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Abstract

We derive Paschke’s GNS construction for completely positive maps on unital pro-
C*-algebras from the KSGNS construction, presented by M. Joita [J. London Math.
Soc. 66 (2002), 421–432], and then we deduce an analogue of Stinespring theorem
for Hilbert modules over pro-C*-algebras. Also, we obtain a Radon-Nikodym type
theorem for operator valued completely positive maps on Hilbert modules over pro-
C*-algebras.
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1 Introduction

Completely positive maps are the natural generalization of positive linear functionals. These
maps are extremely applied in the modern theory of C*-algebras and mathematical model
of quantum probability. A completely positive map ϕ : A → B of C*-algebras is a linear
map with the property that [ϕ(aij)]

n
i,j=1 is a positive element in the C*-algebra Mn(B)

of all n × n matrices with entries in B for all positive matrices [aij ]
n
i,j=1 in Mn(A), n ∈

N. Given a C*-algebra A, the Gelfand-Naimark-Segal construction (or GNS-construction)
establishes a correspondence between cyclic representations of A on Hilbert spaces and
positive linear functionals on A. This fundamental theorem has been generalized for a
completely positive linear map from A into B(H) (respectively, from A into a C*-algebra
B) to get a representation of A on a Hilbert space (respectively, on a Hilbert B-module) by
Stinespring [24] (respectively, Paschke [19]). Stinespring showed that an operator valued
completely positive map ϕ on a unital C*-algebra A is of the form V ∗ϕπϕ(·)Vϕ, where πϕ is
a representation of A on a Hilbert space Hϕ and Vϕ is a bounded linear operator. A version
of Stinespring theorem for a class of maps on Hilbert modules over unital C*-algebras,
which are known operator-valued completely positive maps on Hilbert C*-modules, has
been considered by [4, 5]. Skeide [23] has been obtained a very quick proof of the result of
[5] by using induced representations of Hilbert C*-modules.

The theory of completely positive maps on pro-C*-algebras has been studied system-
atically in the book [12] and the paper [9] by Joita. Maliev and Pliev [17] obtained a
Stinespring theorem for Hilbert modules over pro-C*-algebras by extending the methods of
[5] from the case of C*-algebras to the case of pro-C*-algebras. We generalize the Paschke’s
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GNS-construction to completely positive maps on pro-C*-algebras which enables us to es-
tablish another proof for the Stinespring theorem for Hilbert modules over pro-C*-algebras.

Let us quickly recall the definition of pro-C*-algebras and Hilbert modules over them.
A pro-C*-algebra is a complete Hausdorff complex topological ∗-algebra A whose topology
is determined by its continuous C*-seminorms in the sense that the net {ai}i∈I converges
to 0 if and only if the net {p(ai)}i∈I converges to 0 for every continuous C*-seminorm
p on A. For example the algebra C(X) of all continuous complex valued functions on a
compactly generated space (or a CW complex X) with the topology of compact convergence
and the cartesian product

∏
α∈I Aα of C*-algebras Aα with the product topology are pro-

C*-algebras [7, §7.6]. Pro-C*-algebras appear in the study of certain aspects of C*-algebras
such as tangent algebras of C*-algebras, domain of closed ∗-derivations on C*-algebras,
multipliers of Pedersen’s ideal, and noncommutative analogous of classical Lie groups. These
algebras were first introduced by Inoue [8] who called them locally C*-algebras and studied
more in [1, 7, 20] with different names. A (right) pre-Hilbert module over a pro-C*-algebra
A is a right A-module E, compatible with the complex algebra structure, equipped with an
A-valued inner product 〈·, ·〉 : E × E → A , (x, y) 7→ 〈x, y〉, which is A-linear in the second
variable y and has the properties:

〈x, y〉 = 〈y, x〉∗, and 〈x, x〉 ≥ 0 with equality if and only if x = 0.

A pre-Hilbert A-module E is a Hilbert A-module if E is complete with respect to the
topology determined by the family of seminorms {pE}p∈S(A) where pE(ξ) =

√
p(〈ξ, ξ〉),

ξ ∈ E. Hilbert modules over pro-C*-algebras have been studied in the book [11] and the
papers [20, 21].

There is a natural partial ordering on the set of all operator valued completely positive
maps on C*-algebras, defined by ψ ≤ ϕ if ϕ−ψ is completely positive. Arveson [3] charac-
terized this relation in terms of the Stinespring construction associated to each completely
positive map and introduced a notion of Radon-Nikodym derivative for operator valued
completely positive maps on C*-algebras. Indeed, he showed that in the unital case, ψ ≤ ϕ
if and only if there is a unique positive contraction ∆ϕ(ψ) (known as Radon-Nikodym deriva-
tive of ψ with respect to ϕ) in the commutant of πϕ(A) such that ψ(·) = V ∗ϕ∆ϕ(ψ)πϕ(·)Vϕ ,
cf. [3, Theorem 1.4.2]. Joita [14] defined a preorder relation in the set of all operator valued
completely positive maps on Hilbert C*-modules and extended the Radon-Nikodym type
theorem for these maps.

