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Abstract

Let Y be a hypersurface in projective space having only ordinary double points as sin-
gularities. We prove a variant of a conjecture of L. Wotzlaw on an algebraic description
of the graded quotients of the Hodge filtration on the top cohomology of the comple-
ment of Y except for certain degrees of the graded quotients, as well as its extension
to the Milnor cohomology of a defining polynomial of Y for degrees a little bit lower
than the middle. These partially generalize theorems of Griffiths and Steenbrink in
the Y smooth case, and enable us to determine the structure of the pole order spectral
sequence. We then get quite simple formulas for the Steenbrink and pole order spectra
in this case, which cannot be extended even to the simple singularity case easily.
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1 Introduction

Let Y be a hypersurface in X = Pn. Consider the following condition:

(ODP) Y has only ordinary double points as singularities.

Let R := C[x0, . . . , xn] with x0, . . . , xn the coordinates of Cn+1. Let f ∈ R be a defining
polynomial of Y . Set U = X \ Y , and

d := deg f, m :=
[
n
2

]
, J := (∂f/∂x0, . . . , ∂f/∂xn) ⊂ R, I :=

√
J ⊂ R.

Here J is called the Jacobian ideal of f , and I is the graded ideal consisting of finite sums
of homogeneous polynomials vanishing at Sing Y ⊂ X if condition (ODP) is assumed. Let
Rk denote the degree k part of R, and similarly for Ik, etc. We have the following.

Conjecture 1 (L. Wotzlaw [37, 6.5]). Under the assumption (ODP) we have

GrpFH
n(U,C) = (Iq−m+1/Iq−mJ)(q+1)d−n−1 (q = n− p ∈ ZZ).
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Here F is the Hodge filtration as in [5], and Ij = R for j 6 0. This is a generalization
of Griffiths’ theorem on rational integrals [20] in the Y smooth case (see also [19]). The
following is known:

Theorem 1 ([14, Theorem 2.2]). Conjecture 1 holds if q 6 m, that is, if p > n−m.

This theorem was actually proved in the case of general singularities by modifying m
and I appropriately. (More precisely, m is replaced by α̃Y in (1.1.3), see also (1.1.6).)

Let K•f := (Ω•,df∧) be the Koszul complex associated with the action of df∧ on the

algebraic differential forms Ω• := Γ(Cn+1,Ω•Cn+1). It is a graded complex with deg xi =
deg dxi = 1, and df∧ is a morphism of degree d. Set

(0.1) sN := Hn(K•f ), M := Hn+1(K•f ), M ′ := H0
mM, M ′′ := M/M ′,

where m ⊂ R is the maximal ideal generated by the xi, and H0
m is the local cohomology.

These are graded R-modules. In [13] we used N = sN(−d) instead of sN = N(d) with (d) a
shift of grading. Under the assumption (ODP) we have the isomorphisms (see for instance
[8]):

(0.2) Mk = (R/J)k−n−1, M ′′k = (R/
√
J)k−n−1 = (R/I)k−n−1 (k ∈ ZZ),

Conjecture 1 is naturally extended to the case of the Milnor cohomology Hn(f−1(1),C),
generalizing Steenbrink’s theorem [32] in the isolated singularity case, at least for lower
degrees q. There is a technical difficulty as is explained in [12, Section 1.8] if one tries to
generalize directly the argument in the proof. However, this can be avoided by using the
Thom-Sebastiani type theorem, and we get the following (see (2.4) below).

Theorem 2. Under the assumption (ODP) the pole order spectral sequence in (1.2.4) below
degenerates at E2, and there are canonical isomorphisms

(0.3) GrpFH
n(f−1(1),C)e(−k/d) = Mk = (R/J)k−n−1 for p =

[
n+ 1− k

d

]
, k
d 6 n

2 ,

where e(−k/d) := exp(−2πik/d), and Hn(f−1(1),C)λ is the λ-eigenspace under the action
of the monodromy. Moreover the Hodge filtration F on the left-hand side can be replaced
with the pole order filtration P .

Indeed, the assertion with F replaced by P follows from Theorem (2.1) below, and we
can show the coincidence of F and P in the case of Theorem 2 by using the Thom-Sebastiani
theorems, see (2.4) below. The isomorphism (0.3) for k

d 6 1 is already known by the relation
with the multiplier ideals, see [27]. Without assuming condition (ODP), the isomorphism
in (0.3) holds for k

d 6 α̃Y with α̃Y as in (1.1.3), see Remark (2.10) below.

Now consider the Steenbrink spectrum ([33], [34]) and the pole order spectrum [13]:

Sp(f) =
∑
α nf,αt

α, SpP (f) =
∑
α
Pnf,αt

α,

see (1.4) below for the definition. Let γk be the integers defined by∑
k γk t

k = (t+ · · ·+ td−1)n+1.
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Note that
∑
k γk t

k/d coincides with the Steenbrink spectrum of a homogeneous polynomial
with an isolated singularity, see [32]. Since the Euler characteristic of a finite dimensional
complex is independent of the differential, we have

(0.4) dimMk − dim sNk−d = γk.

By using Theorem (2.1) below together with (0.4), we get the following (see (2.5) below).

Theorem 3. Set sνk := dim sNk (k ∈ ZZ). Under the assumption (ODP) we have

SpP (f) =
(
t1/d + · · ·+ t(d−1)/d

)n+1 −
∑

nd/2<k6nd/2+d

sνk t
k/d −

∑
k>nd/2+d

(sνk − sνk−d) t
k/d.

Here nd must be even in the case k
d = n

2 or n
2 + 1. Note that

sνk − sνk−d ∈ [0, τY ] with τY := #|Sing Y |,

since
{
sνk
}
k

is a weakly increasing sequence with values in [0, τY ] (by using (0.6) below).

