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Abstract

In this paper we deal with the form of the solutions and the periodicity nature of
the following systems of nonlinear difference equations

xn+1 =
xn−3yn−2

yn(±1± xn−1yn−2xn−3)
, yn+1 =

xn−2yn−3

xn(±1± yn−1xn−2yn−3)
,

where the initial conditions x
−3, x

−2, x
−1, x0, y

−3, y
−2, y

−1, and y0 are nonzero
real numbers.
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1 Introduction

Our aim in this paper is to investigate the periodic nature and the solutions of the following
systems of nonlinear difference equations

xn+1 =
xn−3yn−2

yn(±1± xn−1yn−2xn−3)
, yn+1 =

xn−2yn−3

xn(±1± yn−1xn−2yn−3)
,

where the initial conditions x−3, x−2, x−1, x0, y−3, y−2, y−1, and y0 are nonzero real
numbers.

Difference equations appear naturally as discrete analogues and as numerical solutions
of differential equations having applications in ecology, biology, physics, economy and so
on. So, recently there has been an increasing interest in the study of qualitative analysis
of rational difference equations and systems of difference equations. Although difference
equations are very simple in form, it is extremely difficult to understand thoroughly the
dynamics of their solutions. see [3]-[6] and the references cited therein.

There are many papers related to systems of difference equations, for examples: the
behavior of the positive solutions of the rational difference system

xn+1 =
m

yn
, yn+1 =

pyn
xn−1yn−1

,

has been studied by Cinar [2].
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The dynamics of the solutions of the following system

xn+1 =
xn−1

1 + xn−1yn
, yn+1 =

yn−1

1 + yn−1xn

,

has been studied by Kurbanli et al. [10].

Touafek et al. [11] investigated the periodic nature and gave the form of the solutions of
the following systems of difference equations

xn+1 =
xn−3

±1± xn−3yn−1
, yn+1 =

yn−3

±1± yn−3xn−1
.

Yalçınkaya [12] has obtained the sufficient conditions for the global asymptotic stability of
the following system of two nonlinear difference equations

xn+1 =
xn + yn−1

xnyn−1 − 1
, yn+1 =

yn + xn−1

ynxn−1 − 1
.

In [13], Zhang et al. studied the persistence and the global asymptotic stability of the
solutions of the system

xn = A+
1

yn−p

, yn = A+
yn−1

xn−ryn−s

.

Similar nonlinear systems of difference equations were investigated see [1], [7], [8].

2 Main Results

Here we obtain the form of the solutions of some systems of difference equations. Also, we
deal with periodicity of solutions of the same systems of difference equations.

2.1 On the System: xn+1 =
xn−3yn−2

yn(1+xn−1yn−2xn−3)
, yn+1 =

xn−2yn−3

xn(1+yn−1xn−2yn−3)

In this section, we study the solutions of the system of two difference equations

xn+1 =
xn−3yn−2

yn(1 + xn−1yn−2xn−3)
, yn+1 =

xn−2yn−3

xn(1 + yn−1xn−2yn−3)
, n = 0, 1, ..., (1)

with nonzero real numbers initials conditions.

Theorem 1. Suppose that {xn, yn} are solutions of system (1), then for n = 0, 1, 2, ..., we
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see that

x6n−3 = d

n−1
∏

i=0

(

(1 + (3i) bdg) (1 + (3i+ 1) beg)

(1 + (3i+ 2) bdg) (1 + (3i) beg)

)

,

x6n−2 = c

n−1
∏

i=0

(

(1 + (3i)acf) (1 + (3i+ 2) cfh)

(1 + (3i+ 2) acf) (1 + (3i+ 1) cfh)

)

,

x6n−1 = b

n−1
∏

i=0

(

(1 + (3i+ 1) bdg) (1 + (3i+ 2) beg)

(1 + (3i+ 3) bdg) (1 + (3i+ 1) beg)

)

,

x6n = a

n−1
∏

i=0

(

(1 + (3i+ 1) acf) (1 + (3i+ 3) cfh)

(1 + (3i+ 3) acf) (1 + (3i+ 2) cfh)

