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1 Introduction
Let R be a standard graded Cohen–Macaulay K-algebra with canonical module ωR. If R is
Gorenstein, then ωR ∼= R. Otherwise, if R happens to be generically Gorenstein, then ωR
may be identified with an ideal of height one. In this case one may study the powers ωaR
with a ∈ Z, and ask for which integers a the ideal ωaR is Cohen–Macaulay. This question
has been answered in [3] for the canonical module of determinantal rings.

The ideal ω−1
R is commonly called the anticanonical ideal. Correspondingly, for any

Cohen–Macaulay K-algebra R, one calls the R-dual of ωR, namely ω∗R = HomR(ωR, R),
the anticanonical module of R. This module is of particular interest. Indeed, assume
as before that R is generically Gorenstein. Let S be a Noether normalization of R and
σ : Q(R) → Q(S) a trace map, where Q(S) and Q(R) denote the total ring of fractions of
S and R, respectively. Then the complementary module CσR/S is defined and it is shown
in [6, Satz 7.20] that CσR/S is isomorphic to the canonical ideal of R. Its inverse is the
Dedekind different Dσ(R/S). In number theory this invariant encodes the ramification of
the corresponding field extension, and by definition it is isomorphic to the anticanonical
ideal of R.

The anticanonical ideal appears as well in other homological contexts. As observed in
[7, Lemma 2.1], ω−1

R ωR describes the non-Gorenstein locus of R. Thus, if R is Gorenstein
on the punctured spectrum of R, then height(ω−1

R ωR) = dimR. On the other hand, the
anticanonical module is isomorphic to an ideal of height one. It may be a Cohen–Macaulay
ideal or not, while ωR is always Cohen–Macaulay.

In this paper we study the anticanonical module of the Segre product of standard graded
Cohen–Macaulay K-algebras. One motivation for us to study this question came from the
study of Hibi rings [8]. Their canonical ideals are well understood, while at present this is
not the case for their anticanonical ideals. The Hibi ring of a sum of finite posets is just the
Segre product of the Hibi rings of each summand. Thus if we understand how to compute
the anticanonical module of Segre products, then for the study of the anticanonical ideal of
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a Hibi ring one may restrict oneself to the case that the underlying poset is not a sum of
two posets.

Our study of the canonical and anticanonical module of Segre products is based on
results from the fundamental paper “On graded rings, I” by Goto and Watanabe [5]. There
it is shown [5, Theorem 4.3.1] that if R and S are two standard graded algebras with
dimR,dimS ≥ 2 and T = R]S, then ωT = ωR]ωS . One would then expect that ω∗T ∼=
ω∗R]ω

∗
S , and of course this would be true if, more generally, for any finitely generated

graded R-module M and any finitely generated graded S-module N , it would follow that
(M]N)∗ ∼= M∗]N∗. Example 2.2 shows that this is not always the case. Therefore, in the
first section of this paper we introduce friendly families of algebras. We say that the family
of standard graded K-algebras R1, . . . , Rm is friendly if the natural map

α : R1(a1)∗] · · · ]Rm(am)∗ → (R1(a1)] · · · ]Rm(am))∗

is an isomorphism for all integers a1, . . . , am. When m = 2 we say that (R1, R2) is a
friendly pair. We show in Theorem 2.3, that if R1, . . . , Rm is a friendly family, then
(M1] · · · ]Mm)∗ ∼= M∗1 ] · · · ]M∗m when Mi is a finitely generated graded Ri-module, i =
1, . . . ,m. We also prove in this section that if R1, . . . , Rm are standard graded toric rings
with depthRi ≥ 2 for i = 1, . . . ,m, then R1, . . . , Rm is a friendly family, see Theorem 2.6.

We apply these results in Section 3 to conclude that for any pair (R,S) of standard
graded Cohen–Macaulay toric rings with dimR,dimS ≥ 2, we have the desired isomor-
phism ω∗T

∼= ω∗R]ω
∗
S , where T = R]S. This follows from Corollary 3.1, where this result is

formulated more generally for friendly pairs. In particular, if we assume that R and S are
Gorenstein rings of dimension ≥ 2 and with negative a-invariant, we deduce from this result
in Proposition 3.4 that the canonical module of the Segre product T = R]S is reflexive,
which in turn, as a consequence of [6, Theorem 7.31], implies that the localization TP is
Gorenstein for any height 1 prime ideal P of T.

The concept of a friendly family can be extended to positively graded or multigraded
algebras. Results similar to Theorems 2.3 and 2.6 may be formulated in that generality. In
view of later applications in Section 3 we restricted to the standard graded case.

The next part of Section 3 is devoted to determine the depth of the anticanonical
module for R]S when (R,S) is a friendly pair of standard graded Cohen–Macaulay K-
algebras. Inspired by Proposition 4.2.2 in [5], we determine, in terms of a and b, the depth
of R(a)]S(b) when R and S are standard graded Gorenstein K-algebras, and use this result
in Corollary 3.7 to characterize those pairs of friendly Gorenstein K-algebras for which the
anticanonical module of the Segre product R]S is Cohen–Macaulay.