The assertion for k
d = n

2 or n
2 + 1 is closely related to the following.

Proposition 1 ([6, Chapter 6, Theorem 4.5]). Under the assumption (ODP) we have

dimHn−1(f−1(1),C) =

{
sνnd/2 if nd is even,

0 if nd is odd.

This also follows from Theorem (2.1) below. Indeed, it is essentially equivalent to the
vanishing of the morphism d(1) : sNnd/2 →Mnd/2 induced by the differential d.

As for the Steenbrink spectrum, we have a quite simple formula as follows (see (2.6)
below).

Theorem 4. Set k0 := [nd/2]. Under the assumption (ODP) we have

Sp(f) =
(
t1/d + · · ·+ t(d−1)/d

)n+1 − τY tk0/d
(
t1/d + · · ·+ td/d

)
.

This follows from Theorem 2 for the coefficients nf,α of Sp(f) with α = k
d 6 n

2 . We
have a partial symmetry of the Steenbrink spectrum by using a spectral sequence associated
with the weight filtration on the vanishing cycle sheaf (1.5), and this implies the assertion
for α = k

d >
n
2 + 1. For the remaining case we calculate the Euler characteristic of Pn \ Y ,

see (2.6) below. Theorem 4 is compatible with a formula for the spectrum of a hyperplane
arrangement [4, Theorem 3] in the case n = 2.

By Theorems 3 and 4, we get the following relation between the Steenbrink and pole
order spectra.

Corollary 1. Let p(k) ∈ ZZ with k
d − p(k) ∈

(
n
2 ,

n
2 + 1

]
. Under the assumption (ODP) we

have

Sp(f)− SpP (f) =
∑
k/d>n/2+1

(
sνk − sνk−d

) (
tk/d − tk/d−p(k)

)
.
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Indeed, this immediately follows from Theorems 3 and 4, since∑
p>0

(
sνk+pd − sνk+pd−d

)
= τY − sνk.

However, Corollary 1 does not give a formula for dim GrpFGrp+qP Hn(f−1(1),C)λ by com-
bining it with Proposition (2.9) and (1.4.3) below, which imply a formula for the relation
between the two spectra. Indeed, there may be cancellations on the right-hand side of
(1.4.3).

Using the improved version of [13, Theorem 5.3] explained in [13, Remark 5.6(i)] together
with Proposition 1, we also get the following (see (2.7) below).

Theorem 5. Let M ′k be as in (0.1). Under the assumption (ODP) there is a canonical
injective morphism

M ′k ↪→ GrpPH
n(f−1(1),C)e(−k/d) for p =

[
n+ 1− k

d

]
, k ∈ ZZ>0,

which is induced by the canonical surjection Mk → M
(∞)
k in the notation of (1.2.7) below

together with the action of ∂n−pt in (1.2.3) and the isomorphism (1.2.5).

This seems to be related with [1], [2]. Theorem 5 and the first assertion of Theorem 2
can be extended to the case Y has only weighted homogeneous isolated singularities, see
[29]. It is unclear whether Theorem 5 holds with the pole order filtration P replaced by
the Hodge filtration F (except for the case k/d 6 n/2 by Theorem 2). However, combining
Theorem 4 with results of [15], [9] (see also Theorem 9 below), we get the following (see
(2.8) below).

Proposition 2. Let M ′k be as in (0.1). Under the assumption (ODP) there is an inequality

dimM ′k 6 dim GrpFH
n(f−1(1),C)e(−k/d) for p =

[
n+ 1− k

d

]
, k ∈ ZZ>0,

where the equality holds if k
d ∈

(
n
2 ,

n
2 + 1

]
.

In this paper we also treat a variant of Wotzlaw conjecture studied in [14]. Let I ⊂ OX
denote the reduced ideal of Sing Y ⊂ X. Set

I
(i)
k := Γ(X, Ii(k)), I(i) =

⊕
k I

(i)
k .

We have the inclusions (Ii)k ⊂ I
(i)
k together with the equalities (Ii)k = I

(i)
k for k � 0

although these equalities do not always hold in general, see [14, Section 2.3]. By definition
we have exact sequences

(0.5) 0 −→ I
(i)
k −→ Rk

β
(i)
k−→
⊕

y∈Sing Y OX,y/m
i
X,y,

choosing a trivialization of OX,y(k), where mX,y is the maximal ideal of OX,y. We have a
variant of Conjecture 1 as follows:

Conjecture 2. Under the assumption (ODP) we have

GrpFH
n(U,C) = (I(q−m+1)/I(q−m)J)(q+1)d−n−1 (q = n− p ∈ ZZ).
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Note that Theorem 1 implies Conjecture 2 for q 6 m. In [14], the following was shown:

Theorem 6 ([14, Theorem 2]). For q = n − p > m =
[
n
2

]
, Conjecture 2 holds, if the

following condition is satisfied :

(B′) The morphism β
(i)
k in (0.5) is surjective for k = m(d− 1)− p and i = 1.

Note that condition (B′) is equivalent to condition (B) in loc. cit. We show in this paper
the following (see (2.3) below and also [9]).

Theorem 7. Condition (B′) holds if n is even or n is odd and q > m+ [d/2].

Combining Theorem 7 with Theorems 1 and 5, we get the following.

Theorem 8. Conjecture 2 holds except for the case where n is odd and m < q < m+ [d/2].

The situation in the exceptional case is unclear (since condition (B′) is only a sufficient
condition), and Conjectures 1 and 2 are still open, see remarks after [14, Theorem 2].

For the proof of Theorem 7, set

defkΣf := dim Coker
(
β
(1)
k : Rk →

⊕
y∈Sing Y OX,y/mX,y

)
,

so that condition (B′) is equivalent to

(B′′) defm(d−1)−pΣf = 0.

