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Abstract

We derive Paschke’s GNS construction for completely positive maps on unital pro-
C*-algebras from the KSGNS construction, presented by M. Joita [J. London Math.
Soc. 66 (2002), 421-432], and then we deduce an analogue of Stinespring theorem
for Hilbert modules over pro-C*-algebras. Also, we obtain a Radon-Nikodym type
theorem for operator valued completely positive maps on Hilbert modules over pro-
C*-algebras.
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1 Introduction

Completely positive maps are the natural generalization of positive linear functionals. These
maps are extremely applied in the modern theory of C*-algebras and mathematical model
of quantum probability. A completely positive map ¢ : A — B of C*-algebras is a linear
map with the property that [p(a;;)]}';—; is a positive element in the C*-algebra M, (B)
of all n x n matrices with entries in B for all positive matrices [a;;]},;—; in M,(A), n €
N. Given a C*-algebra A, the Gelfand-Naimark-Segal construction (or GNS-construction)
establishes a correspondence between cyclic representations of A on Hilbert spaces and
positive linear functionals on A. This fundamental theorem has been generalized for a
completely positive linear map from A into B(H) (respectively, from A into a C*-algebra
B) to get a representation of A on a Hilbert space (respectively, on a Hilbert B-module) by
Stinespring [24] (respectively, Paschke [19]). Stinespring showed that an operator valued
completely positive map ¢ on a unital C*-algebra A is of the form VSW¢(~)V¢, where 7, is
a representation of A on a Hilbert space H, and V, is a bounded linear operator. A version
of Stinespring theorem for a class of maps on Hilbert modules over unital C*-algebras,
which are known operator-valued completely positive maps on Hilbert C*-modules, has
been considered by [4, 5]. Skeide [23] has been obtained a very quick proof of the result of
[5] by using induced representations of Hilbert C*-modules.

The theory of completely positive maps on pro-C*-algebras has been studied system-
atically in the book [12] and the paper [9] by Joita. Maliev and Pliev [17] obtained a
Stinespring theorem for Hilbert modules over pro-C*-algebras by extending the methods of
[5] from the case of C*-algebras to the case of pro-C*-algebras. We generalize the Paschke’s
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GNS-construction to completely positive maps on pro-C*-algebras which enables us to es-
tablish another proof for the Stinespring theorem for Hilbert modules over pro-C*-algebras.

Let us quickly recall the definition of pro-C*-algebras and Hilbert modules over them.
A pro-C*-algebra is a complete Hausdorff complex topological x-algebra A whose topology
is determined by its continuous C*-seminorms in the sense that the net {a;};cs converges
to 0 if and only if the net {p(a;)}icr converges to 0 for every continuous C*-seminorm
p on A. For example the algebra C(X) of all continuous complex valued functions on a
compactly generated space (or a CW complex X') with the topology of compact convergence
and the cartesian product [],.; A, of C*-algebras A, with the product topology are pro-
C*-algebras [7, §7.6]. Pro-C*-algebras appear in the study of certain aspects of C*-algebras
such as tangent algebras of C*-algebras, domain of closed #-derivations on C*-algebras,
multipliers of Pedersen’s ideal, and noncommutative analogous of classical Lie groups. These
algebras were first introduced by Inoue [8] who called them locally C*-algebras and studied
more in [1, 7, 20] with different names. A (right) pre-Hilbert module over a pro-C*-algebra
A is a right A-module E, compatible with the complex algebra structure, equipped with an
A-valued inner product (-,-) : Ex E— A, (z,y) — (z,y), which is A-linear in the second
variable y and has the properties:

(x,y) = (y,x)*, and (z,z) > 0 with equality if and only if x = 0.

A pre-Hilbert A-module E is a Hilbert A-module if E is complete with respect to the
topology determined by the family of seminorms {pg},cs(a) where pg(§) = /p((£,§)),
¢ € E. Hilbert modules over pro-C*-algebras have been studied in the book [11] and the
papers [20, 21].