In this paper we first present some definitions and basic facts about pro-C*-algebras and
Hilbert modules over them. In Section 3, by using the concept of induced representations
of Hilbert C*-modules, we deduce Stinespring representation theorem of pro-C*-algebras
from Paschke’s GNS-construction. Then we obtain a version of Stinespring representation
theorem for Hilbert modules over pro-C*-algebras. Finally in section 4, we generalize the
Radon-Nikodym theorem for operator valued completely positive maps on Hilbert modules
over pro-C*-algebras.

2 Preliminaries

Let A be a pro-C*-algebra, S(A) be the set of all continuous C*-seminorms on A and
p ∈ S(A). We set Np = {a ∈ A : p(a) = 0} then Ap = A/Np is a C*-algebra in the norm
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induced by p. For p, q ∈ S(A) with p ≥ q, the surjective morphisms πpq : Ap → Aq defined
by πpq(a+Np) = a+Nq induce the inverse system {Ap;πpq}p,q∈S(A), p≥q of C*-algebras and
A = lim←−pAp, i.e. the pro-C*-algebra A can be identified with lim←−pAp. The canonical map

from A onto Ap is denoted by πp and ap is reserved to denote a+Np. A morphism of pro-
C*-algebras is a continuous morphism of ∗-algebras. An isomorphism of pro-C*-algebras is
a morphism of pro-C*-algebras which possesses an inverse morphism of pro-C*-algebras.

We denote by Mn(A) the set of all n × n matrices over A. The set Mn(A) with the
usual algebraic operations and the topology obtained by regarding it as a direct sum of n2

copies of A is a pro-C*-algebra. Moreover, it can be identified with lim←−pMn(Ap). Thus

the topology on Mn(A) is determined by the family of C*-seminorms {p(n)}p∈S(A), where

p(n)([aij ]) = ‖[πp(aij)]‖Mn(Ap), [aij ] ∈Mn(A).

A representation of a pro-C*-algebra A is a continuous ∗-morphism ϕ : A → B(H),
where B(H) is the C*-algebra of all bounded linear maps on a Hilbert space H. If (ϕ,H)
is a representation of A, then there is p ∈ S(A) such that ‖ϕ(a)‖ ≤ p(a), for all a ∈ A. The
representation (ϕp, H) of Ap, where ϕp ◦ πp = ϕ is called a representation of Ap associated
to (ϕ,H). We refer to [7, 10] for more detailed information about the representation of
pro-C*-algebras.

Suppose E is a HilbertA-module and 〈E,E〉 is the closure of linear span of {〈x, y〉 : x, y ∈
E}. The Hilbert A-module E is called full if 〈E,E〉 = A. One can always consider
any Hilbert A-module as a full Hilbert module over pro-C*-algebra 〈E,E〉. For each
p ∈ S(A), NE

p = {ξ ∈ E : p̄E(ξ) = 0} is a closed submodule of E and Ep = E/NE
p is

a Hilbert Ap-module with the action (ξ+NE
p )πp(a) = ξa+NE

p and the inner product 〈ξ+

NE
p , η+NE

p 〉 = πp(〈ξ, η〉). The canonical map from E onto Ep is denoted by σEp and ξp is re-

served to denote σEp (ξ). For p, q ∈ S(A) with p ≥ q, the surjective morphisms σEpq : Ep → Eq
defined by σEpq(σ

E
p (ξ)) = σEq (ξ) induce the inverse system {Ep; Ap; σEpq, πpq}p,q∈S(A), p≥q of

Hilbert C*-modules. In this case, lim←−pEp is a Hilbert A-module which can be identified with

E. Let E and F be Hilbert A-modules and T : E → F be an A-module map. The module
map T is called bounded if for each p ∈ S(A), there is kp > 0 such that p̄F (Tx) ≤ kp p̄E(x)
for all x ∈ E. The set LA(E,F ) of all bounded adjointable A-module maps from E into
F becomes a locally convex space with the topology defined by the family of seminorms
{p̃}p∈S(A), where p̃(T ) = ‖(πp)∗(T )‖LAp (Ep,Fp) and (πp)∗ : LA(E,F ) → LAp

(Ep, Fp) is de-

fined by (πp)∗(T )(ξ+NE
p ) = Tξ+NF

p , for all T ∈ LA(E,F ) and ξ ∈ E. For p, q ∈ S(A) with

p ≥ q, the morphisms (πpq)∗ : LAp
(Ep, Fp) → LAq

(Eq, Fq) defined by (πpq)∗(Tp)(σ
E
q (ξ)) =

σFpq(Tp(σ
E
p (ξ))) induce the inverse system {LAp

(Ep, Fp); (πpq)∗}p,q∈S(A), p≥q of Banach
spaces such that lim←−p LAp

(Ep, Fp) can be identified to LA(E,F ). In particular, topolo-

gizing, LA(E,E) becomes a pro-C*-algebra which is abbreviated by LA(E). The set of all
compact operators KA(E) on E is defined as the closed linear subspace of LA(E) spanned
by {θx,y : θx,y(ξ) = x〈y, ξ〉 for all x, y, ξ ∈ E}. This is a pro-C*-subalgebra and a two sided
ideal of LA(E), moreover, KA(E) can be identified to lim←−p KAp

(Ep).