In Theorem 3.8 we generalize Corollary 3.7 to Segre products of finitely many Gorenstein
algebras. Namely, given R1, . . . , Rm a friendly family of standard graded Gorenstein K-
algebras of dimension at least two, with −ρi denoting the a–invariant of Ri for i = 1, . . . ,m,
Theorem 3.8 describes for which integers a the module

T {a} = R1(−aρ1)] · · · ]Rm(−aρm)

of uniform twists of the canonical module of T = ]mi=1Ri is a Cohen-Macaulay T -module.
In particular, assuming ρ1 ≥ · · · ≥ ρm, the anticanonical module ω∗T is Cohen-Macaulay if
and only if

2m−1ρm > 2m−2ρm−1 > · · · > 2ρ2 > ρ1,
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see Corollary 3.10.
In Proposition 3.11 we see that if all ρi’s are positive and not all equal (i.e. T is Cohen-

Macaulay, and not a Gorenstein ring), then the set of a’s such that T {a} is Cohen-Macaulay
represents a bounded interval which is explicitly described.

If we assume, moreover, that ⊗mi=1Ri is a domain, which is for instance the case when
the Ri’s are toric rings, then the canonical module and its dual may be identified with ideals
in T . In Proposition 3.13, which is the last result in this paper, we describe which powers
ωaT are Cohen-Macaulay, using the previous Proposition 3.11.

2 Friendly families of standard graded algebras
Let R be a standard gradedK–algebra, whereK is a field, and M a finitely generated graded
R–module. Then the dual of M, M∗ = HomR(M,R) is graded by M∗ = ⊕i∈Z Homi

R(M,R)
where

Homi
R(M,R) = {ϕ ∈ HomR(M,R) : ϕ(Mk) ⊆ Rk+i for all k}.

In what follows, we will also consider the graded K–dual of M, namely

M∨ = HomK(M,K) = ⊕i∈Z HomK(M−i,K).

Let S be another standard graded K–algebra and N a finitely generated graded S–
module. Let T = R]S be the Segre product of R and S. The algebra T is also standard
graded with the grading T = ⊕i≥0(Ri ⊗K Si). The Segre product M]N is a graded T–
module with M]N = ⊕j∈Z(Mj ⊗K Nj).

There is a natural homogeneous T–module homomorphism α : M∗]N∗ → (M]N)∗
defined as follows. An element of (M∗]N∗)i = M∗i ⊗N∗i is a sum of elements of the form
ϕ ⊗ ψ with ϕ ∈ M∗i , ψ ∈ N∗i . Here M∗i denotes the i-th homogeneous component of M∗.
Then α(ϕ⊗ψ) ∈ (M]N)∗i is the map (M]N)k → Rk+i⊗Sk+i given by m⊗n 7→ ϕ(m)⊗ψ(n).

We can iterate this construction. In general, given R1, . . . , Rm standard graded algebras,
and Mi a graded Ri-module, i = 1, . . . ,m, we can construct a natural map

α : M∗1 ] · · · ]M∗m → (M1] · · · ]Mm)∗.

Definition 2.1. The family of algebras R1, . . . , Rm is called friendly if the natural map

α : R1(a1)∗] · · · ]Rm(am)∗ → (R1(a1)] · · · ]Rm(am))∗

is an isomorphism for all integers a1, . . . , am.
In case m = 2 we say that (R1, R2) is a friendly pair.

Not all families of standard graded K–algebras are friendly, as the following example
shows.

Example 2.2. Let x and y be indeterminates over K and let R = K[x]/(x3) and S =
K[y]/(y2). Then R]S = K⊕Kxy. One hasR(2)]S(1) = Kx⊕Kx2y, with x sitting in degree
−1, therefore R(2)]S(1) ∼= (R]S)(1). On the other hand, R(2)∗]S(1)∗ ∼= R(−2)]S(−1) =
Ky.

Thus (R(2)]S(1))∗ ∼= (R]S)(−1) has two nonzero components, while R(2)∗]S(1)∗ has
only one nonzero component. Hence these two modules cannot be isomorphic and (R,S) is
not a friendly pair.
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However, we show in Theorem 2.6 that any finite collection of standard graded toric rings
is friendly. The following result will be useful to that purpose. At the same time, Theorem
2.3 gives a wider class of modules for which the map α used before is an isomorphism.

Theorem 2.3. Let R1, . . . , Rm be a friendly family of standard graded K-algebras, and
T = ]mi=1Ri. If Mi is a finitely generated graded Ri-module for i = 1, . . . ,m, then the
natural map α : ]mi=1M

∗
i → (]mi=1Mi)∗ is an isomorphism of graded T -modules.

Proof. The statement is proved by induction on

r = |{i : Mi is not free, i = 1, . . . ,m}|.

If r = 0, by the definition of a friendly family and taking into account that the dual
functor and the Segre product commute with finite direct sums, it follows that α is an
isomorphism.