There is a natural partial ordering on the set of all operator valued completely positive
maps on C*-algebras, defined by ¢ < ¢ if ¢ — 1 is completely positive. Arveson [3] charac-
terized this relation in terms of the Stinespring construction associated to each completely
positive map and introduced a notion of Radon-Nikodym derivative for operator valued
completely positive maps on C*-algebras. Indeed, he showed that in the unital case, ¥ < ¢
if and only if there is a unique positive contraction A, (1) (known as Radon-Nikodym deriva-
tive of 1) with respect to ¢) in the commutant of 7, (A) such that ¥ (-) = VZA,(¥)7,(-)V,
cf. [3, Theorem 1.4.2]. Joita [14] defined a preorder relation in the set of all operator valued
completely positive maps on Hilbert C*-modules and extended the Radon-Nikodym type
theorem for these maps.

In this paper we first present some definitions and basic facts about pro-C*-algebras and
Hilbert modules over them. In Section 3, by using the concept of induced representations
of Hilbert C*-modules, we deduce Stinespring representation theorem of pro-C*-algebras
from Paschke’s GNS-construction. Then we obtain a version of Stinespring representation
theorem for Hilbert modules over pro-C*-algebras. Finally in section 4, we generalize the
Radon-Nikodym theorem for operator valued completely positive maps on Hilbert modules
over pro-C*-algebras.

2 Preliminaries

Let A be a pro-C*-algebra, S(A) be the set of all continuous C*-seminorms on A and
p € S(A). Weset N, ={a € A: p(a) =0} then A, = A/N, is a C*-algebra in the norm
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induced by p. For p,q € S(A) with p > ¢, the surjective morphisms m,, : A, — A, defined
by mpe(a+Np) = a+ N, induce the inverse system {A; Tpq }p ges(a), p>q of C*-algebras and
A= @p A, i.e. the pro-C*-algebra A can be identified with @p Ap. The canonical map
from A onto A, is denoted by m, and a, is reserved to denote a + Np. A morphism of pro-
C*-algebras is a continuous morphism of *-algebras. An isomorphism of pro-C*-algebras is
a morphism of pro-C*-algebras which possesses an inverse morphism of pro-C*-algebras.

We denote by M,,(A) the set of all n x n matrices over A. The set M, (A) with the
usual algebraic operations and the topology obtained by regarding it as a direct sum of n?
copies of A is a pro-C*-algebra. Moreover, it can be identified with yan M, (A,). Thus

the topology on M,,(A) is determined by the family of C*-seminorms {p(”)}pes(A), where
P ([ais]) = lmp(aig)llar,a,)s [ais] € Mn(A).

A representation of a pro-C*-algebra A is a continuous *-morphism ¢ : A — B(H),
where B(H) is the C*-algebra of all bounded linear maps on a Hilbert space H. If (o, H)
is a representation of A, then there is p € S(A) such that |¢(a)|| < p(a), for all a € A. The
representation (¢,, H) of A,, where ¢, o m, = ¢ is called a representation of A, associated
to (p, H). We refer to [7, 10] for more detailed information about the representation of
pro-C*-algebras.

Suppose F is a Hilbert A-module and (F, E) is the closure of linear span of {{z,y) : x,y €
E}. The Hilbert A-module E is called full if (E,E) = A. One can always consider
any Hilbert A-module as a full Hilbert module over pro-C*-algebra (E,FE). For each
peSA),NF ={¢eE: pp(§) = 0} is a closed submodule of E and E, = E/NF is
a Hilbert A -module with the action (€ + NF)m,(a) = {a+ NF and the inner product (£ +
NE,n+NF) = mp((€,n)). The canonical map from E onto E,, is denoted by o}’ and &, is re-
served to denote o (§). For p,q € S(A) with p > ¢, the surjective morphisms ok : E, — E,
defined by o’ (6] (€)) = 0¥ (€) induce the inverse system { E,; Ap; 0%, Tpgtp.gesa), p>q Of
Hilbert C*-modules. In this case, yilp E, is a Hilbert A-module which can be identified with
E. Let E and F be Hilbert A-modules and T : E — F be an A-module map. The module
map T is called bounded if for each p € S(A), there is k, > 0 such that pp(Tz) < k, pr(z)
for all z € E. The set Ls(E, F) of all bounded adjointable A-module maps from E into
F becomes a locally convex space with the topology defined by the family of seminorms
{P}pes(a), where p(T) = [[(mp)«(T)|| L4, (E,.F,) and (mp)s : La(E, F) = La,(Ep, Fy) is de-
fined by (mp)«(T)(E4+NyF) = TE+N[  forall T € Ls(E,F)and € € E. For p,q € S(A) with
p > q, the morphisms (1)« : La, (Ep, Fp) — La,(E,, Fy) defined by (ﬂpq)*(Tp)(af(g)) =
ol (Tp(af(€))) induce the inverse system {La,(Ep, Fp); (Tpg)«}pges(a),p>q Of Banach
spaces such that @p La,(Ep, F,) can be identified to La(E, F). In particular, topolo-
gizing, L4 (E, E) becomes a pro-C*-algebra which is abbreviated by L4(E). The set of all
compact operators K 4(F) on F is defined as the closed linear subspace of L 4(F) spanned
by {0z, 1 04,(€) = x(y, &) for all z,y,& € E}. This is a pro-C*-subalgebra and a two sided
ideal of L4 (F), moreover, K4 (F) can be identified to @p Ky, (Ep).