Let E and F be Hilbert modules over pro-C*-algebras A and B, respectively, and
Ψ : A → LB(F ) be a continuous ∗-morphism. We can regard F as a left A-module by
(a, y) → Ψ(a)y, a ∈ A, y ∈ F . The right B-module E ⊗A F is a pre-Hilbert module
with the inner product given by 〈x⊗ y, z ⊗ t〉 = 〈y,Ψ(〈x, z〉)t〉. We denote by E ⊗Ψ F the
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completion of E ⊗A F , cf. [11] for more detailed information.

3 Stinespring representation theorem

In this section, we first generalize Paschke’s GNS-construction [19, Theorem 5.2] to the
framework of unital pro-C*-algebras. It is a particular case of the KSGNS construction
for completely positive maps on unital pro-C*-algebras, [9, Theorem 4.6]. Then we de-
duce Stinespring representation theorem in the context of pro-C*-algebras and a version of
Stinespring representation theorem for Hilbert modules over pro-C*-algebras. For this aim
we briefly restate the concept of induced representations of Hilbert modules over pro-C*-
algebras from our recent paper [15].

Given pro-C*-algebras A and B, a linear map ϕ : A→ B is said to be positive if ϕ(a∗a) ≥
0 for all a ∈ A. If ϕ(n) : Mn(A) → Mn(B) defined by ϕ(n)([aij ]

n
i,j=1) = [ϕ(aij)]

n
i,j=1 is

positive, then ϕ is said to be n-positive. If ϕ is n-positive for all natural numbers n, then
ϕ is called a completely positive map [6]. Let H be a Hilbert space and ϕ : A → B(H)
be an operator valued completely positive map then the condition of positivity [24] can be
written in the form

n∑
i,j=1

〈ϕ(a∗i aj)hj , hi〉 ≥ 0, for all hj ∈ H, aj ∈ A, j = 1, ..., n, and all n ∈ N.

Let A and B be pro-C*-algebras and let E be a Hilbert B-module. A continuous ∗-
morphism from A into LA(E) is called a continuous representation of A on E.

Theorem 1. Let A and B be two unital pro-C*-algebras and ϕ : A → B be a continuous
completely positive map. There is a Hilbert B-module X, a unital continuous representation
πϕ of A on X, πϕ : A→ LB(X), and an element ξ ∈ X such that

1. ϕ(a) = 〈ξ, πϕ(a)ξ〉 for all a ∈ A;

2. the set χϕ = span{πϕ(a)(ξb) : a ∈ A, b ∈ B} is a dense subspace of X.

In this case, we say that πϕ is the Paschke’s GNS construction associated to completely
positive map ϕ.

The result follows by taking into account E = B and ξ = Vϕ(1B) in the proof of [9,
Theorem 4.6], where 1B is the unit of B.

Let E and F be Hilbert modules over pro-C*-algebras A and B, respectively and ϕ :
A→ B be a morphism of pro-C*-algebras. A map Φ : E → F is said to be a ϕ-morphism
if 〈Φ(x),Φ(y)〉 = ϕ(〈x, y〉), for all x, y ∈ E. A ϕ-morphism Φ : E → F is said to be a
completely positive map if ϕ : A→ B be a completely positive map.

Lemma 1. Let E and F be Hilbert modules over unital pro-C*-algebras A and B, re-
spectively, and let Φ : E → F be a completely positive map. Suppose that X, ξ and πϕ
are the same as Theorem 1. Then there exists an isometry v : E ⊗πϕ X → F such that
v(z ⊗ ξ) = Φ(z), for all z ∈ E.
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Proof: For a, c ∈ A, b, d ∈ B and z, w ∈ E we have

〈z ⊗ (πϕ(a)(ξb)), w ⊗ (πϕ(c)(ξd))〉 = 〈πϕ(a)(ξb), πϕ(〈z, w〉)(πϕ(c)(ξd))〉
= b∗〈ξ, πϕ(〈za, wc〉)ξ〉d
= b∗ϕ(〈za, wc〉)d
= b∗〈Φ(za),Φ(wc)〉d
= 〈Φ(za)b,Φ(wc)d〉.

Since span{πϕ(a)(ξb) : a ∈ A, b ∈ B} is a dense subspace of X, the map z ⊗ (πϕ(a)(ξb)) 7→
Φ(za)b defines an isometry v : E ⊗πϕ X → F . In particular, we find v(z ⊗ ξ) = Φ(z) for all
z ∈ E, when a = 1A and b = 1B .

Let H and K be Hilbert spaces. Then the space B(H,K) of all bounded operators
from H into K can be considered as a Hilbert B(H)-module with the module action
(T, S)→ TS, T ∈ B(H,K) and S ∈ B(H) and the inner product defined by 〈T, S〉 = T ∗S,
T, S ∈ B(H,K). Murphy [18] showed that any Hilbert C*-module can be represented as
a submodule of the concrete Hilbert module B(H,K) for some Hilbert spaces H and K.
This allows us to extend the notion of a representation from the context of C*-algebras
to the context of Hilbert C*-modules. Let E and F be two Hilbert modules over C*-
algebras A and B, respectively, and let ϕ : A → B be a morphism of C*-algebras. A
ϕ-morphism Φ : E → B(H,K), where ϕ : A → B(H) is a representation of A is called
a representation of E. When Φ is a representation of E, we assume that an associated
representation of A is denoted by the same lowercase letter ϕ, so we will not explicitly
mention ϕ. Let Φ : E → B(H,K) be a representation of a Hilbert A-module E. We
say Φ is a non-degenerate representation if [Φ(E)(H)] = K and [Φ(E)∗(K)] = H, where
[Φ(E)(H)] denotes the closure of span{Φ(ξ)(h); ξ ∈ E, h ∈ H}. Two representations
Φi : E → B(Hi,Ki) of E, i = 1, 2 are said to be unitarily equivalent, if there are unitary
operators U1 : H1 → H2 and U2 : K1 → K2, such that U2Φ1(x) = Φ2(x)U1 for all x ∈ E.
Representations of Hilbert modules have been investigated in [2, 22].