)

,

x6n+1 =
dg

e(1 + bdg)

n−1
∏

i=0

(

(1 + (3i+ 2) bdg) (1 + (3i+ 3) beg)

(1 + (3i+ 4) bdg) (1 + (3i+ 2) beg)

)

,

x6n+2 =
af(1 + cfh)

h(1 + acf)

n−1
∏

i=0

(

(1 + (3i+ 2) acf) (1 + (3i+ 4) cfh)

(1 + (3i+ 4) acf) (1 + (3i+ 3) cfh)

)

,

y6n−3 = h
n−1
∏

i=0

(

(1 + (3i+ 1) acf) (1 + (3i) cfh)

(1 + (3i)acf) (1 + (3i+ 2) cfh)

)

,

y6n−2 = g
n−1
∏

i=0

(

(1 + (3i+ 2) bdg) (1 + (3i) beg)

(1 + (3i+ 1) bdg) (1 + (3i+ 2) beg)

)

,

y6n−1 = f
n−1
∏

i=0

(

(1 + (3i+ 2) acf) (1 + (3i+ 1) cfh)

(1 + (3i+ 1) acf) (1 + (3i+ 3) cfh)

)

,

y6n = e
n−1
∏

i=0

(

(1 + (3i+ 3) bdg) (1 + (3i+ 1) beg)

(1 + (3i+ 2) bdg) (1 + (3i+ 3) beg)

)

,

y6n+1 =
ch

a(1 + cfh)

n−1
∏

i=0

(

(1 + (3i+ 3) acf) (1 + (3i+ 2) cfh)

(1 + (3i+ 2) acf) (1 + (3i+ 4) cfh)

)

,

y6n+2 =
be(1 + bdg)

d(1 + beg)

n−1
∏

i=0

(

(1 + (3i+ 4) bdg) (1 + (3i+ 2) beg)

(1 + (3i+ 3) bdg) (1 + (3i+ 4) beg)

)

,

where x−3 = d, x−2 = c, x−1 = b, x0 = a, y−3 = h, y−2 = g, y−1 = f, y0 = e and
−1
∏

i=0

Ai = 1.

Proof. We prove that the forms given are solutions of system (1) by using mathematical
induction. First we let n = 0, then the result holds. Second we assume that the expressions
are satisfied for n − 1. Our objective is to show that the expressions are satisfied for n.
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That is;

x6n−9 = d

n−2
∏

i=0

(

(1 + (3i) bdg) (1 + (3i+ 1) beg)

(1 + (3i+ 2) bdg) (1 + (3i) beg)

)

,

x6n−8 = c

n−2
∏

i=0

(

(1 + (3i)acf) (1 + (3i+ 2) cfh)

(1 + (3i+ 2) acf) (1 + (3i+ 1) cfh)

)

,

x6n−7 = b

n−2
∏

i=0

(

(1 + (3i+ 1) bdg) (1 + (3i+ 2) beg)

(1 + (3i+ 3) bdg) (1 + (3i+ 1) beg)

)

,

x6n−6 = a

n−2
∏

i=0

(

(1 + (3i+ 1) acf) (1 + (3i+ 3) cfh)

(1 + (3i+ 3) acf) (1 + (3i+ 2) cfh)

)

,

x6n−5 =
dg

e(1 + bdg)

n−2
∏

i=0

(

(1 + (3i+ 2) bdg) (1 + (3i+ 3) beg)

(1 + (3i+ 4) bdg) (1 + (3i+ 2) beg)

)

,

x6n−4 =
af(1 + cfh)

h(1 + acf)

n−2
∏

i=0

(

(1 + (3i+ 2)acf) (1 + (3i+ 4) cfh)

(1 + (3i+ 4)acf) (1 + (3i+ 3) cfh)

)

,

y6n−9 = h

n−2
∏

i=0

(

(1 + (3i+ 1)acf) (1 + (3i) cfh)

(1 + (3i)acf) (1 + (3i+ 2) cfh)

)

,

y6n−8 = g

n−2
∏

i=0

(

(1 + (3i+ 2) bdg) (1 + (3i) beg)