Let F and F be Hilbert modules over pro-C*-algebras A and B, respectively, and
U : A — Lg(F) be a continuous xmorphism. We can regard F as a left A-module by
(a,y) = ¥(a)y, a € A, y € F. The right B-module E ®4 F is a pre-Hilbert module
with the inner product given by (z ® v,z ® t) = (y, ¥({z, 2))t). We denote by F ®y F the
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completion of E®4 F, cf. [11] for more detailed information.

3 Stinespring representation theorem

In this section, we first generalize Paschke’s GNS-construction [19, Theorem 5.2] to the
framework of unital pro-C*-algebras. It is a particular case of the KSGNS construction
for completely positive maps on unital pro-C*-algebras, [9, Theorem 4.6]. Then we de-
duce Stinespring representation theorem in the context of pro-C*-algebras and a version of
Stinespring representation theorem for Hilbert modules over pro-C*-algebras. For this aim
we briefly restate the concept of induced representations of Hilbert modules over pro-C*-
algebras from our recent paper [15].

Given pro-C*-algebras A and B, a linear map ¢ : A — B is said to be positive if p(a*a) >
0 for all a € A. If o™ : M, (A) — M,(B) defined by ©™ ([a;]}";_1) = [p(ay)]l;—; is
positive, then ¢ is said to be n-positive. If ¢ is n-positive for all natural numbers n, then
v is called a completely positive map [6]. Let H be a Hilbert space and ¢ : A — B(H)
be an operator valued completely positive map then the condition of positivity [24] can be
written in the form

> (plazaj)hj, hi) >0, for all h € H, a; € A, j=1,..,n, and all n € N.

ij=1

Let A and B be pro-C*-algebras and let E be a Hilbert B-module. A continuous *-
morphism from A into L4 (F) is called a continuous representation of A on E.

Theorem 1. Let A and B be two unital pro-C*-algebras and ¢ : A — B be a continuous
completely positive map. There is a Hilbert B-module X, a unital continuous representation
T of Aon X, m,: A— Lp(X), and an element { € X such that

1. p(a) = (&, m,(a)€) for all a € A;
2. the set x, = span{m,(a)(£b) : a € A,b € B} is a dense subspace of X.

In this case, we say that m, is the Paschke’s GNS construction associated to completely
positive map ©.

The result follows by taking into account £ = B and { = V,(1p) in the proof of [9,
Theorem 4.6], where 15 is the unit of B.

Let E and F be Hilbert modules over pro-C*-algebras A and B, respectively and ¢ :
A — B be a morphism of pro-C*-algebras. A map ® : E — F is said to be a ¢-morphism
if (®(x),®(y)) = e((z,y)), for all z,y € E. A p-morphism ® : E — F is said to be a
completely positive map if ¢ : A — B be a completely positive map.

Lemma 1. Let E and F be Hilbert modules over unital pro-C*-algebras A and B, re-
spectively, and let ® : E — F be a completely positive map. Suppose that X, £ and m,
are the same as Theorem 1. Then there exists an isometry v : E @, X — F such that

v(z®¢&) = ®(z), for all z € E.
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Proof: For a,c€ A, b,d € B and z,w € E we have

(2@ (mp(a)(€h), w © (mp(c)(€d))) = (mp(a)(€b), mp((2, w))(my(c)(€d)))
= b7(& mp((za, we))§)d
= b'p({(za,wc))d
= b"(P(za), ®(we))d
= (P(za)b, P(wc)d).