Let r > 0 and assume that the conclusion of the theorem holds when at most r − 1 of
the Mi’s are not free. Without loss of generality we may assume M1 is not free. Let

G→ F →M1 → 0 (1)

be a presentation of M1 by finitely generated graded free R1-modules. We dualize (1) and
then apply the exact functor −](]i>1Mi) to obtain the exact sequence

0→ ]mi=1M
∗
i → F ∗](]i>1Mi)→ G∗](]i>1Mi). (2)

Similarly, if we first apply −](]i>1Mi) to (1) and then we dualize, we have the exact
sequence

0→ (]mi=1Mi)∗ → (F](]i>1Mi))∗ → (G](]i>1Mi))∗. (3)

The maps α induce a map between the chains (2) and (3). By the inductive hypothesis,
the two rightmost maps α are isomorphisms, hence using the 5-Lemma ([12, Exercise 1.3.3])
we get that the leftmost map α is an isomorphism, as well. This finishes the proof.

Let us make a simple remark before proceeding to the main result of this section.

Remark 2.4. Let R and S be standard graded algebras such that the natural map

α : R(a)∗]S → (R(a)]S)∗

is an isomorphism for all a ∈ Z. Then

(R(a)]S(b))∗ = ((R(a− b)]S)(b))∗ = (R(a− b)]S)∗(−b)
∼= ((R(a− b))∗]S)(−b) = (R(b− a)]S)(−b)
= R(−a)]S(−b)
= R(a)∗]S(b)∗ for all a, b ∈ Z.

Thus (R,S) is a friendly pair in the sense of Definition 2.1.

We note that, by [9, Corollary 16], the Segre product of two standard graded toric rings
R,S is a standard graded toric ring, as well. For the convenience of the reader we include
a short proof of this statement.
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Proposition 2.5. Tensor products and Segre products of standard graded toric rings are
standard graded toric rings, too. In particular, they are domains.

Proof. Let R = K[ta1 , . . . , tan ] = K[A] where A is an integer matrix with column vectors
a1, . . . , an and S = K[sb1 , . . . , sbm ] = K[B] where B is an integer matrix with column
vectors b1, . . . , bm. Let I be the kernel of the morphism K[x1, . . . , xn] → K[A] induced by
xi 7→ tai for 1 ≤ i ≤ n, and J the kernel of the morphism K[y1, . . . , ym] → K[B] induced
by yj 7→ sbj for 1 ≤ j ≤ m. Then

R⊗K S ∼= K[x, y]/IK[x, y] + JK[x, y]

where K[x, y] denotes the polynomial ring in the variables x1, . . . , xn, y1, . . . , ym.
Let L1, L2 be the following lattices in Zn: L1 = {c ∈ Zn : Ac = 0} and L2 = {d ∈ Zm :

Bd = 0.} Then I = IL1 and J = IL2 where ILj
is the lattice ideal of Lj for j = 1, 2.

Let
L =

{(
c
d

)
∈ Zn ⊕ Zm :

(
A 0
0 B

)(
c
d

)
= 0
}
.

Then IL = (IL1 +IL2)K[x, y]. As Zn/L1 and Zm/L2 are torsion free, Zn⊕Zm/IL is torsion
free as well, hence IL is a prime ideal ([11, Theorem 8.2.2] or [4, Theorem 2.1]) and

R⊗K S ∼= K[x, y]/IL = K[C],

where C =
(
A 0
0 B

)
.

This implies that the morphism R⊗K S → K[ta1 , . . . , tan , sb1 , . . . , sbm ] = K[C] induced
by tai ⊗ 1 7→ tai and 1⊗ sbj 7→ sbj is an isomorphism. Since R and S are standard graded,
we get

R]S = K[taisbj : 1 ≤ i ≤ n, 1 ≤ j ≤ m].

Theorem 2.6. Any finite family of standard graded toric rings of depth at least two is
friendly.

Proof. For the proof we make a series of reductions. Firstly, we note that it is enough to
prove the statement for friendly pairs, and then argue by induction on the cardinality of
the family of algebras. Indeed, if R1, . . . , Rm are a friendly family of standard graded toric
rings of depth at least 2, and m ≥ 3, then for all a1, . . . , am ∈ Z we have

(]mi=1Ri(ai))∗ ∼= ((]m−1
i=1 Ri(ai))]Rm(am))∗

∼= (]m−1
i=1 Ri(ai))∗]Rm(am)∗ (4)

∼= (]m−1
i=1 Ri(ai)∗)]Rm(am)∗

∼= ]mi=1Ri(ai)∗.

Here, for the isomorphism in (4) we used Theorem 2.3 applied to the algebras ]m−1
i=1 Ri and

Rm that are toric (cf. Proposition 2.5) and form a friendly pair, see the base case which is
discussed in the next paragraph.

For the induction step to work we prove the base case m = 2 in a slightly more general
setup. We let R and S be toric standard graded algebras with depthR ≥ 2 or depthS ≥ 2.
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Without loss of generality, we may assume that depthS ≥ 2. According to Remark 2.4,
for checking that (R,S) is a friendly pair it suffices to show that (R(a)]S)∗ ∼= R(a)∗]S∗ or,
equivalently, (R(a)]S)∗ ∼= R(−a)]S for all a ∈ Z. Suppose that we have proved the latter
isomorphism for a > 0, and let a < 0. Then

(R(a)]S)∗ = ((R]S(−a))(a))∗ = (R]S(−a))∗(−a) ∼= (R]S(a))(−a) = R(−a)]S.