It follows from the last isomorphisms of (0.2) that

defkΣf = τY − dimM ′′k+n+1 with τY := #|Sing Y |.

By [8, Theorem 3.1] we have moreover

(0.6) dim sNnd−n−1−k = defkΣf .

This also follows from [13, Corollary 2] asserting

(0.7) dimM ′′k + dim sNnd−k = τY .

These are closely related with [3], [17], [18], [23], [31], [35], [36]. (Note that n in [13] is n+1
in this paper, and the grading of sN• in this paper is shifted by d compared with N• in [13];
more precisely, sNk = Nk+d.)

It follows from (0.6) that condition (B′′) is equivalent to

(B′′′) sN(n−m)d+m−q−1 = 0,

since nd− n− 1− (m(d− 1)− p) = (n−m)d+m− q − 1.

Here we have a generalization of results in [15], [9] (which has been conjectured in [11,
Conjecture 3.15], see also [21]) as follows.

Theorem 9. Assume all the singularities of Y are isolated and weighted homogeneous.
Then sNk = 0 for k

d < α̃Y , where α̃Y is as in (1.1.3) below.
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If condition (ODP) is satisfied, then α̃Y = n
2 and Theorem 9 was shown by [15] in the

n even case, and by [9] in the n odd case. (It is known in these cases that the bound on
k given in Theorem 9 is sharp; that is, there are examples with sNk 6= 0 for any integer
k > nd/2, see loc. cit.) Theorem 7 then follows by calculating the condition

(0.8) (n−m)d+m− q − 1 < nd/2,

see (2.3) below. Theorem 9 is shown by using a recent result from [13] (see (1.2.10) below)
together with the Thom-Sebastiani type theorems, see (2.1) and (2.2) below.

In Section 1 we review some basics of the Hodge and pole order filtrations and pole order
spectral sequences. In Section 2 we prove the main theorems after showing Theorem (2.1).

2 Preliminaries

In this section we review some basics of the Hodge and pole order filtrations and pole order
spectral sequences.

1.1. Cohomology of projective hypersurface complements. Let Y be a hypersurface
in X := Pn. Set U = X \ Y . By Grothendieck there are canonical isomorphisms

Hj(U,C) = Hj
(
Γ(X,Ω•X(∗Y ))

)
(j ∈ ZZ),

where Γ(X,Ω•X(∗Y )) is the complex of rational differential forms on X whose poles are con-
tained in Y . By [24], there is a canonical Hodge filtration F on OX(∗Y ) underlying a mixed
Hodge module j∗Qh,U [n] where j : U ↪→ X is the inclusion and Qh,U [n] denotes the pure
Hodge module of weight n whose underlying Q-complex is QU [n]. By [12, Proposition 2.2],
we have

(1.1.1) F pHj(U,C) = Hj
(
Γ(X,Ω•X ⊗OX

F•−pOX(∗Y ))
)

(p, j ∈ ZZ).

Here F on the left-hand side coincides with the Hodge filtration of the canonical mixed
Hodge structure on Hj(U,C) in [5]. (This can be reduced to the case of the complement
of a divisor with normal crossings on a smooth projective variety easily.)

Let P be the pole order filtration on OX(∗Y ) defined by

PpOX(∗Y ) :=

{
0 if p < 0,

OX((p+ 1)Y ) if p > 0.

Then
FpOX(∗Y ) ⊂ PpOX(∗Y ),

FpOX(∗Y )|X\Sing Y = PpOX(∗Y )|X\Sing Y .
Let hy be a local defining holomorphic function of Y at y, and bhy (s) be the b-function of
hy which is normalized as in [12], [25] so that

b̃hy (s) := bhy (s)/(s+ 1) ∈ C[s].
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Let α̃Y,y be the minimal root of b̃hy (−s). If (Y, y) is an isolated singularity defined locally
by a weighted homogenous polynomial hy of weights w1, . . . , wn (that is, hy is a linear
combination of monomials ym1

1 · · · ymn
n with

∑
i wimi = 1), then

(1.1.2) α̃Y,y =
∑n
i=1 wi.

Set

(1.1.3) α̃Y := min
y∈Sing Y

α̃Y,y.

By [25] we have

(1.1.4) FpOX(∗Y ) = PpOX(∗Y ) if p < [α̃Y ].

This implies

(1.1.5) F pHj(U,C) = P pHj(U,C) if p > j − [α̃Y ],

where the filtration P on Hj(U,C) is induced by P on OX(∗Y ) by using the image of the
right-hand side of (1.1.1) with F replaced by P .

By [14, Theorem 2.2] we then get for q = n− p < [α̃Y ]

(1.1.6) GrpFH
n(U,C) = GrpPH

n(U,C) = (R/J)(q+1)d−n−1 = M(q+1)d,

where (R/J)k, Mk are as in the introduction (although Y may have arbitrary singularities).

1.2. Pole order spectral sequences. In the notation of the introduction, we have the
algebraic microlocal Gauss-Manin complex

(C̃•f , d− ∂t df∧) with C̃jf = Ωj [∂t, ∂
−1
t ],

see [13]. Here f may be any homogeneous polynomial of degree d. Its cohomology groups

Hj(C̃•f ) are called the Gauss-Manin systems. These are graded C-vector spaces (where
deg ∂t = −d), and there are isomorphisms

(1.2.1)
Hj+1(C̃•f )k = H̃j(f−1(1),C)λ for λ = exp(−2πik/d),

and H̃j(f−1(1),C)1 = H̃j(U,C),

where H̃j(f−1(1),C)λ denotes the λ-eigenspace of the reduced Milnor cohomology under
the monodromy. It is well-known (see for instance [4, 1.3]) that there is a local system Lk
of rank 1 on U such that L0 = CU , and

(1.2.2) Hj(f−1(1),C)λ =

{
Hj(U,Lk) if λ = exp(−2πik/d),

0 if λd 6= 1.