Since span{m,(a)({b) : a € A,b € B} is a dense subspace of X, the map z ® (7,(a)(£b)) —
®(za)b defines an isometry v : F®,_ X — F. In particular, we find v(z ® {) = ®(z) for all
z€FE, whena=14 and b =1p. O

Let H and K be Hilbert spaces. Then the space B(H, K) of all bounded operators
from H into K can be considered as a Hilbert B(H)-module with the module action
(T,58) = TS,T € B(H,K) and S € B(H) and the inner product defined by (T, S) = T*S,
T,S € B(H,K). Murphy [18] showed that any Hilbert C*-module can be represented as
a submodule of the concrete Hilbert module B(H, K) for some Hilbert spaces H and K.
This allows us to extend the notion of a representation from the context of C*-algebras
to the context of Hilbert C*-modules. Let F and F be two Hilbert modules over C*-
algebras A and B, respectively, and let ¢ : A — B be a morphism of C*-algebras. A
@-morphism ® : E — B(H,K), where ¢ : A — B(H) is a representation of A is called
a representation of E. When ® is a representation of E, we assume that an associated
representation of A is denoted by the same lowercase letter ¢, so we will not explicitly
mention ¢. Let ® : E — B(H,K) be a representation of a Hilbert A-module E. We
say ® is a non-degenerate representation if [®(E)(H)] = K and [®(E)*(K)] = H, where
[®(E)(H)] denotes the closure of span{®(&)(h); £ € E, h € H}. Two representations
®,: F — B(H;,K;) of E, i = 1,2 are said to be unitarily equivalent, if there are unitary
operators Uy : Hy — Hs and Uy : K1 — Ko, such that Us®q(z) = ®o(x)U; for all x € E.
Representations of Hilbert modules have been investigated in [2, 22].

Skeide [22] recovered the result of Murphy by embedding of every Hilbert A-module
E into a matrix C*-algebra as a lower submodule. He proved that every representation of
A induces a representation of E and a representation of L 4(F). We describe his induced
representations as follows.

Construction 2. Let A is a C*-algebra and E be a Hilbert A-module and ¢ : A — B(H)
be a x-representation of A. Define a sesquilinear form {.,.) on the vector space E ® H by
(x@h,y®k) = (h, o({x,y))k)m, where {.,.) g denotes the inner product on the Hilbert space
H. By [22, Proposition 3.8], the sesquilinear form is positive and so EQ H is a semsi-Hilbert
space. Then (E ® H)/N, is a pre-Hilbert space with the inner product defined by

(x@h+ Ny, y@k+ Ny) =(x@h,y®k),

where N, is the vector subspace of E® H generated by {r®@h € EQH : (x®h,x®h) = 0}.
Let K be the completion of (E ® H)/N, with respect to the above inner product. We
identify the elements x ® h with the equivalence classes x @ h+ N, € K. Suppose v € E
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and Lyh = x ® h then ||Lyh|?> = (h,o({z,z))h) < ||h|?||z|?, i.e. L. € B(H,K). If L
be the adjoint of L, then it is easy to show that Li(y ® h) = o({z,y))h for every y € E
and h € H. We define n, : E — B(H,K) by n,(x) = Ly. Then for x,2’ € E, h,h’ € H
and a € A we have (n,(z),n,(z")) = o((z,2")) and n,(za) = n,(z)e(a), and so n, is a
representation of E.

Let T € La(E). We associate with T a map on EQ H by x ® h - Tx ® h. Since
(x@h, Tz @h') = (T*x@h,x @N'), this map leaves invariant N, so that it induces a map
po(T) on (E® H)/N,. By [22, Lemma 3.9], ||po(T)|| = ||T|| and so po(T) is bounded and
can be extended to a bounded operator p(T) on K. Therefore p : La(E) — B(K) defined
by T — p(T) is a representation of La(E) on K.