Skeide [22] recovered the result of Murphy by embedding of every Hilbert A-module
E into a matrix C*-algebra as a lower submodule. He proved that every representation of
A induces a representation of E and a representation of LA(E). We describe his induced
representations as follows.

Construction 2. Let A is a C*-algebra and E be a Hilbert A-module and ϕ : A→ B(H)
be a ∗-representation of A. Define a sesquilinear form 〈., .〉 on the vector space E ⊗H by
〈x⊗h, y⊗k〉 = 〈h, ϕ(〈x, y〉)k〉H , where 〈., .〉H denotes the inner product on the Hilbert space
H. By [22, Proposition 3.8], the sesquilinear form is positive and so E⊗H is a semi-Hilbert
space. Then (E ⊗H)/Nϕ is a pre-Hilbert space with the inner product defined by

〈x⊗ h+Nϕ , y ⊗ k +Nϕ〉 = 〈x⊗ h, y ⊗ k〉,

where Nϕ is the vector subspace of E⊗H generated by {x⊗h ∈ E⊗H : 〈x⊗h, x⊗h〉 = 0}.
Let K be the completion of (E ⊗ H)/Nϕ with respect to the above inner product. We
identify the elements x ⊗ h with the equivalence classes x ⊗ h + Nϕ ∈ K. Suppose x ∈ E
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and Lxh = x ⊗ h then ‖Lxh‖2 = 〈h, ϕ(〈x, x〉)h〉 ≤ ‖h‖2‖x‖2, i.e. Lx ∈ B(H,K). If L∗x
be the adjoint of Lx then it is easy to show that L∗x(y ⊗ h) = ϕ(〈x, y〉)h for every y ∈ E
and h ∈ H. We define ηϕ : E → B(H,K) by ηϕ(x) = Lx. Then for x, x′ ∈ E, h, h′ ∈ H
and a ∈ A we have 〈ηϕ(x), ηϕ(x′)〉 = ϕ(〈x, x′〉) and ηϕ(xa) = ηϕ(x)ϕ(a), and so ηϕ is a
representation of E.

Let T ∈ LA(E). We associate with T a map on E ⊗ H by x ⊗ h → Tx ⊗ h. Since
〈x⊗h, Tx′⊗h′〉 = 〈T ∗x⊗h, x′⊗h′〉, this map leaves invariant Nϕ so that it induces a map
ρ0(T ) on (E ⊗H)/Nϕ. By [22, Lemma 3.9], ‖ρ0(T )‖ = ‖T‖ and so ρ0(T ) is bounded and
can be extended to a bounded operator ρ(T ) on K. Therefore ρ : LA(E) → B(K) defined
by T → ρ(T ) is a representation of LA(E) on K.

Now, we reformulate representations of Hilbert module from the case of C*-algebras to
the case of pro-C*-algebras. Let E and F be two Hilbert modules over pro-C*-algebras A
and B, respectively, and ϕ : A → B be a morphism of pro-C*-algebras. A ϕ-morphism
Φ : E → B(H,K), where ϕ : A→ B(H) is a representation of A is called a representation
of E. If p ∈ S(A) and ϕp be a representation of Ap associated to ϕ, then it is easy to
see that the map Φp : Ep → B(H,K), Φp(σ

E
p (x)) = Φ(x) is a ϕp-morphism. In this case,

we say that Φp is a representation of Ep associated to Φ. We can define non-degenerate
representations and unitarily equivalent representations for Hilbert modules over pro-C*-
algebras like Hilbert C*-modules case.

Remark 1. Suppose A is a pro-C*-algebra, E a Hilbert A-module and ϕ : A → B(H) a
representation of A on some Hilbert space H. Suppose p ∈ S(A) and ϕp is a representation
of Ap associated to ϕ. By the above Construction ϕp induces a representation ηϕp

: Ep →
B(H,K) of Ep where K is a Hilbert space associated to Ep ⊗H. It is easy to see that the
map ηϕ : E → B(H,K), ηϕ(x) = ηϕp

(σEp (x)) is a ϕ-morphism, i.e. it is a representation
of E.

The following theorem is a version of Stinespring representation theorem for pro-C*-
algebras that can be considered as a special case of KSGNS construction for completely
positive maps on unital pro-C*-algebras, by setting B = C in [9, Theorem 4.6]). We prove
this theorem by using the concept of induced representations of Hilbert pro-C*-modules.