We have the pole order filtration P ′ defined by

P ′p C̃
j
f =

⊕
i6j+p Ωj ∂it .
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Set P ′ p = P ′−p. There are isomorphisms

(1.2.3) ∂at : P ′ p(C̃•f )k
∼−→ P ′ p−a(C̃•f )k−ad (a, k, p ∈ ZZ).

We have the algebraic microlocal pole order spectral sequence

(1.2.4) kE
p,j−p
1 = HjGrpP ′(C̃

•
f )k =⇒ Hj(C̃•f )k,

which is a spectral sequence of graded C-vector spaces. The associated filtration P ′ on
Hj+1(C̃•f )k is identified with the pole order filtration P on the reduced Milnor cohomology

groups H̃j(f−1(1),C)λ defined in [6, Chapter 6] up to the shift by one (that is, P ′ p+1 = P p)
via the isomorphism (1.2.1) for k ∈ [1, d]. This follows from [6, Chapter 6, Theorem 2.9]
(see also [12, Section 1.8] for the case j = n). We thus get

(1.2.5) P ′p+1Hj+1(C̃•f )k = P pH̃j(f−1(1),C)λ for λ = exp(−2πik/d), k ∈ [1, d].

(For k /∈ [1, d], we have to use (1.2.3).)

By (1.1.5) we have moreover

(1.2.6) F p = P p on H̃j(f−1(1),C)1 = H̃j(U,C) if p > j − [α̃Y ],

where α̃Y is as in (1.1.3). By definition we have

kE
n,0
1 = HnGrnP ′(C̃

•
f )k = sNk, kE

n+1,0
1 = Hn+1Grn+1

P ′ (C̃•f )k = Mk,

where sNk, Mk are as in the introduction. Set

(1.2.7) sN
(r)
k := kE

n,0
r , M

(r)
k := kE

n+1,0
r (r ∈ [1,∞]).

The differential dr of the pole order spectral sequence is then identified by using (1.2.3)
with the graded morphism

d(r) : sN (r) →M (r) (r ∈ [1,∞)),

so that it preserves the grading up to a shift by (r − 1)d, that is,

(1.2.8) d(r)(sN
(r)
k ) ⊂M (r)

k−(r−1)d,

and moreover there are canonical isomorphisms

(1.2.9) sN (r+1) = Ker d(r), M (r+1) = Coker d(r) (r ∈ [1,∞)).

If all the singularities of Y are isolated and weighted homogeneous, then we have by [13,
Theorem 5.3]

(1.2.10) sN
(2)
k = Ker(d(1) : sNk →Mk) = 0 if k

d < α̃Y .

By (1.2.3), (1.2.5) we have in general

(1.2.11) M
(∞)
k = GrpPH

n(f−1(1),C)λ
(
p =

[
n+ 1− k

d

]
, λ = exp(−2πik/d)

)
.
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Indeed, this follows from (1.2.5) and the definition of the filtration P ′ on C̃•f given just

before (1.2.3) if k ∈ [1, d] so that p =
[
n+ 1− k

d

]
= n. In the general case we also use the

isomorphism (1.2.3) where a ∈ ZZ is chosen so that k − ad ∈ [1, d].

By (1.2.6) we then get

(1.2.12) M
(∞)
(q+1)d = GrpFH

n(U,C)
(
q = n− p < [α̃Y ]

)
.

1.3. Thom-Sebastiani type theorems ([13, Section 4.9]). Let h = f + g with g a
homogeneous polynomial of degree d in variables z1, . . . , zr. In the notation of (1.2), there
is a canonical isomorphism

(1.3.1) (C̃•h, P
′) = (C̃•f , P

′)⊗C[∂t, ∂
−1
t ] (C̃•g , P

′).

If g has an isolated singularity at the origin, then

(1.3.2) HjGrP
′

k C̃•g = 0 (j 6= r, k ∈ ZZ),

and we have the filtered quasi-isomorphisms

(1.3.3) (C̃•g , P
′)
∼−→ Hr(C̃•g , P

′)[−r],

(1.3.4) (C̃•h, P
′)
∼−→ (C̃•f , P

′)⊗C[∂t, ∂
−1
t ] H

r(C̃•g , P
′)[−r].

By (1.3.4) the pole order spectral sequence for h is isomorphic to a finite direct sum of

shifted pole order spectral sequences for f by choosing graded free generators of Hr(C̃•g , P
′)

over C[∂t, ∂
−1
t ]. Here shifted means that the degrees of complex and filtration are shifted.

The E0-complex of the spectral sequence is the direct sum of the graded quotients of the
filtration P ′, and is isomorphic to an infinite direct sum of the Koszul complexes (Ω•,df∧)
with grading shifted properly. We have the Thom-Sebastiani type theorem also for the
Koszul complexes, see also [13, Proposition 2.2].

1.4. Spectrum. We have the Steenbrink spectrum Sp(f) =
∑
α>0 nf,α t

α defined by

nf,α :=
∑
j (−1)j dim GrpF H̃

n−j(f−1(1),C)λ

with p = [n+ 1− α], λ = exp(−2πiα),

where H̃n−j(f−1(1),C) is the reduced cohomology, and H̃n−j(f−1(1),C)λ denotes the
λ-eigenspace under the monodromy, see [33], [34]. We define the pole order spectrum
SpP (f) =

∑
α>0

Pnf,α t
α by replacing F with P .