Now, we reformulate representations of Hilbert module from the case of C*-algebras to
the case of pro-C*-algebras. Let E and F be two Hilbert modules over pro-C*-algebras A
and B, respectively, and ¢ : A — B be a morphism of pro-C*-algebras. A p-morphism
®:F — B(H,K), where ¢ : A — B(H) is a representation of A is called a representation
of E. If p € S(A) and ¢, be a representation of A, associated to ¢, then it is easy to
see that the map ®, : E, — B(H,K), ®,(c)(x)) = ®(x) is a @p-morphism. In this case,
we say that ®, is a representation of E, associated to ®. We can define non-degenerate
representations and unitarily equivalent representations for Hilbert modules over pro-C*-
algebras like Hilbert C*-modules case.

Remark 1. Suppose A is a pro-C*-algebra, E a Hilbert A-module and ¢ : A — B(H) a
representation of A on some Hilbert space H. Suppose p € S(A) and ¢, is a representation
of Ay, associated to ¢. By the above Construction @, induces a representation n,, : Ep —
B(H,K) of E, where K is a Hilbert space associated to E, @ H. It is easy to see that the
map n, : E — B(H,K), ny(z) = n,, (0} (x)) is a o-morphism, i.e. it is a representation
of E.

The following theorem is a version of Stinespring representation theorem for pro-C*-
algebras that can be considered as a special case of KSGNS construction for completely
positive maps on unital pro-C*-algebras, by setting B = C in [9, Theorem 4.6]). We prove
this theorem by using the concept of induced representations of Hilbert pro-C*-modules.

Theorem 3. Let A be a unital pro-C*-algebras and ¢ : A — B(H) be a continuous op-
erator valued completely positive map. Then there exist a Hilbert space H,, a unital rep-
resentation m, : A — B(H,) and a bounded linear operator V,, € B(H,H,) such that
pla) = Vimy(a)V, for alla € A.

Proof: Suppose that 7r:0 is Paschke’s GNS construction associated to ¢ and X, x, and § are
as in Theorem 1. Let ¢ be the identity map on B(H). If we consider ¢ as a representation
of B(H) on H and apply Construction 2, we get a Hilbert space H, (associated to X ® H),
an induced representation 7, : X — B(H, H,) of X and a representation p, : Lgm)(X) —
B(H,) of Lgg)(X). We define V,, := n,(£) and 7, := p, o 7'(';. Ifaec Aand h € H, we
have

Vome(a)Vy(h) = Vimg(a)( @ h)

p ; V3 (my(a)€ @ h)

(& ()€)h = ¢(a)h,
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Hence, ¢(a) = V7, (a)V,, for all a € A. d

In the rest of this section we establish [5, Theorems 2.1 and 2.4 | in the context of
pro-C*-algebra.

Theorem 4. Let A be a unital pro-C*-algebra and ¢ : A — B(H) be a continuous com-
pletely positive map. Let E be a Hilbert A-module and ® : E — B(H, K) be a p-morphism.
Then there exist triples (m,,Vy,, Hy) and (7o, We, Kg), where

1. H, and Ko are Hilbert spaces;
7y 1 A— B(H,) is a unital representation of A;

o : B — B(Hy, Ko) is a m,-morphism;

™ o e

Vo : H— H, and W : K — Kg are bounded linear operators such that ¢(a) =
Vome(a)Vy, for all a € A and ®(2) = Wime(2)V,, for all z € E.

Proof: Let 7r;, : A — Lpa)(X) be the Paschke’s GNS construction associated to ¢. By
continuity of ﬂ;, there exists M > 0 and p € S(A) such that ||7T:p(a)H < Mp(a), for
all @ € A. Let (m,,V,,H,) be the Stinespring triple for ¢ as obtained in Theorem 3.
Since T, = py © 71';,, we may consider (m,), as a representation of A, associated to m,. By
Remark 1, the Stinespring representation 7, induces a representation 7¢ : £ — B(H,, Ko)
of F/, where Ky is the Hilbert space associated to E, ® H,. Moreover, Lemma 1 implies
the existence of an isometry v : E Bt X — B(H,K) which is defined by v(z ® £) =
®(z) for all z € E. We consider the linear map Wy : (E, ® X) ® H — K defined by
Wo((of(z) @ x) ®@ h) = v(z @ x)h, where z € E, x € X and h € H. Let z € E and

of(z) = 0. Since [v(z®@z)|? = |z ®@z|? = (z@z,2® 1) = (2,7,((z,2))), we have
v(z ® x) = 0 which shows that Wy is well-defined. Moreover,
1D (oFG)@z)@hl®> = Y ({0} (=) @@i,0, (2) ©x;)hy)
i—1 ij=1
= ) (hi (i m, ({20 2))x5)hy)
ij=1
= Z (his (2 ® 24, 25 @ Tj)hyj)
ij=1
= > (b, (w2 @ 3:),0(z @ ;) hy)
ij=1
= > (v(z @@)hi,v(z; @ x;)hy)
ij=1