Thus, in order to complete the proof, we need to show that if a > 0, then

(R(−a)]S)∗ ∼= R(a)]S.

As a T = R]S– module, R(−a)]S is generated by 1 ⊗ Sa. Let f be a monomial in Ra.
Since R is a domain, the multiplication map R(−a) ·f→ R is injective, and since ]S is an exact
functor, the induced map R(−a)]S → R]S is injective. Thus, the map R(−a)]S → R⊗K S
is injective as well. It follows that R(−a)]S is isomorphic to the ideal J of T generated by
f ⊗ Sa. Therefore, up to a shift, (R(−a)]S)∗ is isomorphic to the inverse J−1 of J.

Since J is a monomial ideal, it follows that J−1 is a fractionary monomial ideal. Let
x = g1⊗h1

g2⊗h2
= g1

g2
⊗ h1

h2
∈ J−1 where g1, g2, h1, h2 are monomials with deg g1 = deg h1 = i

and deg g2 = deg h2 = j. Then f g1
g2
⊗ h1

h2
Sa ⊆ R]S. This implies that h1/h2 ∈ U−1, where

U denotes the ideal of S generated by its homogeneous component of degree a. Since
depthS ≥ 2, and U is a primary ideal in S with radical the maximal graded ideal of S, we
have gradeU ≥ 2, which implies that U−1 ∼= S by [2, Exercise 1.2.24]. Hence h1/h2 ∈ S
which means i − j ≥ 0. Then fg1/g2 ∈ Ra+i−j , that is, g1/g2 ∈ f−1Ra+i−j . We obtain
xf ∈ (R(a)]S). Therefore, we have proved that J−1 ⊆ f−1(R(a)]S).

On the other hand, J = f(R(−a)]S) and f−1(R(a)]S)f(R(−a)]S) ⊆ R]S, which implies
that f−1(R(a)]S) ⊆ J−1. Hence J−1 = f−1(R(a)]S), which proves our claim.

3 The anticanonical module and its twists
Let R be a standard graded K–algebra of dimR = r with maximal graded ideal m. The
module ωR = (Hr

m(R))∨ ∼= HomK(Hr
m(R),K) is called the canonical module of R. Here

Hr
m(R) denotes the r-th local cohomology module of R. We refer the reader to [5] for several

properties of ωR.
Let ω∗R be the dual of ωR, that is, ω∗R = HomR(ωR, R). The module ω∗R is called the

anticanonical module of R.
When R is a Cohen-Macaulay normal domain with canonical ideal ωR, it is customary

to define the anticanonical module of R as the element in the divisor class group Cl(R)
which is the inverse to the canonical class [ωR]. Then −[ωR] = [ω−1

R ] by the way Cl(R) is
defined. By [2, Corollary 3.3.19] one has that ωR is a divisorial ideal, i.e. (ω−1

R )−1 = ωR.
It follows that ω−1

R = ((ω−1
R )−1)−1. On the other hand, ((ω−1

R )−1)−1 is a divisorial ideal
of R, see [1, Lemma 4.48(c)]. This implies that ω−1

R is a divisorial ideal, as well. We have
ω−1
R
∼= ω∗R, since gradeωR > 0, see [10, Lemma 3.14]. This shows that −[ωR] = [ω∗R] and

our definition for the anticanonical module of R agrees with the classical one when R is
normal.

Theorem 2.3 has several consequences.
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Corollary 3.1. Let (R,S) be a friendly pair of standard graded algebras with depthR ≥ 2,
depthS ≥ 2 and T = R]S. Then

ω∗T
∼= ω∗R]ω

∗
S .

In particular, if S is Gorenstein with a–invariant σ, then

ω∗T
∼= ω∗R]S(−σ).

Moreover, if ω∗R is generated by w1, . . . , wm with degwi = ρi for 1 ≤ i ≤ m and σ ≤
min1≤i≤m ρi, then ω∗T is generated by wi ⊗ Sρi−σ, 1 ≤ i ≤ m.

Proof. By [5, Theorem 4.3.1], we have ωT ∼= ωR]ωS . Hence, the desired isomorphism fol-
lows by applying Theorem 2.3. The second isomorphism follows since ωS = S(σ) if S is
Gorenstein with a–invariant σ.

Remark 3.2. With notation as in Corollary 3.1, it is not true in general that ω∗T and ω∗R]ω∗S
are isomorphic. Indeed, for the algebras R = K[x]/(x3) and S = K[y]/(y2) in Example 2.2
one has ωR ∼= R(2), ωS ∼= S(1), hence ω∗R]ω∗S = R(−2)]S(−1) = Ky. We note that the ring
R]S is graded isomorphic with the ring S, hence ω∗T has two nonzero components. This
shows that ω∗T and ω∗R]ω

∗
S are not isomorphic.

Corollary 3.3. Let (R,S) be a pair of friendly standard graded algebras and T = R]S.
Assume that R,S are Gorenstein of a-invariants ρ, respectively, σ, and dimR, dimS ≥ 2.
Then ω∗T

∼= R(−ρ)]S(−σ), hence ω∗T is isomorphic to R(σ)]S(ρ) up to a shift.