There are refinements of the Steenbrink and pole order spectrum defined by

Spj(f) =
∑
α>0 n

j
f,α t

α, SpjP (f) =
∑
α>0

Pnjf,α t
α,

where

(1.4.1)
njf,α := dim GrpF H̃

n−j(f−1(1),C)λ

with p = [n+ 1− α], λ = exp(−2πiα),
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and similarly for Pnjf,α with F replaced by P . By definition we have

(1.4.2) Pn0f,k/d = dimM
(∞)
k , Pn1f,k/d = dim sN

(∞)
k−d

(
= dimN

(∞)
k

)
,

where M
(∞)
k , sN

(∞)
k are as in (1.2.7).

Since F p ⊂ P p (see (1.7.4) below), we have

(1.4.3) Spj(f)− SpjP (f) =
∑
α,qm

j
α,q

(
tα − tα−q

)
,

where
mj
α,q := dim GrpFGrp+qP H̃n−j(f−1(1),C)λ

with p = [n+ 1− α], λ = exp(−2πiα), q ∈ ZZ>0.

We also have

(1.4.4) njf,α 6 Pnjf,α if njf,α−k = Pnjf,α−k for any k ∈ ZZ>0.

Let h := f + g with g as in (1.3). Here we assume that g has an isolated singularity at
0 so that

Sp(g) = Sp0(g) = SpP (g) = Sp0
P (g).

Then the Thom-Sebastiani type theorems imply

(1.4.5) Spj(h) = Spj(f) Sp0(g), SpjP (h) = SpjP (f) Sp0(g),

where the product is taken in Q[t1/e] for some positive integer e. Indeed, the assertion
for Spj(h) follows from [22, Theorem 2] (see also [28] for a different proof and [30] for the
isolated singularity case). The assertion for SpjP (h) follows from (1.3) by using (1.4.2).

1.5. Spectral sequence. There is a spectral sequence of mixed Hodge structures

(1.5.1) WE
−i,i+j
1 = Hji∗0GrWi (ϕfQh,Cn+1 [n]) =⇒ Hji∗0(ϕfQh,Cn+1 [n]),

where i0 : {0} ↪→ Cn+1 denotes the inclusion, ϕfQh,Cn+1 [n] is a mixed Hodge module
whose underlying Q-complex is ϕfQCn+1 [n], and W is the weight filtration of the mixed
Hodge module, see [24]. Moreover there is a canonical isomorphism

Hji∗0(ϕfQCn+1 [n]) = H̃j+n(f−1(1),Q),

compatible with the mixed Hodge structure.

Under the assumption (ODP) in the introduction, we have the strict support decompo-
sition of mixed Hodge modules

(1.5.2) GrWi (ϕfQh,Cn+1 [n]) = M{0},i ⊕
⊕

y∈Sing YMC(y),i,

where C(y) ⊂ Cn+1 is the cone of y ∈ Pn, and MZ,i is a pure Hodge module of weight
i with strict support Z = {0} or C(y). Moreover the stalk of MC(y),i at any point of
C(y) \ {0} ∼= C∗ is Q(−m) (up to a shift of complex by 1) if i = 2m + 1, and it vanishes
otherwise, where m := [n/2] as in the introduction. (Indeed, these are well known if one
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restricts to the complement of the origin, and this implies the desired assertion by using
the semisimplicity of pure Hodge modules.) The monodromy of MC(y),2m+1 around the

origin is the multiplication by (−1)nd. Here we use a well-known relation with the Milnor
monodromy on (MC(y),2m+1)z for z ∈ C(y) \ {0}, which is the multiplication by (−1)n by
the assumption (ODP). These imply

(1.5.3) H−1i∗0GrWi (ϕfQh,Cn+1 [n]) =

{
Q τY (−m) if i = 2m+ 1 with nd even,

0 otherwise.

(1.5.4) H0i∗0GrWi (ϕfQh,Cn+1 [n]) = i∗0M{0},i.

Here M{0},i = (i0)∗(i
∗
0M{0},i), and i∗0M{0},i can be identified with a pure Hodge structure

Hi of weight i.

We then get under the assumption (ODP)

(1.5.5) WE
−i,i+j
1 has weight i+ j for any i, j.

and hence

(1.5.6) the spectral sequence (1.5.1) degenerates at E2.

Moreover the monodromical property of the weight filtration W implies a decomposition of
mixed Hodge structures

Hi = Hi,1 ⊕Hi,6=1

such that
Nk : Hn+1+k,1

∼−→ Hn+1−k,1(−k),

Nk : Hn+k, 6=1
∼−→ Hn−k, 6=1(−k),

as in the case of isolated singularities [33], where N = log Tu with Tu the unipotent part of
the monodromy. By using (1.5.3–4) together with an argument similar to [33], we then get

(1.5.7) nf,α = nf,n+1−α for α 6= n
2 ,

n
2 + 1,

(1.5.8) nf,n/2+1 = nf,n/2 − τY in the nd even case.

For a similar assertion in a different setting, see [7, Proposition 4.1]. Note that the action
of N on Hj(f−1(1),Q) is trivial (since f is a homogeneous polynomial), and this implies
a certain condition on the weight filtration W on ϕfQh,Cn+1 [n]. By using the spectral
sequence (1.5.1), it seems possible to give, for instance, another proof of [10, Theorem 1.5]
(where the equivariant Hodge-Deligne polynomial is essentially equivalent to the spectral
pairs).

1.6. Remark about (1.5.7–8). These can be generalized to the case the hypothesis
(ODP) is replaced by the condition that Y has only hypersurface isolated singularities
with semi-simple Milnor monodromies (for instance, a local defining function hy of (Y, y) is
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weighted homogeneous for y ∈ Sing Y ). Indeed, let Sp(hy) =
∑
α nhy,α t

α be the spectrum
of hy, and define

[Sp(hy)](d) :=
∑
dα∈ZZ nhy,α t

α,

S̃p(f) := Sp(f) +
∑
y∈Sing Y t [Sp(hy)](d).