= ) v(z @xi)h|?
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which implies that W is an isometry. Since H,, is the Hilbert space associated to X ® H,
Wy can be extended to a bounded linear operator W : K¢ — K. We define Wg := W*,
then

Wema(2)Vo(h) = Wrma(2)

= (
= v(z®&h=®(2)h,

for all z € E and h € H. Hence, ®(z) = Wgna(2)V,, for all z € E. d

Remark 2. Let ¢ and ® be as in Theorem 4 and q € S(A).

(1) In the proof of Theorem 4, if (my)q be a representation of Aq associated to m, then
we obtain a representation 7o : B — B(H,, Kq>) where Kq;. 18 a Hilbert space associated to
E,® H,. It is easy to show that o and Te are two unitarily equivalent representations of
E.

(2) The bounded linear operator Wo : K — Kg is a coisometry. Indeed, for z € E, x €
X and h € H we have

(Wi(oy) (2) @ x @ h), Wi (o (2) @z @ h)) v(z @ x)h,v(z @ x)h)
v(z ® )" v(z ® x)h, h)
(v(z @ @), 0(z @ )b, h)
(z®2, z®x>h h)
(@, 7, ((2,2))2)D)
z® h,m ,((z,2))x ® h)
by (pe 0 m,)((22)) (@ @ h))
x @ h,m,((2,2))(x @ h))
z® h, (1), (0 (2), 0 (2))) (& @ h))
P(2)@x®@h,0r(2) @z ® h)

(
(
(
(
(h,
=
(r®
(
(
(op

(3) If E is full then mo : E — B(H,, Ks) is a non-degenerate representation of E. To
see this, let z € E and h, € H, then ng(z)(hy) = 0 (2) ® hy,. Since Kg is a Hilbert space
assoctated to E, @ Hy,, [1e(E)(H,)] = Kg. Moreover, for w € E,x € X and h € H we
have

e (2)* (0 (w) @z ® h) = my((2,2))(x ® h) = 7, ({2, 2))(z) @ h.
Since E is full, [TF;(A)(X)] = X. The Hilbert space H, is associated to X ® H which follows
that 7o (E)*(Ke) = H,.

Definition 1. Let ¢ and ® be as in Theorem 4. We say that the pair
(7, Vi, Hy), (a0, Wa, Ko)) is a Stinespring representation of (¢, ®) if conditions (1)-(3)
of Theorem 4 are fulfilled. Such a representation is said to be minimal if
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1. [m,(A)V,H] = H,, and
2, [W@(E)VLPH] = Kq>.

Remark 3. The pair ((14,V,, Hy,), (T, Ws, Ks)) obtained in Theorem 4 is a minimal
representation for (o, ®) since

(Mo (A)VoH] = [(ppom,)(A)(§® H)]
= [(m,(A)(©) @ H]
= [xp ® H] = H,
and
(o (E)V,H] = [re(E)m,(A)V,H] = [(me)p(Ep)H,]
= [B,® H,] = Ko

The following result shows that the minimal Stinespring representation is unique up to
the unitarily equivalency.