(1 + (3i+ 1) bdg) (1 + (3i+ 2) beg)

)

,

y6n−7 = f

n−2
∏

i=0

(

(1 + (3i+ 2) acf) (1 + (3i+ 1) cfh)

(1 + (3i+ 1) acf) (1 + (3i+ 3) cfh)

)

,

y6n−6 = e

n−2
∏

i=0

(

(1 + (3i+ 3) bdg) (1 + (3i+ 1) beg)

(1 + (3i+ 2) bdg) (1 + (3i+ 3) beg)

)

,

y6n−5 =
ch

a(1 + cfh)

n−2
∏

i=0

(

(1 + (3i+ 3)acf) (1 + (3i+ 2) cfh)

(1 + (3i+ 2)acf) (1 + (3i+ 4) cfh)

)

,

y6n−4 =
be(1 + bdg)

d(1 + beg)

n−2
∏

i=0

(

(1 + (3i+ 4) bdg) (1 + (3i+ 2) beg)

(1 + (3i+ 3) bdg) (1 + (3i+ 4) beg)

)

,

Now, it follows from Eq.(1) that

x6n−3 =
x6n−7y6n−6

y6n−4(1 + x6n−5y6n−6x6n−7)
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=

(

b
n−2
∏

i=0

(

(1 + (3i+ 1) bdg) (1 + (3i+ 2) beg)

(1 + (3i+ 3) bdg) (1 + (3i+ 1) beg)

))

(

e
n−2
∏

i=0

(

(1 + (3i+ 3) bdg) (1 + (3i+ 1) beg)

(1 + (3i+ 2) bdg) (1 + (3i+ 3) beg)

))

(

be(1 + bdg)

d(1 + beg)

n−2
∏

i=0

(

(1 + (3i+ 4) bdg) (1 + (3i+ 2) beg)

(1 + (3i+ 3) bdg) (1 + (3i+ 4) beg)

))

















1 +

















dg

e(1 + bdg)

n−2
∏

i=0

(

(1 + (3i+ 2) bdg) (1 + (3i+ 3) beg)

(1 + (3i+ 4) bdg) (1 + (3i+ 2) beg)

)

(

b
n−2
∏

i=0

(

(1 + (3i+ 1) bdg) (1 + (3i+ 2) beg)

(1 + (3i+ 3) bdg) (1 + (3i+ 1) beg)

))

(

e
n−2
∏

i=0

(

(1 + (3i+ 3) bdg) (1 + (3i+ 1) beg)

(1 + (3i+ 2) bdg) (1 + (3i+ 3) beg)

))

































=

d(1 + beg)

(

n−2
∏

i=0

(

(1 + (3i+ 1) bdg) (1 + (3i+ 3) bdg)

(1 + (3i+ 2) bdg) (1 + (3i+ 3) beg)

))

(1 + bdg)
n−2
∏

i=0

(1 + (3i+ 4) bdg)

(1 + (3i+ 4) beg)

(

1 +
bdg

(1 + bdg)

n−2
∏

i=0

1 + (3i+ 1) bdg

1 + (3i+ 4) bdg

)

=

d(1 + beg)

(

n−2
∏

i=0

(

(1 + (3i+ 3) bdg) (1 + (3i+ 4) beg)

(1 + (3i+ 2) bdg) (1 + (3i+ 3) beg)

))

(1 + (3n− 2)bdg)

(

1 +

(

bdg

(1 + (3n− 2)bdg)

))

=

d(1 + beg)
n−2
∏

i=0

(1 + (3i+ 3) bdg) (1 + (3i+ 4) beg)

(1 + (3i+ 2) bdg) (1 + (3i+ 3) beg)

(1 + (3n− 2)bdg + bdg)

= d

n−1
∏

i=0

(

(1 + (3i) bdg) (1 + (3i+ 1) beg)

(1 + (3i+ 2) bdg) (1 + (3i) beg)

)

,

and

y6n−3 =
y6n−7x6n−6

x6n−4(1 + y6n−5x6n−6y6n−7)