Proof. Under our hypothesis, we have ωR = R(ρ) and ωS = S(σ). It follows that ωT ∼=
R(ρ)]S(σ), thus ω∗T ∼= R(−ρ)]S(−σ) = (R(σ)]S(ρ))(−ρ− σ).

Proposition 3.4. Let (R,S) be a pair of friendly standard graded algebras and T = R]S.
Assume that R,S are Gorenstein of a-invariants ρ < 0, respectively, σ < 0, and dimR,
dimS ≥ 2. Then

(i) the canonical module ωT is reflexive;

(ii) the localization TP is Gorenstein for any height 1 prime ideal P of T.

Proof. (i). We have (R(ρ)]S(σ))∗∗ ∼= (R(−ρ)]S(−σ))∗ ∼= R(ρ)]S(σ), thus the canonical
module of T is reflexive.

Statement (ii) follows by [6, Theorem 7.31].

Remark 3.5. Note that, in the setting of Corollary 3.3, ωT is generated by 1 ⊗ Sσ−ρ if
ρ < σ and ω∗T is generated by Rσ−ρ ⊗ 1. This shows that one can easily find examples of
rings R,S such that µ(ωT ) > µ(ω∗T ) or µ(ω∗T ) > µ(ωT ). By µ(M) we denote the minimal
number of homogeneous generators of a finitely generated graded module M.

It would be interesting to see under which conditions the anticanonical module of Corol-
lary 3.3 is Cohen-Macaulay. To this aim, we first prove a slightly more general result,
inspired by [5, Proposition 4.2.2].

Proposition 3.6. Let R,S be Gorenstein standard graded algebras with dimR = r ≥ 1 and
dimS = s ≥ 1. Let ρ be the a–invariant of R and σ the a–invariant of S. Let M = R(a)]S(b)
for some integers a, b. The following statements hold:
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(i) If r = s > 1, then depthM = r if a− b ≥ −σ or a− b ≤ ρ, and M is Cohen-Macaulay
if −σ > a− b > ρ.

(ii) If r > s > 1, then

depthM =
{
s, if b− a ≤ σ,
r, if a− b ≤ ρ and a− b < −σ,

and M is Cohen-Macaulay in all the other cases, that is, if −σ > a− b > ρ.

(iii) If r > s = 1, then depthM = 1 if b− a ≤ σ and M is Cohen-Macaulay otherwise.

(iv) If r = s = 1, then M is Cohen-Macaulay for any a, b.

Proof. We first note that (iv) follows by [5, Theorem 4.2.3]. Let us now prove statements
(i)–(iii).

By [5, Theorem 4.2.3], dimR]S = r + s − 1. Let m, n, and p be the maximal graded
ideals of R,S, and, respectively, R]S. Since dimR > 1 or dimS > 1, by [5, Theorem 4.1.5],
we have

Hq
p(M) ∼= (R(a)]Hq

n(S(b)))⊕ (Hq
m(R(a))]S(b))⊕ (⊕i+j=q+1H

i
m(R(a))]Hj

n(S(b))), (5)

for every q ≥ 0. By local duality [2, Theorem 3.6.19], we have Hq
m(R(ρ)) ∼= R∨ if q = r

and Hq
m(R(ρ)) = 0 if q 6= r. Hence, Hq

m(R(a)) = Hq
m(R(ρ))(a − ρ) = R∨(a − ρ) if q = r

and Hq
m(R(a)) = 0, otherwise. Similarly, we get Hq

n(S(b)) = S∨(b − σ) if q = s and
Hq

n(S(b)) = 0, otherwise.
(i). Let r = s > 1. By using (5), we get Hq

p(M) = 0 if q 6= r, q < 2r + 1, and

Hr
p(M) ∼= (R(a)]Hr

n(S(b)))⊕ (Hr
m(R(a))]S(b)) ∼= (R(a)]S∨(b− σ))⊕ (R∨(a− ρ)]S(b)).

Thus Hr
p(M) 6= 0 if and only if there exists i such that (R(a)]S∨(b− σ))i 6= 0 or (R∨(a−

ρ)]S(b))i 6= 0. This is equivalent to (a + i ≥ 0 and b − σ + i ≤ 0) or (a − ρ + i ≤ 0 and
b + i ≥ 0) which means −a ≤ i ≤ σ − b or −b ≤ i ≤ ρ − a. Therefore, Hr

p(M) 6= 0 if and
only if b− a ≤ σ or a− b ≤ ρ. This implies (i).

(ii). Let r > s > 1. By using (5), we get Hs
p(M) ∼= (R(a)]Hs

n(S(b))). Thus, Hs
p(M) 6= 0 if

and only if R(a)]S∨(b−σ)i 6= 0. With similar calculations as in case (i), we get Hs
p(M) 6= 0

if and only if b−a ≤ σ. Next, Hr
p(M) ∼= Hr

m(R(a))]S(b) = R∨(a−ρ)]S(b). Thus Hr
p(M) 6= 0

if and only if there exists i with a− ρ+ i ≤ σ and b+ i ≥ 0. Hence, Hr
p(M) 6= 0 if and only

if a− b ≤ ρ and the conclusion of (ii) follows.
(iii). Let r > s = 1. By (5), we get H1

p(M) ∼= R(a)]H1
n(S(b)) ∼= R(a)]S∨(b − a). Thus,

H1
p(M) 6= 0 if and only if there exists i such that i+ a ≥ 0 and b− σ + i ≤ 0. This implies

that H1
p(M) 6= 0 if and only if b− a ≤ σ. In this case, depthM = 1.