Theorem 3. Let A be a unital pro-C*-algebras and ϕ : A → B(H) be a continuous op-
erator valued completely positive map. Then there exist a Hilbert space Hϕ, a unital rep-
resentation πϕ : A → B(Hϕ) and a bounded linear operator Vϕ ∈ B(H,Hϕ) such that
ϕ(a) = V ∗ϕπϕ(a)Vϕ for all a ∈ A.

Proof: Suppose that π
′

ϕ is Paschke’s GNS construction associated to ϕ and X,χϕ and ξ are
as in Theorem 1. Let ι be the identity map on B(H). If we consider ι as a representation
of B(H) on H and apply Construction 2, we get a Hilbert space Hϕ (associated to X⊗H),
an induced representation ηι : X → B(H,Hϕ) of X and a representation ρϕ : LB(H)(X)→
B(Hϕ) of LB(H)(X). We define Vϕ := ηι(ξ) and πϕ := ρϕ ◦ π

′

ϕ. If a ∈ A and h ∈ H, we
have

V ∗ϕπϕ(a)Vϕ(h) = V ∗ϕπϕ(a)(ξ ⊗ h) = V ∗ϕ (π
′

ϕ(a)ξ ⊗ h)

= ι(〈ξ, π
′

ϕ(a)ξ〉)h = ϕ(a)h.
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Hence, ϕ(a) = V ∗ϕπϕ(a)Vϕ for all a ∈ A.

In the rest of this section we establish [5, Theorems 2.1 and 2.4 ] in the context of
pro-C*-algebra.

Theorem 4. Let A be a unital pro-C*-algebra and ϕ : A → B(H) be a continuous com-
pletely positive map. Let E be a Hilbert A-module and Φ : E → B(H,K) be a ϕ-morphism.
Then there exist triples (πϕ, Vϕ, Hϕ) and (πΦ,WΦ,KΦ), where

1. Hϕ and KΦ are Hilbert spaces;

2. πϕ : A→ B(Hϕ) is a unital representation of A;

3. πΦ : E → B(Hϕ,KΦ) is a πϕ-morphism;

4. Vϕ : H → Hϕ and WΦ : K → KΦ are bounded linear operators such that ϕ(a) =
V ∗ϕπϕ(a)Vϕ, for all a ∈ A and Φ(z) = W ∗ΦπΦ(z)Vϕ, for all z ∈ E.

Proof: Let π
′

ϕ : A → LB(H)(X) be the Paschke’s GNS construction associated to ϕ. By

continuity of π
′

ϕ, there exists M > 0 and p ∈ S(A) such that ‖π′

ϕ(a)‖ ≤ Mp(a), for
all a ∈ A. Let (πϕ, Vϕ, Hϕ) be the Stinespring triple for ϕ as obtained in Theorem 3.

Since πϕ = ρϕ ◦ π
′

ϕ, we may consider (πϕ)p as a representation of Ap associated to πϕ. By
Remark 1, the Stinespring representation πϕ induces a representation πΦ : E → B(Hϕ,KΦ)
of E, where KΦ is the Hilbert space associated to Ep ⊗ Hϕ. Moreover, Lemma 1 implies
the existence of an isometry v : E ⊗π′

ϕ
X → B(H,K) which is defined by v(x ⊗ ξ) =

Φ(x) for all x ∈ E. We consider the linear map W0 : (Ep ⊗ X) ⊗ H → K defined by
W0((σEp (z) ⊗ x) ⊗ h) = v(z ⊗ x)h, where z ∈ E, x ∈ X and h ∈ H. Let z ∈ E and

σEp (z) = 0. Since ‖v(z ⊗ x)‖2 = ‖z ⊗ x‖2 = 〈z ⊗ x, z ⊗ x〉 = 〈x, π′

ϕ(〈z, z〉)〉, we have
v(z ⊗ x) = 0 which shows that W0 is well-defined. Moreover,

‖
n∑
i=1

(σEp (zi)⊗ xi)⊗ hi‖2 =

n∑
i,j=1

〈hi, 〈σEp (zi)⊗ xi, σEp (zj)⊗ xj〉hj〉

=

n∑
i,j=1

〈hi, 〈xi, π
′

ϕ(〈zi, zj〉)xj〉hj〉

=

n∑
i,j=1

〈hi, 〈zi ⊗ xi, zj ⊗ xj〉hj〉

=

n∑
i,j=1

〈hi, 〈v(zi ⊗ xi), v(zj ⊗ xj)〉hj〉

=

n∑
i,j=1

〈v(zi ⊗ xi)hi, v(zj ⊗ xj)hj〉

= ‖
n∑
i=1

v(zi ⊗ xi)hi‖2
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which implies that W0 is an isometry. Since Hϕ is the Hilbert space associated to X ⊗H,
W0 can be extended to a bounded linear operator W : KΦ → K. We define WΦ := W ∗,
then

W ∗ΦπΦ(z)Vϕ(h) = WπΦ(z)(ξ ⊗ h)

= W (πΦ)p(σ
E
p (z))(ξ ⊗ h)

= W (σEp (z)⊗ (ξ ⊗ h))

= W ((σEp (z)⊗ ξ)⊗ h)

= v(z ⊗ ξ)h = Φ(z)h,

for all z ∈ E and h ∈ H. Hence, Φ(z) = W ∗ΦπΦ(z)Vϕ for all z ∈ E.