Proposition 1. Let ¢ and ® be as in Theorem 4 and ((WA,V/,HI),(TI'E,W/,K/)) be a
minimal representation for (¢, ®). Then there are two unitary operators Uy : H, — H and
Uy : Ko — K’ such that

1. V' =1V, Ury(a) =7ma(a)Uy, for alla € A and
2. W =UyWs, Usng(2) = mp(2)Uy, for all z € E.

Proof: Existence U; and the statement (1) follow from [9, Theorem 4.6 (2)]. As in the proof
of [5, Theorem 2.4], we define the linear map Us : span(me(E)V,H) — span(rz(E)V H)
by

U2(> " ma(2)Viphi) = > mp(z)V b,
=1 =1

for z; € E, h; € H and n > 1. Then U, is a well-defined isometry and so it can be extended
to a unitary Us from Kg onto K which satisfies the statement (2). d

4 Radon-Nikodym derivatives

A Radon-Nikodym-type theorem for operator valued completely positive maps on Hilbert
C*-modules has been demonstrated in [14] by Joita. We are going to generalize her def-
initions and results to the case of Hilbert modules over pro-C*-algebras. Let F be a full
Hilbert module over a pro-C*-algebra A and H, K be two Hilbert spaces. The set of all
completely positive maps of E into B(H, K) will be denoted by CP(FE, B(H, K)). There is
an equivalence relation on CP(E, B(H, K)) as follows.

Definition 2. Let ® and ¥ be in CP(E,B(H,K)). We say that ® is equivalent to ¥,
denoted by ® ~ U, if ®(z)*P(x) = VU (x)*V(x) for allx € E.
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Definition 3. Let ® and ¥ be in CP(F,B(H,K)). We say that ¥ is dominated by @,
denoted by U <X @, if U(z)*¥(z) < O(z)*P(x) for allx € E.

Remark 4. The relation “ <7 is reflexive and transitive and so is a preorder relation on
CP(E,B(H,K)). Moreover, if &,V € CP(E,B(H,K)) then ® = ¥ and ¥ < ® if and
only if & ~ .

In [2], Arambasi¢ extended the definition of the commutant of a C*-algebra to a Hilbert
C*-module. We define a similar notion for Hilbert modules over pro-C*-algebras.

Definition 4. Let A be a pro-C*-algebra and ® : E — B(H, K) be a representation of a
Hilbert A- module E. The commutant of ®(E), which is denoted by ®(E) , is defined by

(TeSeBHGK):T e B(H),S € B(K),®(2)T = $8(2), ®(2)*S = T®(2)*, » € E}
in which, (T ® S)(h& k) :=Th & Sk.

IfTesS e <I>(E),7 then T € ga(A)/, cf. [2, Lemma 4.4]. If ® is non-degenerate, then S is
uniquely determined by T, cf. [2, Note 4.6].

Lemma 2. Let ® € CP(E,B(H,K)) and (74, V,, Hy), (7o, Wo, Kg)) be the Stinespring
representation of (¢, ®). If T @ S be a positive linear operator in 7T<1>(E)/, then the map
®rgs : E — B(H,K) defined by ®ras(r) = Wiv/Tre(x)V'SV,, is completely positive.

Proof: As in proof of [14, Lemma 2.10], ®rqs(z)*®res(y) = ViT?m,((x,y))V,, for all

z,y € E. Using [12, Lemma 3.4.1] and the fact that T? € 7,(A)’, we find
Drgs(x)* Pres(y) = or2({x,y)). Indeed, the completely positive map associated to ®rgs
is 2. 0

Theorem 5. Let ¥, ® € CP(E,B(H,K)). If ¥ =< ®, then there is a unique positive linear
operator Ag (W) in 7o (E) such that U ~ (I)\/K(‘I’)'
Proof: Let ((7,,V,, H,), (7o, Wa, Ks)) be the Stinespring representation of (¢, ®). Con-
tinuity of ¢ and ¢ implies that there exist p,q € S(A) and M, N > 0 such that ||p(a)| <
Mp(a) and ||¢p(a)]] < Nq(a), for all a € A. Let r € S(A) and r > p,q. The linear maps
oo Ar = B(H), g (mr(a)) = @(a) and 4, : A, — B(H), by (m,(a)) = 1(a) are com:
pletely positive maps since, > _ (¢, (mr(a;) mr(ag))zj, 2i) = 320, (plafay)ws, x) >
0, foralla; € A, z; ¢ Hand 1 <i<n.