Corollary 3.7. Let (R,S) be a pair of friendly standard graded algebras and T = R]S.
Assume that R,S are Gorenstein of a-invariants ρ, respectively, σ, and dimR, dimS ≥ 2.
Then, the anticanonical module ω∗T is Cohen-Macaulay if and only if σ > 2ρ and ρ > 2σ.

Proof. By Corollary 3.3, we have ω∗T ∼= R(−ρ)]S(−σ). The conclusion follows by applying
Proposition 3.6 for a = −ρ and b = −σ.
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We can generalize the above corollary to any friendly family R1, . . . , Rm of Gorenstein
standard graded algebras of dimension at least two.

Theorem 3.8. Let R1, . . . , Rm be a friendly family of standard graded algebras with dimRi =
di ≥ 2 for 1 ≤ i ≤ m. Assume that Ri is Gorenstein of a–invariant −ρi for 1 ≤ i ≤ m,
with ρ1 ≥ ρ2 ≥ · · · ≥ ρm. Set T = R1] · · · ]Rm and let a be any integer.

Then the T -module M = ]mi=1Ri(−aρi) is Cohen-Macaulay if and only if

(1− a)ρ`+1 > −aρ`, for ` = 1, . . . ,m− 1, if a ≤ 0, or
aρ`+1 > (a− 1)ρ`, for ` = 1, . . . ,m− 1, if a > 0.

In particular, if M is a Cohen-Macaulay module then T is a Cohen-Macaulay ring.

Proof. Let Mi = Ri(−aρi) and mi the graded maximal ideal of Ri for 1 ≤ i ≤ m. Let m be
the graded maximal ideal of ]mi=1Ri. By applying induction on m and [5, Proposition 4.4.3,
Theorem 4.1.5], we obtain:

dim ]mi=1Mi =
m∑
i=1

di − (m− 1) (6)

and

Hq
m(M) ∼=

m⊕
`=1

⊕
1≤i1<···<i`≤m

j1+···+j`=q+(`−1)

M1] · · · ]Hj1
mi1

(Mi1)] · · · ]Hj`
mi`

(Mi`)] · · · ]Mm. (7)

Using [2, Theorems 3.5.7 and 3.6.18] we get

Hj
mi

(Mi) = Hj
mi

(Ri(−aρi)) = 0 if j 6= di and
Hdi

mi
(Mi) = Hdi

mi
(Ri(−aρi)) ∼= Hdi

mi
(Ri)(−aρi) ∼= (ω∨Ri

)(−aρi) (8)
∼= (Ri(−ρi))∨(−aρi) ∼= R∨i ((1− a)ρi).

Set d =
∑m
i=1 di−(m−1). We know thatM is Cohen-Macaulay if and only ifHq

m(M) = 0
for all q < d. When q = d, each summand in the RHS of (7) corresponds to a choice of ` with
1 ≤ ` ≤ m, of 1 ≤ i1 < · · · < i` ≤ m and j1, . . . , j` such that j1 + · · ·+j` =

∑m
i=1(di−1)+`.

The latter equation implies
∑`
i=1(ji − 1) =

∑m
i=1(di − 1). Since ji ≤ di we must have

` = m, ji = di for i = 1, . . . ,m and i1 = 1, . . . , im = m, hence

Hd
m(M) ∼= ]mi=1H

di
mi

(Mi).

On the other hand, by (8), for any nonzero summand in the RHS of (7) with ` = m we must
have i1 = 1, . . . , im = m and j1 = d1, . . . , jm = dm, therefore q =

∑m
i=1 di − (m− 1) = d.

Therefore, M is Cohen-Macaulay if and only if, for 1 ≤ ` ≤ m− 1, and for all 1 ≤ i1 <
· · · < i` ≤ m, we have

M1] · · · ]H
di1
mi1

(Mi1)] · · · ]Hdi`
mi`

(Mi`)] · · · ]Mm = 0.

Note that, by (8),

M1] · · · ]H
di1
mi1

(Mi1)] · · · ]Hdi`
mi`

(Mi`)] · · · ]Mm 6= 0
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if and only if there exists k such that k − aρi ≥ 0 for i 6∈ {i1, . . . , i`} and (1− a)ρi + k ≤ 0
for i ∈ {i1, . . . , i`}. This is equivalent to the inequalities

min{(a− 1)ρi : i ∈ {i1, . . . , i`}} ≥ k ≥ max{aρi : i 6∈ {i1, . . . , i`}}.

Thus, we derive that

M1] · · · ]H
di1
mi1

(Mi1)] · · · ]Hdi`
mi`

(Mi`)] · · · ]Mm = 0

if and only if

max{aρi : i /∈ {i1, . . . , i`}} > min{(a− 1)ρi : i ∈ {i1, . . . , i`}}. (9)

Consequently, M is Cohen-Macaulay if and only if, for 1 ≤ ` ≤ m − 1, and for all
1 ≤ i1 < · · · < i` ≤ m, inequality (9) holds.