Remark 2. Let ϕ and Φ be as in Theorem 4 and q ∈ S(A).
(1) In the proof of Theorem 4, if (πϕ)q be a representation of Aq associated to πϕ then

we obtain a representation π̃Φ : E → B(Hϕ, K̃Φ), where K̃Φ is a Hilbert space associated to
Eq ⊗Hϕ. It is easy to show that πΦ and π̃Φ are two unitarily equivalent representations of
E.

(2) The bounded linear operator WΦ : K → KΦ is a coisometry. Indeed, for z ∈ E, x ∈
X and h ∈ H we have

〈W ∗Φ(σEp (z)⊗ x⊗ h),W ∗Φ(σEp (z)⊗ x⊗ h)〉 = 〈v(z ⊗ x)h, v(z ⊗ x)h〉
= 〈v(z ⊗ x)∗v(z ⊗ x)h, h〉
= 〈〈v(z ⊗ x), v(z ⊗ x)〉h, h〉
= 〈〈z ⊗ x, z ⊗ x〉h, h〉
= 〈h, 〈x, π

′

ϕ(〈z, z〉)x〉h〉

= 〈x⊗ h, π
′

ϕ(〈z, z〉)x⊗ h〉

= 〈x⊗ h, (ρϕ ◦ π
′

ϕ)(〈z, z〉)(x⊗ h)〉
= 〈x⊗ h, πϕ(〈z, z〉)(x⊗ h)〉
= 〈x⊗ h, (πϕ)p(〈σEp (z), σEp (z)〉)(x⊗ h)〉
= 〈σEp (z)⊗ x⊗ h, σEp (z)⊗ x⊗ h〉

(3) If E is full then πΦ : E → B(Hϕ,KΦ) is a non-degenerate representation of E. To
see this, let z ∈ E and hϕ ∈ Hϕ then πΦ(z)(hϕ) = σEp (z)⊗ hϕ. Since KΦ is a Hilbert space
associated to Ep ⊗ Hϕ, [πΦ(E)(Hϕ)] = KΦ. Moreover, for w ∈ E, x ∈ X and h ∈ H we
have

πΦ(z)∗(σEp (w)⊗ x⊗ h) = πϕ(〈z, z〉)(x⊗ h) = π
′

p(〈z, z〉)(x)⊗ h.

Since E is full, [π
′

ϕ(A)(X)] = X. The Hilbert space Hϕ is associated to X⊗H which follows
that πΦ(E)∗(KΦ) = Hϕ.

Definition 1. Let ϕ and Φ be as in Theorem 4. We say that the pair
((πϕ, Vϕ, Hϕ), (πΦ,WΦ,KΦ)) is a Stinespring representation of (ϕ,Φ) if conditions (1)-(3)
of Theorem 4 are fulfilled. Such a representation is said to be minimal if
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1. [πϕ(A)VϕH] = Hϕ, and

2. [πΦ(E)VϕH] = KΦ.

Remark 3. The pair ((πϕ, Vϕ, Hϕ), (πΦ,WΦ,KΦ)) obtained in Theorem 4 is a minimal
representation for (ϕ,Φ) since

[πϕ(A)VϕH] = [(ρϕ ◦ π
′

ϕ)(A)(ξ ⊗H)]

= [(π
′

ϕ(A)(ξ))⊗H]

= [χϕ ⊗H] = Hϕ

and

[πΦ(E)VϕH] = [πΦ(E)πϕ(A)VϕH] = [(πΦ)p(Ep)Hϕ]

= [Ep ⊗Hϕ] = KΦ.

The following result shows that the minimal Stinespring representation is unique up to
the unitarily equivalency.

Proposition 1. Let ϕ and Φ be as in Theorem 4 and ((πA, V
′
, H

′
), (πE ,W

′
,K

′
)) be a

minimal representation for (ϕ,Φ). Then there are two unitary operators U1 : Hϕ → H
′

and

U2 : KΦ → K
′

such that

1. V
′

= U1Vϕ, U1πϕ(a) = πA(a)U1, for all a ∈ A and

2. W
′

= U2WΦ, U2πΦ(z) = πE(z)U1, for all z ∈ E.

Proof: Existence U1 and the statement (1) follow from [9, Theorem 4.6 (2)]. As in the proof
of [5, Theorem 2.4], we define the linear map U2 : span(πΦ(E)VϕH) → span(πE(E)V

′
H)

by

U2(

n∑
i=1

πΦ(zi)Vϕhi) =

n∑
i=1

πE(zi)V
′
hi,

for zi ∈ E, hi ∈ H and n ≥ 1. Then U2 is a well-defined isometry and so it can be extended
to a unitary U2 from KΦ onto K

′
which satisfies the statement (2).

4 Radon-Nikodym derivatives

A Radon-Nikodym-type theorem for operator valued completely positive maps on Hilbert
C*-modules has been demonstrated in [14] by Joita. We are going to generalize her def-
initions and results to the case of Hilbert modules over pro-C*-algebras. Let E be a full
Hilbert module over a pro-C*-algebra A and H,K be two Hilbert spaces. The set of all
completely positive maps of E into B(H,K) will be denoted by CP (E,B(H,K)). There is
an equivalence relation on CP (E,B(H,K)) as follows.

