(α18) δ3(α18) δ4(α18) δ5(α18) δ6(α18) δ7(α18)
δ0(α27) δ1(α27) δ2(α27) δ3(α27) δ4(α27) δ5(α27) δ6(α27) δ7(α27)
δ0(α36) δ1(α36) δ2(α36) δ3(α36) δ4(α36) δ5(α36) δ6(α36) δ7(α36)
δ0(α45) δ1(α45) δ2(α45) δ3(α45) δ4(α45) δ5(α45) δ6(α45) δ7(α45)
δ0(α54) δ1(α54) δ2(α54) δ3(α54) δ4(α54) δ5(α54) δ6(α54) δ7(α54)
δ0(1) δ1(1) δ2(1) δ3(1) δ4(1) δ5(1) δ6(1) δ7(1)



=



1 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 1 0 1 0 1
1 0 1 1 1 1 1 1
1 1 1 1 0 0 1 1
1 1 1 0 0 1 1 1
1 1 0 0 1 0 0 1


Example 3.8. Going the other way using the same field and generators, for F4 → F8 the
appropriate permutation is ϕ3

2 = ϕ2 = (0)(1, 2)(3). The basis is then:

1. (0) ∼ δ0(X) = 1

2. (1, 2) ∼ δ1(X) = X +X2

3. (1, 2) ∼ δ2(X) = α21X + α21·8X2

4. (3) ∼ δ3(X) = X3

Fill the matrix:
δ0(0) δ1(0) δ2(0) δ3(0)
δ0(α21) δ1(α21) δ2(α21) δ3(α21)
δ0(α42) δ1(α42) δ2(α42) δ3(α42)
δ0(1) δ1(1) δ2(1) δ3(1)

 =


1 0 0 0
1 1 1 1
1 1 0 1
1 0 1 1


This leads to an obvious conclusion regarding the entries in the matrix VF when n is

prime and n 6= m.

Proposition 3.9. For n prime, n - m, VF has entries in Fp only.

Proof. By construction, the basis elements are determined by the cycles of ϕmn = ϕkn where
m ≡ k mod n. Since n is prime, n - m, we have first that every cycle of ϕkn has length 1
or n (as the cycle length must divide the prime order n of the permutation) and also that
Fp[n,m] = Fpm(β) where Fpn = Fp(β).

If τ is a disjoint cycle of length 1 in the complete factorization of ϕkn, then the basis for
Pτ,pm is simply xs where s is the element fixed by τ . Then for all α ∈ Fpn , αs ∈ Fpn , but also,
since xs is Fpn to Fpm compatible, αs ∈ Fpm . Then for all α ∈ Fpn , αs ∈ Fpn ∩ Fpm = Fp.
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If τ has length n, then all of the polynomials in Dτ , the basis for Pτ,pm , are of the form

δk(x) = βkxs + βkp
m

xτ(s) + · · ·+ βkp
(n−1)m

xτ
n−1(s). Again, when evaluated at α ∈ Fpn , it

is not hard to see that δk(α) ∈ Fpn ∩ Fpm = Fp. Since the entries of VF consist entirely of
images of the basis elements, VF must necessarily have entries in Fp only.

There is some additional structure that can be highlighted in the Vandermonde-Frobenius
matrix associated to a cycle basis. Let Fp ⊂ Fpmn with n prime. The only nontrivial cycles
in φmn have length n, since φn has order n. Let σ be a cycle of length n in φmn and i an
element in the support of σ. Let α be a primitive generator of Fp ⊂ Fpnm and δ0, . . . , δr−1
be a cycle basis of Pσ,pm corresponding to αt, where pnm−1 = (pn−1) · t. Note that indeed
αt is a generator of the extension Fpm ⊆ Fpmn .

Proposition 3.10. Using the notations above, let δ0, . . . , δr−1 be the cycle basis Dσ,αt of
Pσ,pm . Then if 1 ≤ l, l′ ≤ r − 1 and 0 ≤ s, s′ with

pn − 1 | (l − l′) + (s− s′)i,

then δl(α
ts) = δl′(α

ts′).

Proof. Remark that

δl((α
t)s) =

n∑
k=0

(αt)lp
km

· (αt)sσ
k(i) =

n∑
k=0

(αt)(lp
km+sσk(i)).

Note that (αt)sσ
k(i) = (αt)sp

kmi, for every k = 0, . . . , n. It is now immediate that if pn − 1
divides (l − l′) + (s− s′)i, then δl(α

ts) = δl′(α
ts′).