Case a < 0. The inequalities (9) are equivalent to

(1− a) max{ρi : i ∈ {i1, . . . , i`}} > −amin{ρi : i 6∈ {i1, . . . , i`}} (10)

for all ` and i1, . . . , i` as above.
Let 1 ≤ ` ≤ m− 1. By (10), we have

(1− a) max{ρm−`+1, . . . , ρm} > −amin{ρ1, . . . , ρm−`}

which implies (1−a)ρm−`+1 > −aρm−`. Equivalently, (1−a)ρ`+1 > −aρ` for ` = 1, . . . ,m−
1.

Conversely, if (1− a)ρm−`+1 > −aρm−` then, for any 1 ≤ i1 < · · · < i` ≤ m, we have

(1− a) max{ρi : i ∈ {i1, . . . , i`}} ≥ (1− a)ρm−`+1

> −aρm−` ≥ −amin{ρi : i 6∈ {i1, . . . , i`}},

and (10) holds.
Case a = 0. According to (9), M is Cohen-Macaulay if and only if

0 > −max{ρi : i ∈ {i1, . . . , i`}} = −ρi1 ,

for all ` < m and i1 < · · · < i`, which is equivalent to requiring ρi > 0 for i = 1, . . . ,m.
In case a = 1, the inequalities (9) imply that M is Cohen-Macaulay if and only if ρi > 0

for i = 1, . . . ,m.
Case a > 1. Now (9) implies that M is Cohen-Macaulay if and only if

amax{ρi : i 6∈ {i1, . . . , i`}} > (a− 1) min{ρi : i ∈ {i1, . . . , i`}} (11)

for all 1 ≤ ` < m and 1 ≤ i1 < · · · < i` ≤ m. In particular, for any 1 ≤ ` < m one has

amax{ρ`+1, . . . , ρm} > (a− 1) min{ρ1, . . . , ρ`},

i.e. aρ`+1 > (a − 1)ρ` for 1 ≤ ` < m. We check that the latter inequalities imply (11).
Indeed, for ` < m and i1 < · · · < i` we have

amax{ρi : i 6∈ {i1, . . . , i`}} ≥ a{ρ`+1, . . . , ρm} = aρ`+1

> (a− 1)ρ` = (a− 1) min{ρ1, . . . , ρ`}
≥ (a− 1) min{ρi : i ∈ {i1, . . . , i`}}.
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Let us assume that M is a Cohen-Macaulay T -module. To prove that T is a Cohen-
Macaulay ring is equivalent to the a-invariants of Ri be negative for all i, see [5, Theorem
4.4.1(i)], or equivalently that ρm > 0. This was checked above for 0 ≤ a ≤ 1.

If a > 1, the inequality aρm > (a−1)ρm−1 gives ρm > (a−1)(ρm−1−ρm) ≥ 0. Similarly,
when a < 0, the inequality (1 − a)ρm > aρm−1 implies that ρm > a(ρm − ρm−1) ≥ 0, as
desired.

Remark 3.9. In the setting of Theorem 3.8, for a = 0 we get M = ]mi=1Ri = T , and if
a = 1 we get M = ]mi=1Ri(−ρi) ∼= ]mi=1ωRi

∼= ωT , see [5, Theorem 4.3.1].

Corollary 3.10. In the setting of Theorem 3.8, assume a 6= 0, 1. Denote C = (a/(a −
1))sgn(a). Then M is a Cohen-Macaulay T -module if and only if

Cm−1ρm > Cm−2ρm−1 > · · · > Cρ2 > ρ1.

In particular, the anticanonical module ω∗T is Cohen-Macaulay if and only if

2m−1ρm > 2m−2ρm−1 > · · · > 2ρ2 > ρ1.

Proof. The first part follows immediately from Theorem 3.8. For the computation of the
anticanonical module ω∗T we use that ωRi

= Ri(−ρi), hence ω∗Ri
= Ri(ρi) for all i. Moreover,

since the algebras R1, . . . , Rm are friendly, [5, Theorem 4.3.1] yields

ω∗T
∼= (]mi=1ωRi

)∗ ∼= ]mi=1ω
∗
Ri

∼= ]mi=1Ri(ρi).

Proposition 3.11. Let R1, . . . , Rm be a friendly family of standard graded algebras with
dimRi ≥ 2 for 1 ≤ i ≤ m. Assume that Ri is Gorenstein of a–invariant −ρi for 1 ≤ i ≤ m
with ρ1 ≥ ρ2 ≥ · · · ≥ ρm > 0. Let ρ = max{ρi/ρi+1 : i = 1, . . . ,m− 1}. For any integer a
we set T {a} = ]mi=1Ri(−aρi) and we let T = T {0}.

Then the T -module T {a} is Cohen-Macaulay if and only if either ρ = 1 or

1
1− ρ < a <

ρ

ρ− 1 .

Proof. Since ρi > 0 for all i, it follows that T is a Cohen-Macaulay ring, cf. [5, Theorem
4.4.4(i)]. Our hypothesis on the ρi’s implies that ρ ≥ 1. Equality holds if and only if
ρ1 = · · · = ρm, i.e. T {a} is a shifted copy of T , hence Cohen-Macaulay. As a matter of
facts, the case ρ = 1 is equivalent to T being Gorenstein, by [5, Theorem 4.4.7].