Definition 2. Let Φ and Ψ be in CP (E,B(H,K)). We say that Φ is equivalent to Ψ,
denoted by Φ ∼ Ψ, if Φ(x)∗Φ(x) = Ψ(x)∗Ψ(x) for all x ∈ E.
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Definition 3. Let Φ and Ψ be in CP (E,B(H,K)). We say that Ψ is dominated by Φ,
denoted by Ψ � Φ, if Ψ(x)∗Ψ(x) ≤ Φ(x)∗Φ(x) for all x ∈ E.

Remark 4. The relation “ � ” is reflexive and transitive and so is a preorder relation on
CP (E,B(H,K)). Moreover, if Φ,Ψ ∈ CP (E,B(H,K)) then Φ � Ψ and Ψ � Φ if and
only if Φ ∼ Ψ.

In [2], Arambašić extended the definition of the commutant of a C*-algebra to a Hilbert
C*-module. We define a similar notion for Hilbert modules over pro-C*-algebras.

Definition 4. Let A be a pro-C*-algebra and Φ : E → B(H,K) be a representation of a
Hilbert A- module E. The commutant of Φ(E), which is denoted by Φ(E)

′
, is defined by

{T ⊕ S ∈ B(H ⊕K) : T ∈ B(H), S ∈ B(K),Φ(z)T = SΦ(z),Φ(z)∗S = TΦ(z)∗, z ∈ E}

in which, (T ⊕ S)(h⊕ k) := Th⊕ Sk.

If T ⊕ S ∈ Φ(E)
′
, then T ∈ ϕ(A)

′
, cf. [2, Lemma 4.4]. If Φ is non-degenerate, then S is

uniquely determined by T , cf. [2, Note 4.6].

Lemma 2. Let Φ ∈ CP (E,B(H,K)) and ((πϕ, Vϕ, Hϕ), (πΦ,WΦ,KΦ)) be the Stinespring

representation of (ϕ,Φ). If T ⊕ S be a positive linear operator in πΦ(E)
′
, then the map

ΦT⊕S : E → B(H,K) defined by ΦT⊕S(x) = W ∗Φ
√
TπΦ(x)

√
SVϕ is completely positive.

Proof: As in proof of [14, Lemma 2.10], ΦT⊕S(x)∗ΦT⊕S(y) = V ∗ϕT
2πϕ(〈x, y〉)Vϕ, for all

x, y ∈ E. Using [12, Lemma 3.4.1] and the fact that T 2 ∈ πϕ(A)
′
, we find

ΦT⊕S(x)∗ΦT⊕S(y) = ϕT 2(〈x, y〉). Indeed, the completely positive map associated to ΦT⊕S
is ϕT 2 .

Theorem 5. Let Ψ,Φ ∈ CP (E,B(H,K)). If Ψ � Φ, then there is a unique positive linear
operator ∆Φ(Ψ) in πΦ(E)

′
such that Ψ ∼ Φ√

∆Φ(Ψ)
.

Proof: Let ((πϕ, Vϕ, Hϕ), (πΦ,WΦ,KΦ)) be the Stinespring representation of (ϕ,Φ). Con-
tinuity of ϕ and ψ implies that there exist p, q ∈ S(A) and M,N > 0 such that ‖ϕ(a)‖ ≤
Mp(a) and ‖ψ(a)‖ ≤ Nq(a), for all a ∈ A. Let r ∈ S(A) and r ≥ p, q. The linear maps
ϕr : Ar → B(H), ϕr(πr(a)) = ϕ(a) and ψr : Ar → B(H), ψr(πr(a)) = ψ(a) are com-
pletely positive maps since,

∑n
i,j=1〈ϕr(πr(ai)∗πr(aj))xj , xi〉 =

∑n
i,j=1〈ϕ(a∗i aj)xj , xi〉 ≥

0, for all ai ∈ A, xi ∈ H and 1 ≤ i ≤ n.
The maps Φr : σEr (x) 7→ Φ(x) and Ψr : σEr (x) 7→ Ψ(x) are in CP (Er, B(H,K))

and Ψr � Φr. Let ((πϕr
, Vϕr

, Hϕr
), (πΦr

,WΦr
,KΦr

)) be the Stinespring representation
of (ϕr,Φr). By the proof of [14, Theorem 2.12], there are unique positive linear opera-
tors ∆1Φr

(Ψr) ∈ B(Hϕr
) and ∆2Φr

(Ψr) ∈ B(KΦr
) such that Ψr ∼ Φr√∆Φr

(Ψr)
, where

∆Φr (Ψr) = ∆1Φr (Ψr)⊕∆2Φr (Ψr) ∈ πΦr (E)
′

is the Radon-Nikodym derivative of Ψr with
respect to Φr. The pairs ((πϕr ◦ πr, Vϕr , Hϕr ), (πΦr ◦ σEr ,WΦr ,KΦr )) and
((πϕ, Vϕ, Hϕ), (πΦ,WΦ,KΦ)) are two minimal Stinespring representations of (ϕ,Φ) and so,
by Proposition 1, there are two unitary operators U1 : Hϕ → Hϕr

and U2 : KΦ → KΦr
such

that Vϕr
= U1Vϕ , U1πϕ(a) = (πϕr

◦ πr)(a)U1 for all a ∈ A, WΦr
= U2WΦ and U2πΦ(z) =
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(πΦr ◦σr)(z)U1 for all z ∈ E. Let ∆1Φ(Ψ) = U∗1 ∆1Φr (Ψr)U1 and ∆2Φ(Ψ) = U∗2 ∆2Φr (Ψr)U2.
It is easy to see that ∆Φ(Ψ) = ∆1Φ(Ψ) ⊕ ∆2Φ(Ψ) is a positive operator in πΦ(E)