=

(

f
n−2
∏

i=0

(

(1+(3i+2)acf)(1+(3i+1)cfh)
(1+(3i+1)acf)(1+(3i+3)cfh)

)

)(

a
n−2
∏

i=0

(

(1+(3i+1)acf)(1+(3i+3)cfh)
(1+(3i+3)acf)(1+(3i+2)cfh)

)

)

(

af(1+cfh)
h(1+acf)

n−2
∏

i=0

(

(1+(3i+2)acf)(1+(3i+4)cfh)
(1+(3i+4)acf)(1+(3i+3)cfh)

)

)

















1 +

















(

ch
a(1+cfh)

n−2
∏

i=0

(

(1+(3i+3)acf)(1+(3i+2)cfh)
(1+(3i+2)acf)(1+(3i+4)cfh)

)

)

(

a
n−2
∏

i=0

(

(1+(3i+1)acf)(1+(3i+3)cfh)
(1+(3i+3)acf)(1+(3i+2)cfh)

)

)

(

f
n−2
∏

i=0

(

(1+(3i+2)acf)(1+(3i+1)cfh)
(1+(3i+1)acf)(1+(3i+3)cfh)

)

)
































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=

h(1 + acf)

(

n−2
∏

i=0

(1+(3i+4)acf)(1+(3i+3)cfh)
(1+(3i+3)acf)(1+(3i+2)cfh)

n−2
∏

i=0

(

(1+(3i+1)cfh)
(1+(3i+4)cfh)

)

)

(1 + cfh)

(

1 +
cfh

(1 + cfh)

n−2
∏

i=0

(1+(3i+1)cfh)
(1+(3i+4)cfh)

)

=

(

1
(1+(3n−2)cfh)

)

h(1 + acf)

(

n−2
∏

i=0

(1+(3i+4)acf)(1+(3i+3)cfh)
(1+(3i+3)acf)(1+(3i+2)cfh)

)

(

1 +
cfh

(1 + (3n− 2)cfh)

)

=

h(1 + acf)

(

n−2
∏

i=0

(1+(3i+4)acf)(1+(3i+3)cfh)
(1+(3i+3)acf)(1+(3i+2)cfh)

)

(1 + (3n− 2)cfh+ cfh)

=
h(1 + acf)

(1 + (3n− 1)cfh)

n−2
∏

i=0

(1 + (3i+ 4) acf) (1 + (3i+ 3) cfh)

(1 + (3i+ 3) acf) (1 + (3i+ 2) cfh)

= h

n−1
∏

i=0

(

(1 + (3i+ 1)acf) (1 + (3i) cfh)

(1 + (3i)acf) (1 + (3i+ 2) cfh)

)

.

Similarly we can prove the other relations. The proof is complete.

The following cases can be proved similarly.

2.2 On the System: xn+1 =
xn−3yn−2

yn(1+xn−1yn−2xn−3)
, yn+1 =

xn−2yn−3

xn(−1+yn−1xn−2yn−3)

In this section, we study the solutions of the system of two difference equations

xn+1 =
xn−3yn−2

yn(1 + xn−1yn−2xn−3)
, yn+1 =

xn−2yn−3

xn(−1 + yn−1xn−2yn−3)
, (2)

with a nonzero real numbers initial conditions and x−3y−2x−1, x−2y−1x0 6= 1, y−2x−1y0,
y−3x−2y−1 6= −1.
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Theorem 2. Suppose that {xn, yn} are solutions of system (2). For n = 0, 1, 2, ..., we have

x12n−3 = d

n−1
∏

i=0

(

(1+(6i)bdg)(1+(6i+3)bdg)
(1+(6i+2)bdg)(1+(6i+5)bdg)

)

,

x12n−2 = c

n−1
∏

i=0

(

(1+(6i)acf)(1+(6i+3)acf)
(1+(6i+2)acf)(1+(6i+5)acf)

)

,

x12n−1 = b
n−1
∏

i=0

(

(1+(6i+1)bdg)(1+(6i+4)bdg)
(1+(6i+3)bdg)(1+(6i+6)bdg)

)