Assume ρ > 1. Then 1/(1 − ρ) < 0 and 1 < ρ/(ρ − 1). Since T is Cohen-Macaulay it
follows from Theorem 3.8 that T {1} is Cohen-Macaulay, too.

If a > 1, by Theorem 3.8 we see that T {a} is Cohen-Macaulay if and only if a/(a− 1) >
ρ`/ρ`+1 for ` = 1, . . . ,m − 1, i.e. a/(a − 1) > ρ, which is equivalent to 1 + 1/(a − 1) > ρ,
and to 1/(a− 1) > ρ− 1. Thus a < ρ/(ρ− 1).

If a < 0, by Theorem 3.8 it follows that T {a} is Cohen-Macaulay if and only if (a−1)/a >
ρ, which is equivalent to a > 1/(1− ρ).

Corollary 3.12. In the setting of Proposition 3.11, assume ρ > 1. Then T {a} is Cohen-
Macaulay only for a = 0, 1 if and only if ρ ≥ 2. In particular, the anticanonical module ω∗T
is not Cohen-Macaulay when ρ ≥ 2.
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Proof. It is clear that 1/(1 − ρ) < 0 and ρ/(ρ − 1) = 1 + 1/(ρ − 1) > 1, hence T {a} is
Cohen-Macaulay for a = 0, 1. That these are the only values, by Proposition 3.11, it is
equivalent to having −1 ≤ 1/(1 − ρ) and ρ/(ρ − 1) ≤ 2. It is easy to check that both
conditions mean ρ ≥ 2.

As noted in the proof of Corollary 3.10, the anticanonical module ω∗T ∼= T {−1} and by
the above arguments it is not Cohen-Macaulay when ρ ≥ 2.

By [2, Proposition 3.3.18], for a standard graded Cohen-Macaulay algebra R which is
generically Gorenstein (for instance, a domain), its canonical module may be identified with
an ideal in R, that we call a canonical ideal of R. If I and J are two canonical ideals of
R, they are isomorphic and there exists an element x invertible in Q(R) such that I = xJ .
Hence, for any integer a the T -modules Ia and Ja are isomorphic, and Cohen-Macaulay or
not at the same time.

The next result describes which powers of the canonical ideal of a Segre product of some
friendly Gorenstein algebras are Cohen-Macaulay.

Proposition 3.13. Let R1, . . . , Rm be a friendly family of standard graded Gorenstein
K-algebras of dimension at least two such that R1 ⊗K · · · ⊗K Rm is a domain. Let −ρi
be the a–invariant of Ri for i = 1, . . . ,m. Assume ρ1 ≥ ρ2 ≥ · · · ≥ ρm > 0 and that
ρ = max{ρi/ρi+1 : i = 1, . . . ,m− 1} > 1.

Let T = ]mi=1Ri, ωT a canonical ideal of T , and a any integer. Then ωaT is a Cohen-
Macaulay T -module if and only if

1
1− ρ < a <

ρ

ρ− 1 .

Proof. The Segre product T is a Cohen-Macaulay ring which is not Gorenstein, since all
ρi’s are positive and ρ > 1. By [5, Theorem 4.3.1], the canonical module of T is isomorphic
to ]mi=1Ri(−ρi), which is generated by 1⊗R2,ρ1−ρ2 ⊗· · ·⊗Rm,ρ1−ρm

. Here Ri,j denotes the
jth homogeneous component of Ri for i = 1, . . . ,m and j ≥ 0. Pick f = u1⊗· · ·⊗um−1⊗1
with 0 6= ui ∈ Ri,ρi−ρm

for i = 1, . . . ,m− 1. Since ⊗mi=1Ri is a domain it follows that T is
a domain, as well. Therefore, the map φ : ]mi=1Ri(−ρi)

·f→ T is injective. Without loss of
generality we may assume that ωT is the image of φ. Hence

ωT = (u1 ⊗ u2R2,ρ1−ρ2 ⊗ · · · ⊗ um−1Rm−1,ρ1−ρm−1 ⊗Rm,ρ1−ρm
)T.

Assume a > 0. Since the algebras Ri are standard graded, we get

ωaT = (ua1 ⊗ ua2R2,a(ρ1−ρ2) ⊗ · · · ⊗ uam−1Rm−1,a(ρ1−ρm−1) ⊗Rm,a(ρ1−ρm))T.

Arguing as above, we have that ωaT is isomorphic to the T -module ]mi=1Ri(−aρi), for all
a > 0.

With a similar argument we may identify the anticanonical module ω∗T ∼= ]mi=1Ri(ρi)
with the ideal

ω∗T = (R1,ρ1−ρm
⊗ v2R2,ρ2−ρm

⊗ · · · ⊗ vm−1Rm−1,ρ1−ρm−1 ⊗ vm)T,

where 0 6= vi ∈ Ri,ρ1−ρi
for i = 2, . . . ,m. A similar discussion shows the isomorphism

ωaT
∼= ]mi=1Ri(−aρi) for negative a, as well.
The conclusion now follows by Theorem 3.11.
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