Then S̃p(f) has symmetry with center (n+1)/2, that is, it is invariant by the automorphism
of ZZ[t1/d, t−1/d] defined by Q(t) 7→ tn+1Q(t−1).

1.7. Remark about the inclusion F ⊂ P . Let C•f ⊂ C̃•f be the usual Gauss-Manin

complex where Cjf = Ωj [∂t] and the differential is d−∂t df∧. It has the pole order filtration
P ′ as in (1.2), and the inclusion induces the isomorphisms

(1.7.1) P ′ pHn+1(C•f )k
∼−→ P ′ pHn+1(C̃•f )k (p 6 n+ 1, k ∈ [1, d]),

since ∂t has degree −d.

The Gauss-Manin complex C•f can be identified with fD∗ OX up to the shift of complex

by n+1, where X = Cn+1 and fD∗ denotes the direct image as an algebraic D-module. The
Hodge filtration F on the Gauss-Manin system H0fD∗ OX is defined by taking a relative
compactification f : X → S := C and using the factorization f = f ◦ j together with the
Hodge filtration F on jD∗ OX = j∗OX , where j : X ↪→ X is a compactification such that
D := X \X is a divisor and j∗ is the direct image as an algebraic quasi-coherent sheaf. We
have trivially the inclusions

(1.7.2) Fp(j∗OX ) ⊂ j∗(FpOX ),

where FpOX = OX or 0. The pole order filtration P ′ on Hn+1(C•f ) is identified with the
filtration induced by the direct image as a filtered D-module of j∗OX endowed with the
filtration defined by the right-hand side of (1.7.2). It is well-known (see for instance [13,
4.2.1]) that V -filtration of Kashiwara and Malgrange on Hn+1(C•f ) is given by

(1.7.3) V αHn+1(C•f ) =
⊕

k>dαH
n+1(C•f )k.

Combined with (1.2.1), these imply the inclusions

(1.7.4) F pHn(f−1(1),C)λ ⊂ P pHn(f−1(1),C)λ.

Here we have the shift by one for the Hodge filtration F as in (1.2.5). This comes essentially
from the transformation between filtered left and right D-modules on S.

1.8. Complement to the proof of [14, Theorem 2.2]. It does not seem to be neces-
sarily easy to follow it, since it was written far too concisely. We give here an additional
explanation as follows:

Using the vanishing theorem [14, (2.1.1)] together with the strictness of the Hodge
filtration [5], we can express GrpFH

n(U,C) as the cokernel of the following morphism:

(1.8.1) d :
Γ
(
X,Fn−p−1OX(∗Y )⊗OX

Ωn−1X

)
Γ
(
X,Fn−p−2OX(∗Y )⊗OX

Ωn−1X

) → Γ
(
X,Fn−pOX(∗Y )⊗OX

ΩnX
)

Γ
(
X,Fn−p−1OX(∗Y )⊗OX

ΩnX
)
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This can be computed further by using [14, (2.1.2–5)]. For q := n− p 6 m, it is identified,
by using the morphism ιξ in loc. cit., with the cokernel of the morphism

(1.8.2)
df∧ : (Ωn/fΩn)qd → (Ωn+1/fΩn+1)(q+1)d if q < m,

df∧ : (Ωn/fΩn)qd → (IΩn+1/fΩn+1)(q+1)d if q = m.

Then [14, Theorem 2.2] follows. Here it seems important to write down the formulas (1.8.1–
2) explicitly in order to understand the proof of [14, Theorem 2.2] properly.

1.9. Remark about [16, Proposition 2.2]. It is shown there that Sp1(f) = Sp1
P (f) in

the case Y has only isolated singularities. The argument is closely related to [29, Remark
4.4], and is not quite trivial, since we do not know yet whether the restriction morphism
is always strictly compatible with the pole order filtration in general. Indeed, we have a
quite difficult problem that the componentwise strictness does not necessarily imply the
strictness on the cohomology groups. More precisely, assume there is a morphism of filtered
complexes

(C•, P )→ (C ′•, P ),

which is componentwisely strict, that is, the morphisms (Cj , P )→ (C ′j , P ) are strict (∀ j).
However, the induced filtered morphism(

Hj(C•), P
)
→
(
Hj(C ′•), P

)
is not necessarily strict (even in the case C ′j+1 = 0).

For instance, assume the morphism of complexes is given by

(1.9.1)
0 → Q⊕Q

α−→ Q → 0
↓β ↓

0 → Q −→ 0

with Q ⊕ Q put at degree 0. Assume Q ⊕ 0, Kerα, Kerβ are different 1-dimensional
subspaces. In particular, we have the isomorphism

(1.9.2) H0(C•)
∼−→ H0(C ′•).

Define the filtration P 1 by the morphism of subcomplexes

(1.9.3)
0 → Q⊕ 0

∼−→ Q → 0
↓∼= ↓

0 → Q −→ 0

and assume GrjPC
• = GrjPC

′• = 0 for j 6= 0, 1, that is, P 2C• = 0, P 0C• = C•, and similarly
for C ′•. We then get

(1.9.4) Gr0PH
0(C•) = H0(C•) = Q, Gr1PH

0(C ′•) = H0(C ′•) = Q.

This implies, however, that
(
H0(C•), P

)
→
(
H0(C ′•), P

)
is nonstrict by (1.9.2).
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3 Proofs of the main theorems

In this section we prove the main theorems after showing Theorem (2.1).

2.1. Theorem. In the notation of (1.2) we have

(2.1.1) M
(∞)
k = Mk

(
k
d 6 α̃Y

)
,

and hence

(2.1.2) d(1) : sNk →Mk vanishes for k
d 6 α̃Y .