,

x12n = a
n−1
∏

i=0

(

(1+(6i+1)acf)(1+(6i+4)acf)
(1+(6i+3)acf)(1+(6i+6)acf)

)

,

x12n+1 = dg

e(1+bdg)

n−1
∏

i=0

(

(1+(6i+2)bdg)(1+(6i+5)bdg)
(1+(6i+4)bdg)(1+(6i+7)bdg)

)

,

x12n+2 = af(−1+cfh)
h(1+acf)

n−1
∏

i=0

(

(1+(6i+2)acf)(1+(6i+5)acf)
(1+(6i+4)acf)(1+(6i+7)acf)

)

,

x12n+3 = d(−1+beg)
(1+2bdg)

n−1
∏

i=0

(

(1+(6i+3)bdg)(1+(6i+6)bdg)
(1+(6i+5)bdg)(1+(6i+8)bdg)

)

,

x12n+4 = c
(−1+cfh)(1+2acf)

n−1
∏

i=0

(

(1+(6i+3)acf)(1+(6i+6)acf)
(1+(6i+5)acf)(1+(6i+8)acf)

)

,

x12n+5 =
b(1 + bdg)

(−1 + beg)(1 + 3bdg)

n−1
∏

i=0

(

(1 + (6i+ 4) bdg) (1 + (6i+ 7) bdg)

(1 + (6i+ 6) bdg) (1 + (6i+ 9) bdg)

)

,

x12n+6 =
a(−1 + cfh)(1 + acf)

(1 + 3acf)

n−1
∏

i=0

(

(1 + (6i+ 4)acf) (1 + (6i+ 7) acf)

(1 + (6i+ 6)acf) (1 + (6i+ 9) acf)

)

,

x12n+7 =
dg(−1 + beg)(1 + 2bdg)

e(1 + bdg)(1 + 4bdg)

n−1
∏

i=0

(

(1 + (6i+ 5) bdg) (1 + (6i+ 8) bdg)

(1 + (6i+ 7) bdg) (1 + (6i+ 10) bdg)

)

,

x12n+8 =
af(1 + 2acf)

h(1 + acf)(1 + 4acf)

n−1
∏

i=0

(

(1 + (6i+ 5) acf) (1 + (6i+ 8)acf)

(1 + (6i+ 7)acf) (1 + (6i+ 10)acf)

)

,
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y12n−3 = h

n−1
∏

i=0

(

(1 + (6i+ 1)acf) (1 + (6i+ 4) acf)

(1 + (6i)acf) (1 + (6i+ 3) acf)

)

,

y12n−2 = g

n−1
∏

i=0

(

(1 + (6i+ 2) bdg) (1 + (6i+ 5) bdg)

(1 + (6i+ 1) bdg) (1 + (6i+ 4) bdg)

)

,

y12n−1 = f

n−1
∏

i=0

(

(1 + (6i+ 2) acf) (1 + (6i+ 5)acf)

(1 + (6i+ 1) acf) (1 + (6i+ 4)acf)

)

,

y12n = e

n−1
∏

i=0

(

(1 + (6i+ 3) bdg) (1 + (6i+ 6) bdg)

(1 + (6i+ 2) bdg) (1 + (6i+ 5) bdg)

)

,

y12n+1 =
ch

a(−1 + cfh)

n−1
∏

i=0

(

(1 + (6i+ 3) acf) (1 + (6i+ 6) acf)

(1 + (6i+ 2) acf) (1 + (6i+ 5) acf)

)

,

y12n+2 =
be(1 + bdg)

d(−1 + beg)

n−1
∏

i=0

(

(1 + (6i+ 4) bdg) (1 + (6i+ 7) bdg)

(1 + (6i+ 3) bdg) (1 + (6i+ 6) bdg)

)

,

y12n+3 = h(1 + acf)

n−1
∏

i=0

(

(1 + (6i+ 4)acf) (1 + (6i+ 7) acf)

(1 + (6i+ 3)acf) (1 + (6i+ 6) acf)

)

,

y12n+4 =
g(1 + 2bdg)