The maps @, : oZ(z) — ®(z) and ¥, : oF(x) — ¥(z) are in CP(E,, B(H,K))
and ¥, < @,. Let ((7,,V,,.,H,,), (ms,, Ws,, Ks,)) be the Stinespring representation
of (¢r, ®,). By the proof of [14, Theorem 2.12], there are unique positive linear opera-

tors A1, (V) € B(H,,) and Asp, (V) € B(Kg,) such that ¥, ~ CI)T\/W’ where

Ag (U,) = A1, (V,) ® Agg, (¥,) € g (E) is the Radon-Nikodym derivative of W, with
respect to ®,. The pairs (7, o 7, Vo, Hy, ), (Te, 0 0F, We,, Kg,)) and

(7, Vi, Hy), (me, W, Kg)) are two minimal Stinespring representations of (¢, ®) and so,
by Proposition 1, there are two unitary operators U; : H, — H,, and Us : K¢ — Kg, such
that V, = UiV, , Uiny(a) = (7, o) (a)U; for all a € A, Wo, = UsWe and Usne(2) =
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(W@TOJT)(Z)Ul forall z € E. Let A1<I>(\I/) = UikAlcpr(\I/T)Ul and AQ@(\I/) = U5A2<I>T(\IJT)U2.
It is easy to see that Ag(¥) = A15(V) & Age(P) is a positive operator in 7 (E) . For
every a € A, we have

P(a) = r(m(a)) = Vg Arg, (Wr)my, (mr(a))Ve,
= V;U{‘A@T(\I/r)Ulm(a)Ul*UlV@
= VoAwe(U)mp(a)V = oa,w)(a).

Indeed by the uniqueness of Radon-Nikodym derivative ([12, Theorem 3.4.5]), A14(7) is
the Radon-Nikodym derivative of 1 with respect to . Consequently,

@ ) @ () = s (22) = V(e ) = V() W)
for every x € FE, which implies ¥ ~ & N/l Let T'& S be another positive linear map
in 7Tq>(E) such that ¥ ~ (I)\/m Then q)\/m ~ (I)\/m and so @Al@(\p) = ©@T. By
[12, Theorem 3.4.5], we deduce that A14(¥) = T. Since 7 is non-degenerate (Remark 2

(3)), A2e(P) and S are uniquely determined by A14(¥) and T, respectively. Consequently,
NAggp(T) =S and so Ag (V) =T @ S. d

Suppose that ® € CP(FE, B(H, K)), $ ={¥ e CP(E,B(H,K)): ® ~ ¥} and ®,¥ e
CP(E,B(H,K)). We write ¥ < &, if ¥ < &. We define

[0,8] ;= {¥: ¥ e CP(E,B(H,K)),¥ < &}

and )
[0,]](} = {T@SG’/T.:I)(E) OST@SSI}

The following theorem can be thought as a Radon-Nikodym type theorem for operator
valued completely positive maps on Hilbert modules over pro-C*-algebras.

Theorem 6. Let & € CP(E, B(H,K)). The map W — Ag(¥) from [0, ] to [0,1]¢ is an
order-preserving isomorphism.

Proof: The map is well-defined by Theorem 5. Let Wy, ¥y € [0, ®] and Ag(¥;) = Ag(Ts).
Then ¥y ~ ®p,w,) = Pagw,) ~ V2 and so it is injective. Let T @ S € [0,1]e then
® 755 € CP(E,B(H,K)). Since T® S € me(E), T € 7,(A)" and so by [12, Theorem
3.4.5], © ra5(2) @ gms(z) = pr((z,2)) < 9((z,2)) = ®(2)*®(x) for all z € E. Thus
(I)‘/@ =< A(I) SinceA A(@T)A: T,AAq)((I)\/m) =T® S, ie., the map is surjective.

If Uy,¥5 € [0,P] and Uy < Uy, then ¥y < Uy and so ¢y < 9. By [12, Theorem 3.4.5],
we have A16(¥1) < A15(¥s). Since me is non-degenerate (Remark 2 (3)), Age(¥1) and
Aoy (Ws) are uniquely determined by A14(¥1) and A14(¥s), respectively. Consequently,
AQ@(\Iﬁ) < AQ@(‘I’Q) and so A@(‘I’l) < A@(\Ifg). Conversely, let Th & 51, To B S € [0,]]@
and Ty @ S1 < To® S, then T1,Ts € [0, 1], and Tt < Tb. By [12, Theorem 3.4.5], o7, < ¢r,
and so @ ms; 2 P mes;- 0
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