This pattern is illustrated by Examples 3.7 and 3.8. In Example 3.7, let VF = (vij)1≤i,j≤8.
Since (1, 4, 2) is the cycle factorization of φ32, p = 2, n = 3, we can take i = 1, l− l′ = −1, s−
s′ = 1. Then the Proposition above shows that vi,2 = vi−1,3 and vi,3 = vi−1,4, for 3 ≤ i ≤ 8
and v2,2 = v8,3, v2,3 = v8,4. Now, for (3, 5, 6) we can take i = 3, l − l′ = 1, s − s′ = 2. So,
vi,5 = vi+2,6, vi,6 = vi+2,7 for 2 ≥ i ≥ 6. Also, v7,5 = v2,6, v8,5 = v3,6, v7,6 = v2,7, v8,6 = v3,7.
A similar phenomenon appears in Example 3.8.

3.1 The structure of the Vandermonde-Frobenius matrix

Let L = Fpm ⊆ L′ = Fprm be a field extension, let α be an element of L′ and σ a cycle of
length r.

Consider the following cycle polynomials:

δ0 = xi + xσ(i) + · · ·+ xσ
r−1(i)

δ1 = αxi + αp
m

xσ(i) + · · ·+ αp
(r−1)m

xσ
r−1(i)

δ2 = α2xi + α2pmxσ(i) + · · ·+ α2p(r−1)m

xσ
r−1(i)

...

δl−1 = αr−1xi + α(r−1)pmxσ(i) + · · ·+ α(r−1)p(r−1)m

xσ
r−1(i)
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Let

C = Cr,m(α) =


1 α α2 · · · αr−1

1 αp
m

α2pm · · · α(r−1)pm

...
...

...
...

...

1 αp
(r−1)m

α2p(r−1)m · · · α(r−1)p(r−1)m


Denote its determinant by cr,m(α). Clearly,

Cr,m(α) = V (α, . . . , αp
(r−1)m

), cr,m(α) = v(α, . . . , αp
(r−1)m

).

Note that, using the notations of Definition 2.3,

[δ0, δ1 . . . , δr−1] = [xi, xσ(i), . . . , xσ
r−1(i)] · C.

Let us denote

Xσ(x) = [xi, xσ(i), . . . , xσ
r−1(i)].

Now let us return to the original set-up. Let K = Fpn , L = Fpm finite subfields of
E, which is their composite field. Let k such that m ≡ k (mod n) and φkn = σ1 · · ·σs a
complete factorization, where σh has order rh, h = 1, . . . , s. For each h = 1, . . . , s, let ah
be a generator of the extension Fpm ⊆ Fprhm .

Let C = [Cr1,m(a1)| · · · |Crs,m(as)], the matrix obtained by using Crh,m(ah), h =
1, . . . , s, as blocks. This is a square matrix of size pn with determinant equal to

cr1,m(a1) · · · crs,m(as).

Let X = [Xσ1 , . . . , Xσs ]. Let X(α1, . . . , αpn) be the square matrix of size pn that is
equal to 

Xσ1
(α1) Xσ2

(α1) · · · Xσs
(α1)

Xσ1
(α2) Xσ2

(α2) · · · Xσs
(α2)

...
...

...
...

Xσ1
(αpn) Xσ2

(αpn) · · · Xσs
(αpn)


The discussion above leads to the following description of the Vandermonde-Frobenius

determinants.

Theorem 3.11. Let K = Fpn , L = Fpm subfields of E = Fp[n,m] . Let k such that

m ≡ k (mod n) and φkn = σ1 · · ·σs a complete factorization, where σh has order rh,
h = 1, . . . , s. For each h = 1, . . . , s, let ah be a generator of the extension Fpm ⊆ Fprhm and
{δ0(x), . . . , δpn−1(x)} be a cycle basis for PLK associated to these generators.

Then the Vandermonde-Frobenius matrix of this cycle basis is

VF (δ0, . . . , δpn−1) = X(α1, . . . , αpn) · C,

where E = {α1, . . . , αpn}.
Moreover,
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vF (δ0, . . . , δpn−1) = (−1)sgn(ϕ
k
n)

pn∏
i=1

(αj − αi)
s∏

h=1

crh,m(ah).

Example 3.12. This is Example 3.8 revisited. Note that n = 2,m = 3, k = 1. As noted
earlier, ϕ2 = (0)(1, 2)(3).

The elements of F4 are 0, 1, β = α3 + α2 + α = α21 and β2. So, β generates F4 over F2.
Withe the notations introduced earlier, σ1 = σ3 = id, σ2 = (12) and α1 = α3 = 1, α2 =

β = α21.
Moreover, v(0, 1, β, β2) = β2+β = 1 and c2,3(α21) = v(β, β8) = β8+β = α168+α21 = 1.
According to our formula, we should have

vF (δ0, δ1, δ2, δ3) = 1,

which can also be seen directly from Example 3.8.
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