′
. For

every a ∈ A, we have

ψ(a) = ψr(πr(a)) = V ∗ϕr
∆1Φr

(Ψr)πϕr
(πr(a))Vϕr

= V ∗ϕU
∗
1 ∆1Φr

(Ψr)U1πϕ(a)U∗1U1Vϕ

= V ∗ϕ∆1Φ(Ψ)πϕ(a)Vϕ = ϕ∆1Φ(Ψ)(a).

Indeed by the uniqueness of Radon-Nikodym derivative ([12, Theorem 3.4.5]), ∆1Φ(Ψ) is
the Radon-Nikodym derivative of ψ with respect to ϕ. Consequently,

Φ∗√
∆Φ(Ψ)

(x) Φ√
∆Φ(Ψ)

(x) = ϕ∆1Φ(Ψ)(〈x, x〉) = ψ(〈x, x〉) = Ψ(x)∗Ψ(x)

for every x ∈ E, which implies Ψ ∼ Φ√
∆Φ(Ψ)

. Let T ⊕ S be another positive linear map

in πΦ(E)
′

such that Ψ ∼ Φ√T⊕S . Then Φ√
∆Φ(Ψ)

∼ Φ√T⊕S and so ϕ∆1Φ(Ψ) = ϕT . By

[12, Theorem 3.4.5], we deduce that ∆1Φ(Ψ) = T . Since πΦ is non-degenerate (Remark 2
(3)), ∆2Φ(Ψ) and S are uniquely determined by ∆1Φ(Ψ) and T , respectively. Consequently,
∆2Φ(Ψ) = S and so ∆Φ(Ψ) = T ⊕ S.

Suppose that Φ ∈ CP (E,B(H,K)), Φ̂ = {Ψ ∈ CP (E,B(H,K)) : Φ ∼ Ψ} and Φ,Ψ ∈
CP (E,B(H,K)). We write Ψ̂ ≤ Φ̂, if Ψ � Φ. We define

[0, Φ̂] := {Ψ̂ : Ψ ∈ CP (E,B(H,K)),Ψ � Φ}

and
[0, I]Φ := {T ⊕ S ∈ πΦ(E)

′
: 0 ≤ T ⊕ S ≤ I}.

The following theorem can be thought as a Radon-Nikodym type theorem for operator
valued completely positive maps on Hilbert modules over pro-C*-algebras.

Theorem 6. Let Φ ∈ CP (E,B(H,K)). The map Ψ̂→ ∆Φ(Ψ) from [0, Φ̂] to [0, I]Φ is an
order-preserving isomorphism.

Proof: The map is well-defined by Theorem 5. Let Ψ̂1, Ψ̂2 ∈ [0, Φ̂] and ∆Φ(Ψ1) = ∆Φ(Ψ2).
Then Ψ1 ∼ Φ∆Φ(Ψ1) = Φ∆Φ(Ψ2) ∼ Ψ2 and so it is injective. Let T ⊕ S ∈ [0, I]Φ then

Φ√T⊕S ∈ CP (E,B(H,K)). Since T ⊕ S ∈ πΦ(E)
′
, T ∈ πϕ(A)

′
and so by [12, Theorem

3.4.5], Φ√T⊕S(x)∗Φ√T⊕S(x) = ϕT (〈x, x〉) ≤ ϕ(〈x, x〉) = Φ(x)∗Φ(x) for all x ∈ E. Thus
Φ√T⊕S � Φ. Since ∆(ϕT ) = T , ∆Φ(Φ√T⊕S) = T ⊕ S, i.e., the map is surjective.

If Ψ̂1, Ψ̂2 ∈ [0, Φ̂] and Ψ̂1 ≤ Ψ̂2, then Ψ1 � Ψ2 and so ψ1 ≤ ψ2. By [12, Theorem 3.4.5],
we have ∆1Φ(Ψ1) ≤ ∆1Φ(Ψ2). Since πΦ is non-degenerate (Remark 2 (3)), ∆2Φ(Ψ1) and
∆2Φ(Ψ2) are uniquely determined by ∆1Φ(Ψ1) and ∆1Φ(Ψ2), respectively. Consequently,
∆2Φ(Ψ1) ≤ ∆2Φ(Ψ2) and so ∆Φ(Ψ1) ≤ ∆Φ(Ψ2). Conversely, let T1 ⊕ S1, T2 ⊕ S2 ∈ [0, I]Φ
and T1⊕S1 ≤ T2⊕S2 then T1, T2 ∈ [0, I]ϕ and T1 ≤ T2. By [12, Theorem 3.4.5], ϕT1

≤ ϕT2

and so Φ√T1⊕S1
� Φ√T2⊕S2

.
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