(1 + bdg)

n−1
∏

i=0

(

(1 + (6i+ 5) bdg) (1 + (6i+ 8) bdg)

(1 + (6i+ 4) bdg) (1 + (6i+ 7) bdg)

)

,

y12n+5 =
f(1 + 2acf)

(1 + acf)

n−1
∏

i=0

(

(1 + (6i+ 5)acf) (1 + (6i+ 8) acf)

(1 + (6i+ 4)acf) (1 + (6i+ 7) acf)

)

,

y12n+6 =
e(1 + 3bdg)

(1 + 2bdg)

n−1
∏

i=0

(

(1 + (6i+ 6) bdg) (1 + (6i+ 9) bdg)

(1 + (6i+ 5) bdg) (1 + (6i+ 8) bdg)

)

,

y12n+7 =
ch(1 + 3acf)

a(−1 + cfh)(1 + 2acf)

n−1
∏

i=0

(

(1 + (6i+ 6)acf) (1 + (6i+ 9) acf)

(1 + (6i+ 5)acf) (1 + (6i+ 8) acf)

)

,

y12n+8 =
be(1 + bdg)(1 + 4bdg)

d(−1 + beg)(1 + 3bdg)

n−1
∏

i=0

(

(1 + (6i+ 7) bdg) (1 + (6i+ 10) bdg)

(1 + (6i+ 6) bdg) (1 + (6i+ 9) bdg)

)

.

2.3 On the System: xn+1 =
xn−3yn−2

yn(−1+xn−1yn−2xn−3)
, yn+1 =

xn−2yn−3

xn(−1+yn−1xn−2yn−3)

In this section, we study the solutions of the system of two difference equations

xn+1 =
xn−3yn−2

yn(−1 + xn−1yn−2xn−3)
, yn+1 =

xn−2yn−3

xn(−1 + yn−1xn−2yn−3)
, (3)

with a nonzero real numbers initial conditions with x−3y−2x−1, y−2x−1y0, x−2y−1x0,
y−3x−2y−1 6= 1.



E. M. Elsayed 167

Theorem 3. Suppose that {xn, yn} are solutions of system (3). Also, assume that x−2,
x−1, x0, y−2, y−1 and y0 are arbitrary nonzero real numbers with x−3y−2x−1, y−2x−1y0,
x−2y−1x0, y−3x−2y−1 6= 1. Then all solutions of the system are periodic with period twelve
and takes the form

x12n−3 = d, x12n−2 = c, x12n−1 = b, x12n = a,

x12n+1 = dg

e(−1+bdg) , x12n+2 = af(−1+cfh)
h(−1+acf) , x12n+3 = d(−1 + beg),

x12n+4 = c
(−1+cfh) , x12n+5 = b

(−1+beg) , x12n+6 = a(−1 + cfh),

x12n+7 = dg(−1+beg)
e(−1+bdg) , x12n+8 = af

h(−1+acf) ,

y12n−3 = h, y12n−2 = g, y12n−1 = f, y12n = e,

y12n+1 = ch
a(−1+cfh) , y12n+2 = be(−1+bdg)

d(−1+beg) , y12n+3 = h(−1 + acf),

y12n+4 = g

(−1+bdg) , y12n+5 = f

(−1+acf) ,

y12n+6 = e(−1 + bdg), y12n+7 = ch(−1+acf)
a(−1+cfh) , y12n+8 = be

d(−1+beg) ,

or

{xn}
∞

n=−3 =

{

d, c, b, a, dg
e(−1+bdg) ,

af(−1+cfh)
h(−1+acf) , d(−1 + beg), c

(−1+cfh) ,
b

(−1+beg) , a(−1 + cfh), dg(−1+beg)
e(−1+bdg) ,

af
h(−1+acf) , d, c, b, a, ...

}

,

{yn}
∞

n=−3 =

{

h, g, f, e, ch
a(−1+cfh) ,

be(−1+bdg)
d(−1+beg) , h(−1 + acf), g

(−1+bdg) ,
f

(−1+acf) , e(−1 + bdg), ch(−1+acf)
a(−1+cfh) ,

be
d(−1+beg) , h, g, f, e, ...