Proof. It is enough to show (2.1.1). We prove it by using (1.1.6), (1.2.12) and the Thom-
Sebastiani type theorems for the Gauss-Manin systems and the Koszul complexes as in
(1.3). Set

h := f + g on Cn+1 ×Cr with g =
∑r
j=1 z

d
j

where
r = 1 or r = k0 := min

{
k ∈ N | α̃Y + k

d > [α̃Y ] + 1
}
.

Define Mh,k, M
(∞)
h,k by replacing f with h, and similarly for Mg,k = M

(∞)
g,k .

By the Thom-Sebastian type theorems as in (1.3), we have for k ∈ Z

Mh,k =
⊕

j∈Z (Mf,k−j ⊗C Mg,j), M
(∞)
h,k =

⊕
j∈Z (M

(∞)
f,k−j ⊗C Mg,j),

where we denote Mk, M
(∞)
k by Mf,k, M

(∞)
f,k to avoid the ambiguity. We thus get

(2.1.4) dimMh,k − dimM
(∞)
h,k =

∑
j (dimMf,k−j − dimM

(∞)
f,k−j) dimMg,j ,

By (1.1.6) and (1.2.12) we have

(2.1.5) Mf,qd = M
(∞)
f,qd for any integer q 6 [α̃Y ].

Similarly we have

(2.1.6) Mh,qd = M
(∞)
h,qd for any integers

{
q 6 [α̃Y ] if r = 1,

q 6 [α̃Y ] + 1 if r = k0.

Indeed, if we set Y ′ := {h = 0} ⊂ Pn+r, then it follows from (1.1.2) that

α̃Y ′ =

{
α̃Y + 1

d > [α̃Y ] if r = 1.

α̃Y + r
d > [α̃Y ] + 1 if r = k0,

by using a Thom-Sebastiani type theorem for b-functions, see [26].

By definition we have

dimMf,k − dimM
(∞)
f,k > 0 for any k.
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Moreover

dimMg,j > 0 for j ∈ [r, r(d− 1)],

since it is well-known that

(2.1.7)
∑
j (dimMg,j) t

j = (t+ · · ·+ td−1)r.

(This can be reduced to the case r = 1 by using the Thom-Sebastiani type theorem.)

Using these non-negativity and strict positivity together with (2.1.4–6), we then get the
equalities

(2.1.8) dimMf,k − dimM
(∞)
f,k = 0 for k

d 6 α̃Y .

Indeed, we first show the assertion for k
d 6 [α̃Y ] by using (2.1.5) and (2.1.6) for r = 1. We

then apply (2.1.6) for r = k0 in case α̃Y 6= [α̃Y ].

We thus get a partial degeneration of the spectral sequence, and (2.1.1) follows. This
finishes the proof of Theorem (2.1).

2.2. Proof of Theorem 9. This follows from (2.1.2) in Theorem (2.1) together with [13,
Theorem 5.3] (see (1.2.10)).

2.3. Proof of Theorem 7. In the notation of the introduction, we see that condition (0.8)
becomes the following condition:

q > m− 1 if n = 2m,
q > m+ d/2− 1 if n = 2m+ 1.

So Theorem 7 follows.

2.4. Proof of Theorem 2. By Theorem (2.1) together with (1.2.8) and (1.2.11), we get
the E2-degeneration of the pole order spectral sequence together with the isomorphisms in
(0.3) with F replaced by P . The coincidence of F and P can be shown inductively by an
argument similar to the proof of Theorem (2.1) using the Thom-Sebastiani type theorems
as in (1.4.5) together with (1.4.4). This finishes the proof of Theorem 2.

2.5. Proof of Theorem 3. Let α = k
d with k ∈ N. The assertion is then equivalent to

Pnf,α =


γk if α 6 n

2 ,

γk − dim sNk if n
2 < α 6 n

2 + 1,

γk − (dim sNk − dim sNk−d) if α > n
2 + 1.

By the E2-degeneration of the pole order spectral sequence in Theorem 2, we have

(2.5.1) Pnf,k/d = dimM
(2)
k − dim sN

(2)
k−d

(
= dimM

(2)
k − dimN

(2)
k

)
.

By [13, Theorem 5.3] (see (1.2.10)) we get

(2.5.2) dimM
(2)
k = dimMk − dim sNk, dim sN

(2)
k = 0, if k

d 6=
n
2 ,
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Here we state (0.4) again for the convenience of the reader (unless he has a very good
memory since this is often used in this subsection):

(2.5.3) dimMk = γk + dim sNk−d (k ∈ Z).

We then easily see that (2.5.1), (2.5.2), and (2.5.3) imply the assertion for α 6= n
2 ,

n
2 + 1 by

using Theorem 9 (that is, sNk = 0 for k < nd/2).

Assume
k0 := nd/2 ∈ N.

By (2.1.1), (2.5.3) and Theorem 9 we easily see that

(2.5.4) dimM
(2)
k0

= dimMk0 = γk0 , dim sN
(2)
k0−d = 0.

So the assertion for α = n
2 follows.

By (2.1.2) we have

(2.5.5) sN
(2)
k0

= sNk0 .

We then easily see that the assertion for α = n
2 + 1 follows by using (2.5.1), (2.5.2), and

(2.5.3), where k = k0 + d in order that α = k
d = n

2 + 1. Indeed, there is a cancellation
of dim sNk−d = dim sNk0 . (Note that (2.5.5) together with the E2-degeneration implies
Proposition 1.) This finishes the proof of Theorem 3.

2.6. Proof of Theorem 4. Let α = k
d with k ∈ N. The assertion is then equivalent to

nf,α =

{
γk if α 6 n

2 or α > n
2 + 1,

γk − τY if n
2 < α 6 n

2 + 1.