}

.

Lemma 1. All solutions of System (3) are periodic of period six if and only if x−3y−2x−1 =
y−2x−1y0 = x−2y−1x0 = y−3x−2y−1 = 2 and has the form

{xn} =

{

d, c, b, a,
dg

e
,
af

h
, d, ...

}

{yn} =

{

h, g, f, e,
ch

a
,
be

d
, h, ...

}

.

Proof. First suppose that there exists a prime period six solution of System (3) of the form

{xn} =
{

d, c, b, a, dg
e
, af

h
, d, ...

}

, {yn} =
{

h, g, f, e, ch
a
, be

d
, h, ...

}

.

By substituting in the obtained form of the solutions of System (3) in previous Theorem,
we get

dg

e
= dg

e(−1+bdg) ,
af

h
= af(−1+cfh)

h(−1+acf) , d = d(−1 + beg), c = c
(−1+cfh) ,

b = b
(−1+beg) , a = a(−1 + cfh), dg

e
= dg(−1+beg)

e(−1+bdg) ,
af

h
= af

h(−1+acf) ,

ch
a

= ch
a(−1+cfh) ,

be
d
= be(−1+bdg)

d(−1+beg) , h = h(−1 + acf), g = g
(−1+bdg) ,

f = f
(−1+acf) , e = e(−1 + bdg), ch

a
= ch(−1+acf)

a(−1+cfh) ,
be
d
= be

d(−1+beg) ,

Then it is easy to see that acf = cfh = beg = bdg = 2.Thus the conditions are satisfied.
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Second suppose that x−3y−2x−1 = y−2x−1y0 = x−2y−1x0 = y−3x−2y−1 = 2. It follows
from the form of solutions of system (3) that

x12n−3 = d, x12n−2 = c, x12n−1 = b, x12n = a, x12n+1 = dg
e
, x12n+2 = af

h
,

x12n+3 = d, x12n+4 = c, x12n+5 = b, x12n+6 = a, x12n+7 = dg

e
, x12n+8 = af

h
,

y12n−3 = h, y12n−2 = g, y12n−1 = f, y12n = e, y12n+1 = ch
a
, y12n+2 = be

d
,

y12n+3 = h, y12n+4 = g, y12n+5 = f, y12n+6 = e, y12n+7 = ch
a
, y12n+8 = be

d
,

which gives period six solutions and then the proof is completed.

Lemma 2. All solutions of the system (3) are periodic of period three if and only if
x−3y−2x−1 = y−2x−1y0 = x−2y−1x0 = y−3x−2y−1 = 2, and x−3 = x0, x−2 = y−2, x−1 =
y−1 and has the form {xn}

+∞

n=−3 = {d, c, b, d, c, b, ...} and {yn}
+∞

n=−3 = {h, g, f, h, g, f, ...}.

Proof. The proof follows from Lemma 1 and so will be omitted.

2.4 On the System: xn+1 =
xn−3yn−2

yn(−1−xn−1yn−2xn−3)
, yn+1 =

xn−2yn−3

xn(1−yn−1xn−2yn−3)

In this section, we study the solutions of the system of two difference equations

xn+1 =
xn−3yn−2

yn(−1− xn−1yn−2xn−3)
, yn+1 =

xn−2yn−3

xn(1− yn−1xn−2yn−3)
, (4)

with a nonzero real numbers initial conditions and x−3y−2x−1, x−2y−1x0 6= −1, y−2x−1y0,
y−3x−2y−1 6= 1.

Theorem 4. Let {xn, yn} be solutions of system (4). Then

x6n−3 = d
n−1
∏

i=0

(

−1+(3i+1)beg
−1+(3i)beg

)

, x6n−2 = c
n−1
∏

i=0

(

−1+(3i+2)cfh
−1+(3i+1)cfh

)

,

x6n−1 = b
n−1
∏

i=0

(

−1+(3i+2)beg
−1+(3i+1)beg

)

, x6n = a
n−1
∏

i=0

(

−1+(3i+3)cfh
−1+(3i+2)cfh

)

,

x6n+1 = −dg

e(1+bdg)

n−1
∏

i=0

(

−1+(3i+3)beg
−1+(3i+2)beg

)

,

x6n+2 = af(−1+cfh)
h(1+acf)

n−1
∏

i=0

(

−1+(3i+4)cfh
−1+(3i+3)cfh

)

,

y12n−3 = h
n−1
∏

i=0

(

(1−(6i)cfh)(1−(6i+3)cfh)
(1−(6i+2)cfh)(1−(6i+5)cfh)

)

,
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y12n−2 = g

n−1
∏

i=0

(

(1−(6i)beg)(1−(6i+3)beg)
(1−(6i+2)beg)(1−(6i+5)beg)

)

,

y12n−1 = f

n−1
∏

i=0

(

(1−(6i+1)cfh)(1−(6i+4)cfh)
(1−(6i+3)cfh)(1−(6i+6)cfh)

)

,

y12n = e

n−1
∏

i=0

(

(1−(6i+1)beg)(1−(6i+4)beg)
(1−(6i+3)beg)(1−(6i+6)beg)

)

,

y12n+1 = ch
a(1−cfh)

n−1
∏

i=0

(

(1−(6i+2)cfh)(1−(6i+5)cfh)
(1−(6i+4)cfh)(1−(6i+7)cfh)

)

,

y12n+2 = be(1+bdg)
d(−1+beg)

n−1
∏

i=0

(

(1−(6i+2)beg)(1−(6i+5)beg)
(1−(6i+4)beg)(1−(6i+7)beg)

)

,

y12n+3 = h(1+acf)
(−1+2cfh)

n−1
∏

i=0

(

(1−(6i+3)cfh)(1−(6i+6)cfh)
(1−(6i+5)cfh)(1−(6i+8)cfh)

)

,

y12n+4 = g

(1+bdg)(−1+2beg)

n−1
∏

i=0

(

(1−(6i+3)beg)(1−(6i+6)beg)
(1−(6i+5)beg)(1−(6i+8)beg)

)

,

y12n+5 = f(1−cfh)
(1+acf)(−1+3cfh)

n−1
∏

i=0

(

(1−(6i+4)cfh)(1−(6i+7)cfh)
(1−(6i+6)cfh)(1−(6i+9)cfh)

)

,

y12n+6 = e(−1+beg)(1+bdg)
(1−3beg)

n−1
∏

i=0

(

(1−(6i+4)beg)(1−(6i+7)beg)
(1−(6i+6)beg)(1−(6i+9)beg)

)

,

y12n+7 = ch(1+acf)(1−2cfh)
a(−1+cfh)(1−4cfh)

n−1
∏

i=0

(

(1−(6i+5)cfh)(1−(6i+8)cfh)
(1−(6i+7)cfh)(1−(6i+10)cfh)

)

,

y12n+8 = be(1−2beg)
d(1−beg)(1−4beg)

n−1
∏

i=0

(

(1−(6i+5)beg)(1−(6i+8)beg)
(1−(6i+7)beg)(1−(6i+10)beg)

)

.

2.5 Numerical Examples

For confirming the results of this paper, we consider some numerical examples which rep-
resent different types of solutions for the systems (1) - (4).

Example 1. We consider interesting numerical example for the difference system (1) with
the initial conditions x−3 = .8, x−2 = −4, x−1 = 3.5, x0 = 5, y−3 = 3, y−2 = −1.9, y−1 =
6 and y0 = 2.6. (See Fig. 1).

Example 2. See Figure 2, when we take the initial conditions x−3 = .8, x−2 = −1.4, x−1 =
1.1, x0 = .5, y−3 = 1.9, y−2 = −2, y−1 = .26 and y0 = −.7 for System (3).

Example 3. Figure 3 shows the periodicity with period six of System of difference equations
(3) with the initial conditions x−3 = 3, x−2 = −5, x−1 = −1/6, x0 = −1/15, y−3 =
−1/15, y−2 = −4, y−1 = 6 and y0 = 3.
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Figure 1

Figure 2

Figure 3
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