For α 6 n
2 , this follows from Theorem 2 together with (0.4) and Theorem 9. Combined

with (1.5.7–8), it implies the assertion for α > n
2 + 1. By using (1.2.2) (see also [4, 1.4.2]),

the assertion for n
2 < α 6 n

2 + 1 is then reduced to

(2.6.1) χ(U) = χ(U ′)− (−1)nτY ,

where U ′ = Pn \ Y ′ with Y ′ ⊂ Pn a nonsingular hypersurface of degree d.

For the proof of (2.6.1), we have the following well-known formula

χ(Y ) = χ(Y ′)− (−1)n−1τY .

Indeed, this can be shown by using a deformation of Y since Y has only isolated singularities.
So (2.6.1) follows. This finishes the proof of Theorem 4.

2.7. Proof of Theorem 5. The morphisms are defined as is explained in Theorem 5.
Since the pole order filtration degenerates at E2 by Theorem 2, and the action of ∂n−pt in
(1.2.3) is an isomorphisms, it is enough to show

(2.7.1) Im(d(1) : sNk →Mk) ∩M ′k = 0 (k ∈ N).
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But this follows from the improved version of [13, Theorem 5.3] explained in [13, Remark
5.6(i)] if k 6= nd/2, and from Proposition 1 if k = nd/2. (Indeed, Proposition 1 is essentially
equivalent to the vanishing of d(1) : sNk → Mk for k = nd/2.) This finishes the proof of
Theorem 5.

2.8. Proof of Proposition 2. The assertion is equivalent to the inequality

(2.8.1) n0f,k/d > dimM ′k = dimM − dimM ′′k = γk + dim sNk−d − dimM ′′k ,

together with the equality for k
d ∈

(
n
2 ,

n
2 +1

]
, where the last equalities of (2.8.1) follow from

(0.1) and (0.4).

We have a symmetry of {dimM ′k}k with center k = d(n + 1)/2 by [13, Corollary 1]
(where n means n+ 1 in this paper), and a partial symmetry of {n0f,k/d}k by (1.5.7). So it
is enough to consider the following two cases

(1) : kd 6 n
2 + 1

2 , (2) : kd = n
2 + 1.

By Theorem 9 and (0.7) we have

(2.8.2) dim sNk−d = 0
(
k
d <

n
2 + 1

)
,

(2.8.3) dimM ′′k = τY
(
k
d >

n
2

)
.

So the assertion follows from Theorem 4 in the case (1).

In the case (2) we have by Proposition (2.9) below

(2.8.4) n1f,k/d = dim sNnd/2.

Since n0f,k/d = nf,k/d + n1f,k/d by definition, the assertion follows from Theorem 4 by using

(2.8.3–4), where we have a cancellation of dim sNnd/2. This finishes the proof of Proposi-
tion 2.

2.9. Proposition. In the notation of (1.4), we have

Sp1(f) = Sp1
P (f) =

{
(dim sNnd/2) tn/2+1 if nd is even,

0 if nd is odd,

and
Sp0(f) = Sp(f) + Sp1(f),

Sp0
P (f) = SpP (f) + Sp1

P (f).

Proof. Since the last assertion follows from the definition, it is enough to show the first
assertion, and the latter follows from Proposition 1 together with (1.5.3) and (2.1.2). This
finishes the proof of Proposition (2.9).

2.10. Remark. Without assuming condition (ODP), the isomorphism in (0.3) holds for
k
d 6 α̃Y with α̃Y as in (1.1.3). This is shown by an argument similar to the proof of
Theorem 2 in (2.4). Similarly we can show the E2-degeneration of the pole order spectral



368 Generalization of theorems of Griffiths and Steenbrink

sequence if all the singularities of Y are isolated and weighted homogeneous and if α̃Y >

(n − 1)/2. Indeed, sN
(2)
k = 0 for k

d > (n + 1)/2 by [13, Theorem 5.3]. Hence the E2-
degeneration follows from Theorem (2.1) together with (1.2.8). (This assertion is recently
proved without assuming α̃Y > (n− 1)/2, see [29].)

It is rather difficult to generalize Theorems 3 and 4 even to the simple singularity case.
For instance, if every singular point of Y has type Aki with ki ∈ Z>0, then

α̃Y = n−1
2 + 1

k+1 with k = max{ki},

and it is not quite easy to determine nf,α for α ∈ [α̃Y , n − α̃Y ] ∪ [α̃Y + 1, n + 1 − α̃Y ] if
k > 1.

2.11. Examples (see [13, Examples 5.7]). In the notation of (1.2.7) set

µk = dimMk,
sνk = dim sNk, µ

(2)
k = dimM

(2)
k , sν

(2)
k = dim sN

(2)
k .

(i) f = x2y2 + x2z2 + y2z2 (three A1 singularities in P2) n = 2, d = 4.

k 1 2 3 4 5 6 7 8 9 10 · · ·
γk 1 3 6 7 6 3 1
µk 1 3 6 7 6 3 3 3 · · ·
sνk 2 3 3 3 3 3 · · ·
µ(2)

k 1 3 4 4 3
sν (2)

k

SpP 1 3 4 4 3
Sp 1 3 3 4 3 1

(ii) f = xyz(x+ y + z) (six A1 singularities in P2) n = 2, d = 4.

k 1 2 3 4 5 6 7 8 9 10 · · ·
γk 1 3 6 7 6 3 1
µk 1 3 6 7 6 6 6 6 · · ·
sνk 3 5 6 6 6 6 6 · · ·
µ(2)

k 1 3 1 1
sν (2)

k 3
SpP 1 3 1 1 −3
Sp 1 3 1 −3 1
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(1) Université Côte d’Azur, CNRS, LJAD, Nice, France.
E-mail: dimca@unice.fr

(2) RIMS Kyoto University, Kyoto 606-8502 Japan

E-mail: msaito@kurims.kyoto-u.ac.jp


